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Abstract: Pedestrian collision avoidance is a crucial task in the development and democratization of
autonomous vehicles. The aim of this review is to provide an accessible overview of the pedestrian
collision avoidance systems in autonomous vehicles that have been proposed by the scientific
community over the last ten years. For this purpose, we propose a classification of studies in
the literature in terms of the following: (i) pedestrian detection methods, (ii) collision avoidance
approaches, (iii) actions, (iv) computing methods, and (v) test methods.
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1. Introduction

Collision Avoidance (CA) is an essential module of an Autonomous Vehicle (AV).
Indeed, one of the main criteria for the social acceptance of autonomous vehicles is the trust
that other road users place in them, especially in Vulnerable Road Users (VRU). The authors
of this review decided to focus on the Pedestrian Collision Avoidance (PCA) systems in
autonomous vehicles. This topic represents a crucial issue in the improvement in and
automation of vehicles when, at present, the World Health Organization (WHO) estimates
the death of one pedestrian in a car accident every 1 min and 41 s [1]. Moreover, more than
half of all the road traffic deaths are vulnerable road users such as pedestrians, cyclists,
and motorcyclists [2]. Therefore, equipping partially autonomous vehicles with effective
and robust PCA systems is a prime solution through which the safety of pedestrians on the
road can be improved while moving toward the full automation of road traffic.

At present, self-driving vehicles belong to one of the five levels of autonomy described
by the Society of Automotive Engineers (SAE). These levels can vary from level 0 (being
a nonautomated vehicle) to level 5 (being a fully autonomous vehicle) [3]. In this review,
not only were thePCA approaches in the context of fully autonomous car studied, but
also the approaches that concern partially autonomous cars such as Advanced Driver
Assistant System (ADAS) or approaches that are applied on autonomous robots and
shuttles (as all these approaches could be applied in the context of autonomous cars).
In addition, although PCA is mainly related to a pedestrian crossing the road, this review
covers as wide a range of studies as possible through an analysis of the currently available
approaches for avoiding collisions of autonomous vehicles with individual pedestrians,
as well as with groups of pedestrians—both crossing and non-crossing, on signalized
pedestrian crosswalks or not—in different road configurations.

In this paper, a thematic literature review of pedestrian collision avoidance in au-
tonomous vehicles is presented. The main objective and aim of this review are to give an
overview of the state-of-art approaches used for the development and the implementa-
tion of these collision avoidance systems. The rest of this paper is structured as follows:
Section 2 presents the systematic process that was followed to conduct this literature review.
Section 3 describes the classification of the papers included in this literature review into
five main categories; therefore, the following five sections are dedicated to the discussion
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of one of the themes proposed in the classification. Finally, the concluding remarks for this
review are presented in Section 10.

2. Review Process

In this section, we analyze the process that was applied to carry out this literature
review. It was based on a systematic literature review process and consisterd of three
different steps:

1. Identifying the relevant papers in the literature for the review topic;
2. Reading and summarizing the selected papers;
3. Interpreting the findings and proposing a well-structured classification of the papers.

In order to identify the relevant work in the literature for the topic of this review, we
decided to apply the following constraints:

• The research must have been carried out using the Google Scholar database.
• The selected articles must have been published within the last ten years.

Therefore, the first step was to conduct some research on the Google Scholar search
engine, where the aim was to find relevant search strings to obtain results relevant to the
topic. Below are some of the search strings that yielded the most relevant results:

• Pedestrian collision avoidance in autonomous vehicle;
• Pedestrian accident avoidance in autonomous vehicle;
• Pedestrian collision prediction in autonomous vehicle;
• Pedestrian accident prediction in autonomous vehicle;
• Pedestrian safety in autonomous vehicle.

As a result, we selected the 40 most relevant papers related to pedestrian collision
avoidance in autonomous vehicles based on their abstracts.

Finally, we produced a pie chart of the distribution of the papers selected for this
review according to their publication date, as shown in Figure 1. This made it possible to
better understand how recent the analyzed approaches were.

Figure 1. Distribution of the papers selected for this review according to their publication date.

3. Thematic Classification

This section presents the classification of the papers that were selected and analyzed for
this review. A tree visualization of this classification is presented below. The classification
in Figure 2 is made up of five main parts, which include pedestrian detection methods,
collision avoidance approaches, actions triggered by collision avoidance systems, their
computation, and the methods of testing these approaches.
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Figure 2. Classification of papers in this review into five main parts.

4. Pedestrian Detection Methods

In this section, the different detection methods used by PCA systems are analyzed.
The main objective of these methods is to determine the position of pedestrians around the
autonomous vehicle as accurately as possible. An important challenge for an AV is to be
able to see and to be clearly visible to agents present in its vicinity. Whereas mutual visibility
can be relatively easily established between a human driver (driving a conventional vehicle)
and a pedestrian, this is non-rivial when there is no driver in the vehicle. To carry out this
recognition of the environment from the perspective of an AV, the detection methods can
be divided into two categories:

• Line-Of-Sight (LOS) detection methods;
• Non-Line-Of-Sight (NLOS) detection methods.

It is also interesting to note that some of the approaches studied for this review
combine both of these detection techniques.

