
Citation: Yosef, A.; Roth, I.; Shnaider,

E.; Baranes, A.; Schneider, M.

Horizontal Learning Approach to

Discover Association Rules.

Computers 2024, 13, 62.

https://doi.org/10.3390/

computers13030062

Academic Editor: Paolo Bellavista

Received: 23 November 2023

Revised: 23 January 2024

Accepted: 22 February 2024

Published: 28 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Horizontal Learning Approach to Discover Association Rules
Arthur Yosef 1,*, Idan Roth 1, Eli Shnaider 1, Amos Baranes 1 and Moti Schneider 2

1 Department of Information Systems, Tel Aviv-Yaffo Academic College, Tel Aviv-Yafo 6818211, Israel;
eli.shnaider1@gmail.com (E.S.)

2 Department of Computer Science, Netanya Academic College, Netanya 4223587, Israel; profmoti@gmail.com
* Correspondence: yusupoa@yahoo.com

Abstract: Association rule learning is a machine learning approach aiming to find substantial relations
among attributes within one or more datasets. We address the main problem of this technology,
which is the excessive computation time and the memory requirements needed for the processing
of discovering the association rules. Most of the literature pertaining to the association rules deals
extensively with these issues as major obstacles, especially for very large databases. In this paper,
we introduce a method that requires substantially lowers the run time and memory requirements in
comparison to the methods presently in use (reduction from O(2 m)

to O
(

2
m
2

)
in the worst case).
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1. Introduction

Association rules are “if-then” statements that indicate the probability of relationships
between data items within large datasets in various types of databases. Association rules
are or can potentially be utilized in a very wide range of domains, and in particular, they
constitute a very powerful tool when applied to very large datasets. There have been a very
large number of algorithms to conduct learning with the help of association rules. However,
in the case of very large databases, numerous algorithms of associate rules learning run into
severe difficulties due to computation time and memory requirement constraints. The most
important contribution of the present paper is the introduction of an entirely new concept
of learning, which substantially reduces computation time and memory requirements, thus
allowing it to operate effectively (in comparison to the alternative methods), even when
datasets are very large.

The importance of each technology is directly dependent on the scope of its actual
and potential applications. The following examples, covering a wide variety of domains,
demonstrate the importance of association rules:

• Association rule learning can discover purchasing habits based on past purchases and
browsing history and can assist in understanding customer behavior and preferences
by identifying associations between customer attributes, interactions, and purchase
history. This allows it to segment customers accordingly and tailor marketing cam-
paigns and personalized recommendations to specific customer segments. Association
rule learning can help identify relationships between different products or services
that are frequently purchased together. This knowledge enables businesses to design
effective cross-selling and up-selling strategies.

• Association rules can be applied in text mining tasks, such as analyzing customer
reviews, social media posts, or news articles. By identifying associations between
words or topics, association rule learning can assist in sentiment analysis and content
recommendation systems.

• Association rules can assist physicians with medical diagnosis. Using relational associ-
ation rule mining, we can identify the relationship between symptoms and illnesses.
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• Association rules can support sound public policy. Every government has census data.
These data can be used to plan efficient public services (education, health, transport)
as well as help public businesses (for setting up new factories, shopping malls, and
even marketing products).

• Association rules are integrated within an intelligent transportation system (ITS) to find
the relation between all parameters of transportation. This enables a flexible, precise,
on-time, and organized interconnected intelligent controlling transportation system.

• Association rule mining can detect fraudulent activity, such as credit card usage,
excessive insurance claims, misuse of communication access, and more.

• Association rule mining is used to identify patterns in social media data that can
inform the analysis of social networks. Discover interesting group behavior, profiling
of social groups, etc., can trigger actions that will benefit the social media providers.

• Association rules can analyze price fluctuations and identify relationships between prod-
uct prices, promotions, and customer purchasing behavior. This information can assist
in dynamic pricing strategies, competitor analysis, and optimizing pricing decisions.

• Association rules can be utilized in risk analysis and decision support systems. By
identifying associations between risk factors, events, or conditions, association rule
learning helps with risk assessment to mitigate potential risks.