4.1. Line-of-Sight Detection Methods

LOS detection methods include the methods that are applicable in the situations where
an AV is able to detect pedestrians that are in its field of view. Pedestrian detection is thus
carried out using the AV’s on-board perception sensors. A paper [4] describes an example
AV, the autonomous-driving test vehicle of University of Tartu, along with its sensor set.
Usually, AVs employ all or a subset of the following sensors:

• Cameras;
• Light Detection And Ranging (LiDAR) sensors;
• Radio Detection And Ranging (RADAR) sensors;
• Infrared (IR) sensors;
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• Temperature sensors;
• Humidity sensors;
• Ultrasonic sensors;
• Road and traffic detectors.

The early works on PCA systems were based on this type of detection method. More-
over, a significant portion of the papers analyzed for this review used this type of detection
method. The references in Table 1 indicate approaches that use or could use,LOS detec-
tion methods.

Table 1. Works froinm the literature that employed line-of-sight detection methods.

Line-of-Sight Detection Methods

[5–29]

A technique that is frequently used in multisensor approaches for perception is sensor
fusion. Instead of relying on a single sensor, which might be prone to failures and whose
quality may deteriorate over time, sensor fusion is used for merging the perception data
that have been acquired using several sensors in order to produce more reliable information
about an AV’s surroundings.

Although expensive sensors such as LiDAR are used in some of the studies that were
included in this review, it is important to note that in industry, there is no consensus on
their viability for consumer AVs of the future. For example, while companies like Waymo
use LiDAR sensors in their AVs [30], other vehicle manufacturers like Tesla prefer to rely
as much as possible on vision-based sensors [31].

4.2. Non-Line-of-Sight Detection Methods

More recently, NLOS detection methods have also been investigated by the research
community that is working on PCA systems. This category refers to the methods that
address the detection of pedestrians who are not in an AV’s field of view. Such situations
are very common in traffic. Some examples include bad weather conditions such as rain,
fog, or snow, and situations where the vehicle’s field of view is obstructed such as when
overtaking another vehicle parked on the roadside and a pedestrian steps onto the road
from behind the parked vehicle. In these situations, the LOS detection methods (described
in the previous subsection) become much less reliable and effective. In order to overcome
this problem, alternative detection methods have been proposed in the literature, which
can be broadly divided into the following two categories:

• Wireless communication;
• Probabilistic methods.

Table 2 presents studies in the literature that employed NLOS pedestrian detection
methods.

Table 2. Works from the literature that employed Non-Line-Of-Sight detection methods.

Non-Line-of-Sight Detection Methods

Wireless Communication Probabilistic Methods

[6,10,16,19,32–39] [21,24,25,40]

4.2.1. Wireless Communications

NLOS detection methods based on wireless communication between an AV and a
pedestrian (within the context of PCA systems) are referred to as Vehicle-To-Pedestrian
(V2P) and Pedestrian-To-Vehicle (P2V) communication methods. In the literature, however,
it is also possible to find the term Vehicle-To-Everything (V2X), which refers to the commu-
nication between an autonomous vehicle and all other agents that might be present in its
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vicinity such as other vehicles, pedestrians, and even the infrastructure. These methods
can be based on different protocols such as:

• Wi-Fi-based communication;
• Communication using cellular networks (3G, 4G, and 5G).
• Dedicated Short Range Communications (DSRC)

In any NLOS PCA system, the main objective is to enable an AV to obtain information
about any pedestrians that might be occluded from its field of view. This information
can usually be obtained from the pedestrians’ mobile phones and might be more or less
detailed and include features such as the location of the pedestrians, their age, and their
sex. Some studies, such as [32], went one step further and proposed a classification of the
VRU-contextual information into five categories: VRU-location context, physical activity,
high-level activity, level of distraction, and personal information. They discussed how this
information is helpful for facing the different challenges imposed by the use of smartphones,
which include the energy consumption of a PCA running on small-battery devices such as
mobile phones, the network load generated by the PCA, and the accuracy of the positioning
information provided by smartphones (which depends on the quality and consequently the
cost of the device and is usually far from being comparable to the accuracy of specialized
or military equipment).

Additionally, as stated in [41], the privacy of pedestrians’ data and the security of the
communications are crucial challenges when designing a V2P or P2V system for PCA. In
fact, ensuring secure and authenticated communication between a pedestrian and an AV is
essential for guaranteeing the integrity and privacy of the pedestrian’s personal information.
Without this protection of communications, it would be quite possible for a malicious agent
to steal the information of pedestrians or to modify it and cause serious accidents.

Finally, detection methods base on wireless communication may suffer from network
uncertainties and issues such as communication delay or packet loss. These issues are
discussed in [34]. When a delay is introduced in P2V communication or if packet loss rate
increases to a certain value, an AV might not be able to determine the pedestrian’s correct
position and velocity; therefore, a collision might occur. Therefore, minimizing commu-
nication delays and packet loss is of paramount importance for this type of pedestrian
detection method.

Different communication protocols used in NLOS PCA systems are presented in more
detail below.

Wi-Fi-Based Communication

Two articles, Refs. [35,39], which were analyzed in the context of this review, present
PCA systems that are partially and fully based on Wi-Fi communication between a pedes-
trian’s smartphone and the AV On-Board Unit (OBU), respectively.

The authors of [39] tried to overcome the usual limitations of Wi-Fi such as the
long connection time (which undermines the low latency requirement of PCA systems)
and proposed an approach that is compliant with the IEEE 802.11p standard.

However, the authors of [38] pointed out that it is difficult to overcome certain limita-
tions of Wi-Fi communications such as the problems caused by the interference with other
networks (which are particularly problematic in urban areas), the limited communication
range of Wi-Fi (which is about 100 m), and its weak mobility support due to its sensitivity
to the Doppler effect.

Communication Using Cellular Networks

In [35], the authors propose an alternative to WiFi-based communication using com-
munication through cellular networks, using an external server. Among the papers studied
for this review, Ref. [38] also proposed an approach based on the use of cellular networks
and a cloud-based server. The authors highlighted the fact that cellular networks have
an interesting potential owing to their high mobility support, high bit rate, and wide
communication range and capacity.
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However, despite their potential, the requirement for communication with an external
server in these approaches makes them more susceptible to performance degradation. (This
is discussed in more detail in Section 7.)

Dedicated Short-Range Communication

DSRC is a one-way or two-way, short-range to medium-range, wireless communication
channel, operating in the 5.8 or 5.9 GHz wireless spectrum, specifically designed for
automotive use [42]. DSRC is widely used in V2X communications. This protocol is
based on the IEEE 802.11p standard, which defines a method of exchanging data in high-
speed motion without the need to wait for the association and authentication to a target
to complete prior to exchanging data. In addition, currently, DSRC is the only short-
range wireless technology whose performance is not degraded by bad weather conditions.
Using DSRC, the information transmitted between pedestrians and an AV take the form
of standardized messages named Cooperative Awareness Message (CAM). Among the
papers studied in this review, Refs. [35–37] propose PCA approaches based on DSRC.

However, even if the DSRC communication seems effective and promising for PCA
systems, it is currently difficult to envision this solution in the real world since no smart-
phone currently offers the possibility of embedding a DSRC module, even though efforts to
embed them have recently started.

4.2.2. Using Probabilistic Models

Several approaches analyzed in this review use probabilistic methods in order to help
the AV to pay attention to any occluded areas. An interesting method is presented in [21],
in which the authors propose a way to find the distribution of emerging pedestrians from
occluded areas. This solution is based on contextual information collected with LOS sensors
such as the presence of parked cars, crosswalks, and any visible pedestrians. The authors
also stated that this type of pedestrian detection method has not been investigated very
much in the literature in comparison to other pedestrian detection methods in the NLOS
category. We indeed observed the same while conducting our review. As the direct
transmission of information between a vehicle and a pedestrian is more reliable as long as
the communication is stable, it is surely interesting to further investigate the combination
of NLOS and probabilistic methods.

5. Collision Avoidance Approaches

In this section, we present the main types of collision avoidance approaches employed
in the papers we reviewed. These approaches can be classified into four types:

• Rules-based approaches;
• Force-field-based approaches;
• Model-based approaches;
• AI-based approaches.

The approaches that are discussed in this section employ different input (in terms of
pedestrian detection) methods than those presented in Section 4. And, the actions that
these approaches output are discussed in Section 6. One key aspect to consider while
studying these approaches is to determine which seem to be the most suitable for real-
world conditions, i.e., whose calculations can be performed in real time. In the following
subsections, the four above-mentioned categories are presented. It is important to note
that some of the methods that were reviewed combine several types of approaches in their
collision avoidance system.

5.1. Rules-Based Approaches

This subsection presents rules-based approaches. These approaches are based on the
calculation of risk assessment indicators to trigger certain actions. Table 3 lists studies in
the literature that employed rules-based methods for PCA.
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Table 3. List of works that employed rules-based approaches for PCA.

Rules-Based Approaches

[9,14,16,21,33–35,38,39]

In PCA, one of the most widely used metrics is the Time To Collision (TTC), which (at
any given time) indicates the time remaining before collision if the two entities involved in
the process (i.e., the AV and the pedestrian) maintain their respective speeds. As mentioned
in [41], the TTC is easy to calculate as long as the speed of the vehicle and the distance
between the vehicle and the pedestrian is known.

Several other indicators have been derived based on the TTC in the literature. For ex-
ample, Ref. [9] presents the Time-To-Collision Range (TTCR) metric. The authors [9] argued
that the TTC does not take into account the potential collisions that may be dangerous for a
pedestrian. As a result, they proposed an improvement to the TTC metric, i.e., the TTCR,
which takes into account the potential collision and is therefore more reasonable and safe
for pedestrian collision avoidance, they argued.

In general, the metrics used in these approaches can be quickly calculated from
the information collected during the pedestrian detection stage. Therefore, this type of
approach seems feasible for application in real time.

5.2. Force-Field-Based Approaches

In this subsection, the force-field-based approaches are presented. These approaches
can be further divided into two main branches:

• Potential field methods;
• Elastic band methods.

Table 4 presents the two classes within the force-field-based approaches.

Table 4. Classification of studies the literature that employed force-field-based approaches.

Force-Field-Based Approaches

Potential Field Elastic Band

[22,24,25] [20,36,37,43]

5.2.1. Potential Field

Potential fields have been used in robotics for a long time (and have also been more
recently used in autonomous driving) for the purpose of path planning. In such methods,
an artificial potential field of attractive and repulsive forces is generated by the factors that
affect the path planning of a vehicle. For example, the destination constitutes an attractive
force, and the obstacles, such as pedestrians or road boundaries, are considered as repulsive
forces. Based on the created force field, the idea is then to find a collision-free path within
this force field and in turn to determine the trajectory and the velocity of the vehicle.

However, even if these approaches are interesting, as mentioned in [20], they suffer
from a high computational cost and are therefore difficult to apply in real time. As a result,
the research community has recently come up with a new force-field-based method that is
better suited for real-time computation, i.e., the elastic band method.

5.2.2. Elastic Band

The elastic band method is a local path planning method. Path planning, on a higher
level, can be divided into two categories, which are global path planning methods and local
path planning methods. The global path planning methods are responsible for planning the
path for an AV from point A to point B, on a relatively larger scale. Generally speaking, such
a path takes the form of a series of waypoints represented by GPS coordinates. On the other
hand, the local path planning methods are responsible for modifying a small portion of a
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predefined path (which is usually defined by the global path planning module). Figure 3
illustrates and compares the goals of global and local path planning methods.

Figure 3. Comparison of the goals of global and local path planning methods.

The elastic band method uses a predefined path that is locally modified as a result
of the action of internal and external forces. The part of the path affected by the forces is
called the band. Internal forces keep the band together, while external forces, such as the
potential artificial force, keep the band clear of obstacles.

As stated in [20], in comparison to the potential field methods, the elastic band collision
avoidance methods do not take into account all the possible trajectories of the AV in the
force field. Because of this reason, the elastic band methods are naturally faster to compute
than the potential field ones.

In addition to better performance, these methods also make it easy to incorporate
the notion of respecting the social distance of the pedestrian, as presented in [43]. Indeed,
during the computation and execution of collision avoidance with a pedestrian, their
personal space must be taken into account and respected by the AV. This corresponds to
adding an extra safety distance around the pedestrian in the calculations. Compliance with
this condition echoes the so-called “socially acceptable” criterion, which has sometimes
been discussed in the literature.

Finally, another interesting point regarding these methods is that they can handle
the case of a group of pedestrians by considering the group as a single entity that is to be
avoided. The recognition of the group of pedestrians is also dependent on the detection
method employed by the specific PCA system in question.

5.3. Model-Based Approaches

This subsection presents the model-based collision avoidance approaches. These
approaches can also be described as algorithms that are based on the mathematical model-
ing of an AV and its environment. Table 5 lists studies in the literature that investigated
model-based approaches.

Table 5. List of studies that investigated model-based approaches.

Model-Based Approaches

[13,15,17,18,22,23,25,40,44,45]

As mentioned in [15], the advantage of this type of approach in comparison to learning-
based approaches is that these approaches do not require the construction of a reliable
training dataset, which may struggle to cover all PCA scenarios. In addition, the solutions
that are developed on the basis of a mathematical model are optimal. Thus, there are no
cases of false positive actions, which is quite possible in learning-based models (which can
in turn lead to ethical and legal disputes in the event of an accident).
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However, according to the authors of this review, this type of approach also has its
shortcomings. The effectiveness and ability of the model to interact with the environment
are completely dependent on how it is designed. In addition, it seems difficult to imagine
being able to incorporate all possible situations in the environment into a mathematical
model. This type of approach seems to be inflexible in the face of unexpected changes in
the environment. In fact, the approaches that are flexible and adaptable perform better
under real-life conditions, such as the approaches that are based on the elastic band method
or AI-based approaches. Finally, the power of model-based approaches is tightly related to
the computing power that is available to find the solutions. Several computing solutions
are possible with such approaches, such as calculations on the vehicle’s OBU or on external
servers. As discussed in the Section 7, computing on external servers currently seems
impractical for this use case, which would in turn mean that the calculations need to be
performed on the AV’s OBU. Therefore, it is possible to imagine that the most powerful
model-based autonomous vehicles will also be the most expensive.

5.4. AI-Based Approaches

In this subsection, the AI-based PCA approaches are presented. The use of such ap-
proaches is widespread in the literature on autonomous vehicles in general, and this is also
the case for the literature on PCA systems. In the works that we reviewed, the approaches
related to Artificial intelligence (AI) can be classified into two subcategories:

• Approaches based on Neural Networks;
• Approaches based on Fuzzy Controllers.

Table 6 shows the classification of methods into these two categories.

Table 6. Classification of studies that employ AI-based approaches.

AI-Based Approaches

Neural Networks Fuzzy Controller

[5–8,10,12,20,26,29] [5,11,19,28,29]

5.4.1. Neural Networks

The PCA approaches that use neural networks as the solution can be further divided
into two main categories, i.e., the approaches that use Reinforcement Learning (RL) and
those that employ Fuzzy Neural Network (FNN).

Reinforcement Learning

RL is a well-known method in autonomous vehicles, which is often used in order to
learn a driving policy. So, it makes intuitive sense to use RL to learn a driving policy to
avoid collisions with pedestrians. The problem is usually formulated as anMarkov Decision
Process (MDP) before using a Deep Q-Network (DQN) to solve it and learn a near-optimal
policy. The main components of an MDP that may vary from one approach to another are
as follows:

• State space: the space where one state describes the state of the own vehicle and the
pedestrians.

• Action space: the set of actions that can be chosen by the autonomous vehicle.
• Reward function: the function that attributes a numerical score based on the state of

the environment after the chosen action has been completed.

A crucial part in RL is the design of the reward function. It is based on several
criteria that can positively or negatively impact the final score. For example, hitting
a pedestrian, not respecting traffic regulations, or going outside the limits of the road
can negatively impact the final score. On the other hand, reaching the destination in a
reasonable time can positively impact the final score. For each approach, it is therefore



Computers 2024, 13, 78 10 of 20

necessary to find the function that allows the most efficient training of the DQN according
to the modeling previously conductedx.

Such a Neural Network is made up of three main parts:

• Input layer: there are as many neurons as variables needed to describe a state;
• Hidden layers: these are usually several fully connected layers, the number of which

may vary depending on the approach;
• Output layer: there are as many neurons as possible actions (defined in the MDP model).

The Stochastic Gradient Descent (SGD) algorithm is usually used to update the net-
work parameters while minimizing the loss function. Furthermore, a DQN is generally
accompanied by experience replay memory to speed up and stabilize the learning process.
The agent’s experiences at each time step are kept in a data set called experience replay
memory. During the training of the DQN, the goal of the replay memory technique is to
break the correlation between consecutive samples that could be fed as input to the neural
network by randomly selecting and inputting experiments from the replay memory.

This replay memory can also be optimized according to the proposed approaches.
For example, Ref. [10] proposes a double DQN with a Prioritized Experience Replay (PER)
buffer. Indeed, it is possible to order the experiences stored in the experience replay memory
depending on their relevance. For example, an experience that leads to a collision with
a pedestrian may be more relevant to replay than the other ones. Therefore, instead of
picking experiences randomly in the replay memory during the training phase, they are
picked from the highest to the lowest priority.

Another example is presented in [27], where two experience replay memories were
used. The authors argued that there are usually insufficient negative experiences available
in the common experience replay memory. In their approach, negative experiences refer to
experiences that lead to a collision state. In the case of a lack of negative transitions in the
replay memory, the learning process of the driving policy is more time consuming. As a
result, they decided to create a second replay memory dedicated to negative experiences
and to keep the first one for the other experiences. During the training process, experience
is uniformly picked up from the first and second replay memories. This allowed the authors
to achieve faster training times compared to a single traditional replay memory.

Fuzzy Neural Network

A FNN is used to find the outputs of a fuzzy controller. It uses the training and
learning algorithms from neural networks to find the values of the output parameters. The
fuzzy controllers used inside the neural network are described in the next subsection.

5.4.2. Fuzzy Controllers

Some of the approaches studied in this review base their collision avoidance systems
on Fuzzy Controllers. This type of controller allows an AV to operate quite closely to
the functioning of human decision making. Fuzzy Controllers are a good solution for
building PCA systems because they are very flexible and adapt well to noisy environments.
The activity of a Fuzzy Controller can be summarized in the following three main phases,
as presented in detail by [19]:

• Fuzzification: The controller receives crisp input values corresponding to the different
input variables. This phase converts the crisp input values into fuzzy values using a
membership function.

• Inference engine: The controller makes fuzzy inferences on the inputs using predefined
inference rules (if-then rules). The result of this phase is the fuzzy values of the
output variables.

• Defuzzification: The controller converts the fuzzy output values into crisp output
values. This is a reverse process of the fuzzification phase.

In the approaches that we studied within the context of this review, the number
and definition of input and output variables vary. The input variables depend on what
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information is collected about the environment of the AV. The output variables correspond
to the values of actions that will be carried out by the AV, e.g., braking the vehicle by half
its speed. Finally, the last component that can vary between the approaches is the inference
method used in the inference engine. There are different methods of inference including
Mamdani’s inference method, which is the most used in the Fuzzy Controllers among those
that were studied in this review. Studies such as [5,19,29] used this inference method. One
other well-known inference method is the gravity center method, which was used in [28].

6. Actions

In this section, we present the possible actions that are triggered by different PCA systems.
The actions triggered by these systems can have an impact on two different parties:

• The AV itself;
• The pedestrian(s) involved.

6.1. Involving the Autonomous Vehicle

Intuitively, a PCA system can trigger actions that are related to the AV itself. In the
different PCA approaches that have been proposed in the literature, the following are the
main types actions that can be undertaken by the vehicles themselves:

• Longitudinal control (action on throttle or brake);
• Lateral control (action on the steering wheel);
• Both.

Table 7 shows the distribution of these types of actions that were studied for this review.

Table 7. Classification of studies based on the triggered actions in relation to the AV itself.

Actions

Longitudinal Control Lateral Control Both

[5,6,21,24,28,29,34,38] [25,36] [8–15,17,19,20,22,23,26,27,33,35,39,40,44]

In a PCA system, the numerical values corresponding to the throttle, the braking, and
the steering angle are usually produced by a “high-level” controller. In order to be applied
on the AV, these values must be translated into throttle or brake pedal forces or steering
wheel angles, respectively. This translation is usually performed by a “low-level” controller.
One example of a low-level controller is a Proportional–Integral–Derivative (PID) controller,
which was employed in [29]. Figure 4 shows the common architecture of a PCA system,
along with the autonomous vehicle components involved at each stage.

Figure 4. A common possible architecture of a collision avoidance system, along with the autonomous
vehicle components involved at each stage.

6.1.1. Longitudinal Controller

In terms of the longitudinal control, the actions that are triggered by a PCA system
can be applied to the throttle or the brake of an AV.
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Throttling Action

In some situations, acceleration is a useful action for the vehicle to overtake a pedes-
trian who might otherwise collide with it. However, these situations are quite rare com-
pared to the situations that involve vehicle braking.

Braking Action

In relation to the braking action of a vehicle, there are two types of situations.
The first type includes the situations where the PCA system has detected a possible

collision sufficiently in advance. In such situations, the vehicle can gradually reduce its
speed while respecting the comfort of the passengers. In fact, passenger comfort is a major
consideration when designing the actions the can be taken by an autonomous vehicle.
These actions must be as smooth as possible so as to not disturb the passengers.

The other type includes the situations where the AV may not have had enough
time to anticipate the collision with the pedestrian. This is sometimes the case in certain
occlusion situations, where a pedestrian may suddenly come onto the road. In this case,
the braking action can often take the form of an Automatic Emergency Brake (AEB) system.
The approaches presented in [5,13,14,29,40] involve AEB systems. Such systems slow
down the vehicles as quickly as possible when a collision is imminent and cannot be
avoided otherwise. Here, it is obviously pedestrian safety that takes precedence over
passenger comfort.

6.1.2. Lateral Controller

Based on the reviewed literature, the use of lateral control depends on the speed of
the AV at the time when a possible collision with a pedestrian is detected. Intuitively,
depending on the speed of the vehicle, the steering angle applied to the wheel has a larger
or a smaller impact on the vehicle. It is important to note that in emergency situations
where a vehicle has a relatively high speed, the relatively high impact of an action on the
steering wheel, and in turn on the movement of the vehicle, may aggravate the accident.
Thus, it is clear that the more in advance a possible collision can be detected by a PCA
system, the more time the vehicle has to decelerate sufficiently to avoid a collision using
longitudinal control action, without having anything to do with the steering wheel.

Additionally, in situations that involve multilane roads, any lateral control action must
also take into account the environment before passing a pedestrian. It is necessary to take
into account the other vehicles in an AV’s vicinity in order not to collide with them and
cause an accident. Systems based on sensors or intervehicle communication that try to
mitigate such situations do exist.

6.2. Involving the Pedestrian

Some PCA systems are able to send a warning message to the pedestrians that are
involved in a potential collision situation at hand. This type of action concerns approaches
directly involving the pedestrian, notably through NLOS detection methods with wireless
communication. The aim of this type of approach is to be able to warn both parties involved
in the potential collision, namely, the autonomous vehicle and the pedestrian.

The challenge here is to be able to adapt the alert message sent to the pedestrian
according to their profile. As stated in [32], in low-risk scenarios, inappropriate warnings
could surprise and frighten a pedestrian and even result in an collision, for example with
an alarm sound that is excessively loud. In order to best adapt the type of alert message to
pedestrians, one solution is to use the pedestrian’s contextual information such as age or
distraction level. In this regard, attention should be paid to all kinds of scenarios, including,
for instance, the case where a pedestrian’s phone is in active use and is, for example,
in their pocket.
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7. Computing Methods

In this section, we review different computing methods that are used in different PCA
systems. Naturally, PCA systems need computing resources to perform calculations that
can vary depending on the approaches that a PCA system is based on. In terms of the
computing methods, PCA systems can be divided into three subcategories:

• Computations performed on the vehicle OBU;
• Computations performed on the pedestrian’ smartphone;
• Computations performed on external servers.

It is important to highlight here that almost all the approaches that we studied perform
their computations on-board the vehicle OBUs.

7.1. Performed by Vehicle’s On-Board Unit

Performing the computations required by an autonomous vehicle on the OBU is the
most common approach. An OBU can be operational both when the vehicle is moving
and when it is stationary. In the context of computations performed on the vehicle OBU,
the computing resources available vary. In fact, in the literature, depending on whether an
approach is being tested on a real vehicle or in a simulator, the hardware that is performing
the computations can vary and thus impact the performance of a PCA system.

7.2. Performed on Pedestrian Smartphone

Two of the approaches [16,35] that were studied within the context of this review
propose performing computations on the pedestrian’s smartphone. These approaches are
based on NLOS pedestrian detection methods using wireless communication.

The pedestrian collision avoidance systems that are loaded on pedestrian smartphones
usually take the form of a mobile application. For example, in [16], when the pedestrian’s
mobile phone is in use, the collision prediction algorithm is implemented as a background-
running mobile application. It accesses the pedestrian’s current location using the GPS
localization sensor embedded inside the smartphone. Based on this information, the system
updates the algorithm with pedestrian position data, and then it waits to receive the location
information of nearby autonomous vehicles. Finally, the application computes the collision
prediction directly on the smartphone according to the information collected by it and
displays a warning to the pedestrian if a collision may happen.

This type of approach is questionable as it relies heavily on the pedestrian’s phone,
which may provide poor-quality information or run out of battery while running the
application in the background. With regard to the use of the battery, different solutions
have been investigated, such as the one proposed in [38]. It proposes tackling the energy
limitation of the battery by using an adaptive multilevel application that can switch to
an energy-saving mode in risk-free situations. Additionally, the computing resources of
smartphones depends entirely on the quality of these devices, which varies greatly from
one pedestrian to another. Therefore, this type of computing method seems impractical in
real-world conditions.

7.3. Performed on External Servers

An approach presented in [38] proposes the use of a cloud-based server to carry out
the computations required by the collision avoidance system. This approach employs
a NLOS pedestrian detection method that is based on wireless communication. Again,
the reliability of such approaches may be debatable. Even if the progress in the broader
field of cloud computing makes it possible to offer powerful servers that are accessible at
short distances, the use of such an architecture multiplies the number of communications
through the network, which may not only increase the total computation time of the
collision avoidance system (with the addition of extra communication time in comparison
with a direct communication approach) but may also make the system less resilient. This is
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because all additional communications with the servers are susceptible to failure due to
delays or packet loss.

In addition, this type of architecture requires the system to be fault-tolerant on the
server side by requiring, for example, replication of the server, which is more expensive
and more complex to deploy and maintain than an architecture that only involved the AV
and the pedestrian smartphone. Furthermore, the issues of security and authentication of
communications are also important in this context. As it is the case for V2P or P2V wireless
communications, it is crucial to carry out security authentication on the external servers in
the communication process with the AV in order to avoid malicious communications that
could be the cause of serious accidents.

8. Test Methods

In this section, we present different test methods that have been employed in the
literature in order to test and validate different PCA systems that have been proposed.
These test methods can be divided into two main categories:

• Test methods using a real car;
• Test methods using simulators.

8.1. Using Real Car

A small proportion of the approaches that were studied in this review underwent
full-scale testing with real autonomous vehicles. Naturally, in most cases, these test vehicles
belonged to the laboratories of the researchers who proposed these PCA systems. It can be
argued that this type of real-world testing could make it easier to integrate the proposed
PCA approaches into vehicles that are or will be produced by vehicle manufacturers for
the general public. Table 8 lists the works that used real cars for their testing.

Table 8. List of works that used a real car for the testing of PCA systems that they proposed.

Test Approach Using Real Car

[9,15,19,20,33]

In general, the proposed approaches in these works were not tested on a real vehicle as
the first stage of testing but rather underwent tests in simulators before being tested on real
vehicles. Deploying a PCA approach directly (i.e., without first testing it in simulation) on a
real-life AV for tests in real traffic could entail risks for the pedestrians involved in the tests
as well as for the equipment used, even if there is usually a safety driver in the vehicles.
A common way to reproduce the physical conditions of a real autonomous vehicle under
simulated conditions is to use a Hardware-in-the-loop (HiL) simulation. HiL simulations
include real sensors and actuators in an electrical emulation to verify their behavior under
the tested approach.

8.2. Using Simulators

The testing approaches that are based on simulators can be divided into two broad
categories:

• Custom simulators (software and prototypes);
• Open-source simulators.

Table 9 presents this classification of the works from the literature based on the type of
simulator that they used.
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Table 9. Classification of works in the literature based on the type of simulator that they used.

Simulators

Custom Simulators Open-Source Simulators

[7,8,12,13,16,17,21,23,24,26,32,34–39,43,44,46] [5,6,10,11,14,18,20,22,25,27–29,40,47]

From Table 9, it can be observed that almost all the approaches that were studied in
this review were tested using simulators. It is indeed difficult to implement real-world
test scenarios involving collisions with pedestrians. Pedestrians (as well as the equipment)
could be put at risk in such experiments, especially when trying to test the limits of a
PCA system. However, the transition from simulation to the real world, for a system
that has only been tested in a simulation framework, can be challenging. As a result,
the use of prototypes can be seen as a midway solution between software simulations and
real-world tests.

Two interesting approaches in the works that we reviewed focused on the generation
of test scenarios. The authors in [46] provided a method to extract the most relevant test
cases from a map given as an input, considering that the system tested should avoid
pairwise collisions. To reduce the involved search space, i.e., the number of test cases
that are redundant, and guarantee test case diversity, the proposed system analyzes the
topology of the map for extracting test scenarios. Then, it uses a fuzzy model to evaluate
the own vehicle’s motion, based on which the test cases can be classified.

The authors in [47] proposed diversifying test cases by automatically generating safety-
critical scenarios. As mentioned in this article, there are currently several datasets available
for developing and testing collision avoidance systems. However, the variety of test cases is
naturally constrained by manually gathered datasets, and acquiring data from challenging
scenarios, such as those involving collisions with pedestrians, is particularly problematic.
Therefore, the authors came up with the Adversarial Test Synthesizer (ATS), which is an RL
agent that positions pedestrians in a given scene, thus allowing the generation of critical
test cases.

The subsections below describe the two subcategories of simulators that were encoun-
tered during our review in more detail.

8.2.1. Custom Simulators

We found that, in general, the simulators that have been developed were most often
written in Python. This allows for high flexibility in terms of the implementation of the
simulation and simplifies the integration of the corresponding proposed approach in the
simulation environment. However, the scenarios evaluated by such simulators are likely
to be limited and less comprehensive than those offered by open-source simulators. Here,
the use of prototypes is one way that can improve the quality of testing by being closer to
real-world conditions, while remaining on a small scale where everything is under control.

8.2.2. Open-Source Simulators

A significant number of approaches that were studied in this review were tested using
open-source simulators. Among theses simulators are, for instance, Car Learning to Act
(CARLA) [48], CarSim [49], and PreScan [50]. Such simulators allow authors to configure
test scenarios with fine granularity.

A common approach in several studies that originated from Europe, such as [40]
and [14], is to use scenarios from the European New Car Assessment Program (Euro
NCAP) [51] in order to test their PCA systems. This program provides a comprehensive
collection of tests cases for assessing new vehicles and contains a subcollection of scenarios
dedicated to AEB system testing involving pedestrians.
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9. Discussion

Below, we comment on the benefits and limitations of the different methods in the
categories presented above. We also discuss the avenues for future research in pedestrian
collision avoidance.

In terms of pedestrian detection methods, LOS methods are naturally intuitive to hu-
mans and will continue to be investigated and deployed in future autonomous vehicles. We
expect that cameras and RADAR will continue to be used and LiDAR to see a rise in use as
in situ perception sensors with the advancement in solid-state LiDAR technologies (which
are designed with the specific aim of deployment in automated driving). At the same time,
arguably [52], the autonomous driving community will move more and more toward the
paradigm where vehicles and infrastructure work together in order to achieve high levels of
vehicle autonomy. With that in mind, we expect infrastructural sensors to be investigated
more and more for providing assistance to autonomous vehicles and for tasks such as
pedestrian collision avoidance and pedestrian motion prediction. This shift in paradigm
also relates to the NLOS methods. In the future, it is expected that, with advancements with
privacy-preserving communication, wearable devices like smartphones and smartwatches
will be investigated more and more for inclusion in the traffic infrastructure, where such
devices can anonymously indicate the presence of road agents (including pedestrians) to
vehicles in their vicinity. Because of the coverage and availability (and their ever-increasing
speed, bandwidth, and stability), we expect cellular networks to be the dominant medium
for communication between the infrastructure and vehicles in the future.

The above-mentioned shift in paradigm, where vehicles and the infrastructure cooper-
ate for achieving high levels of autonomy, will also have an impact on collision avoidance
approaches. We expect rules-based and AI-based approaches to be the main approaches
that will be investigated by the research community in the near future. In relation to the
same shift in paradigm, it is expected that future infrastructural devices will be able to share
the computation needed for autonomous operation of AVs rather that all the computation
occurring in situ on AVs.

In terms of the actions to be taken by an AV for implementing a collision avoidance
maneuver, all the kinds of approaches listed in Section 6 have their own significance based
on the context and scenario in which an AV finds itself. Therefore, it is expected that all the
methods (including their combinations) will continue to be investigated and deployed in
future AVs.

In terms of the test methods in autonomous driving, one aspect that remains largely
underinvestigated is the use of small-scale vehicles. Small-scale robotic platforms are
aplenty [53], but the limiting factor in their effective use in autonomous-driving research
is systematically studying how and for what aspects of autonomous driving they can be
meaningfully used. While some preliminary studies such as [53] have been conducted
that try to systematically investigate this question, this remains an open research area.
We believe that once the suitability of small-scale vehicles for use in autonomous driving
has been systematically established, they have the potential be be used in investigating
many different aspects of autonomous driving, as indicated by studies such as [54]. At the
same time, advancements in autonomous driving simulators (indicated by studies such
as [55]) are making them more effective for autonomous driving research. In the future,
it is expected that simulators will continue to be used for autonomous driving research,
and small-scale vehicles will be more systematically investigated for their possible use in
autonomous driving research.

10. Conclusions

To conclude, in this review, an overview of pedestrian collision avoidance systems
in autonomous vehicles was presented. This review is based on a classification of the
relevant literature into five main categories. These categories represent the pedestrian de-
tection methods, the collision avoidance approaches, the actions triggered, the computation
methods, and the methods employed for the testing of PCA systems.
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There are also some limitations of this work. On the one hand, not all the papers
published on this topic over the selected time period could be studied in this review due
to time constraints. Another limitation is the use of Google Scholar only for searching the
relevant literature. In the future, inclusion of databases such as Web of Science and Scopus
should also be considered for such reviews. On the other hand, the assumptions made
about the applicability of some approaches to autonomous vehicles and others to pedestrian
avoidance rather than obstacle avoidance also constitutes a limitation of this work.

Finally, over the past 10 years, the systems proposed to meet this major challenge have
evolved greatly. Future approaches proposed by the research community will be all the
more interesting as the challenge is important and topical, as we are gradually making the
transition to a world of fully autonomous transport.
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