• Association rule learning can optimize inventory management by identifying asso-
ciations between product demand, seasonality, and purchasing patterns. This infor-
mation aids in inventory forecasting, stock replenishment, and reducing inventory
holding costs.

• Association rules can be used in energy management systems to identify patterns
and associations between energy consumption, environmental factors, and energy
efficiency measures. This knowledge helps with optimizing energy usage, reducing
waste, and implementing energy-saving strategies.

• Association rules can be applied in quality control processes to identify relationships
between product attributes, manufacturing parameters, and quality issues. This
knowledge helps with detecting patterns that contribute to quality defects, improving
manufacturing processes, and reducing defects.

This paper introduces a novel approach that discovers association rules by processing
records (rows) in each dataset and not attributes (columns) as is reported in the literature.
Our method addresses some of the most critical challenges when applying association rules
to very large databases: memory limitation and excessive run time.

1.1. Basic Terms

The association rules process discovers associations among variables in a dataset.
While it is a well-known research topic, in this subsection, we go through a quick overview
of the basic concepts regarding association rules learning [1].

Let dataset T contain I = {i1, i2, . . . , in} records (rows) and D = {d1, d2, . . . , dm}
variables (columns, attributes). Also, let every entry in T contain a real value R. That is

T[il , dk] ∈ R For all 1 ≤ i ≤ n, 1 ≤ k ≤ m (1)

Additionally, we define the itemset X as a collection of variables from D such that

0 < |X| <|D| (2)

Based on (2), we can define a k itemset as a set containing k items (attributes) that have
the same value. Thus, we can define the support of each attribute dk as follows:

Supp(dk) = ∑n
i=1 T[il , dk]; T[il , dk] ∈ R (3)
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to obtain a nominal value, or

SuppN(dk) =
∑n

i=1 T[il , dk]

|T| ; T[il , dk] ∈ R (4)

to compute the relative support of dk with respect to n, the size of the dataset T. In simple
terms, the support metric counts the number of times variable dk = α appears in dataset T.

Now, let X and Y be two itemsets such that X ∩ Y = ∅. That means that we do
not allow variables to belong to two different itemsets. In other words, we do not allow
itemsets to have a common attribute. We denote an association rule as X => Y. From
the probabilistic point of view, we can say “given X, what is the probability of Y”. This
probability (or confidence) can be defined as a function of the support as follows:

Con f (X => Y) =
Supp(X ∩Y)

Supp(X)
(5)

The relationships between itemsets define the association rules, and the confidence
(Con f ) of the relation computes the probability that such a rule exists.

In the rest of this paper, we further elaborate on the problem, discuss proposed
solutions, and finally present our approach to discovering association rules. Specifically,
the rest of Section 1 includes a quick discussion on the subject and the inherent difficulties
related to association rule mining. Section 2 presents an overview of the related work. In
Section 3, we present and elaborate on the horizontal learning (HL) approach. Section 4
offers a concrete example using the HL algorithm. In Section 5, we further discuss and
present measurements related to the performance of our algorithm.

1.2. General Discussion of the Association Rules Table (ART)

We propose a different approach for extracting association rules. While the classical
approach has the complexity of O(2 m) (where m is the number of attributes in the dataset),

our approach yields O
(

2
m
2

)
in the worst case. The discovery process analyzes each record

in the dataset, extracts possible itemsets, and computes their support.
The Association Rules Table (ART) is a 2-dimensional table containing an itemset and

its count. The itemset can be the binary representation of any k itemset, and the counter is
its support.

To simplify the process of discovering association rules from the ART, we convert
dataset T into a binary representation (if it is not originally in the binary form). Figure 1
shows the overall process of creation of the ART.
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The discovery process is quite straightforward: we process each line of the binary
representation B separately. When the process of that line is completed, we process the next
line (Figure 2).
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Processing the line is the series of computations that we perform on a line.
When the processing of one line is completed, we move to the next record and repeat

the process above. When the processing of the entire dataset is complete, all possible subsets
are discovered (excluding the 0 subset) and placed on an ART that contains all possible
subsets and a counter that counts the number of occurrences of that subset throughout the
entire dataset.

By the end of the process, the ART will contain all possible subsets from the datasets
(itemsets) and their counters (support). Analyzing the results, we demonstrate that
while the run time of the classical approach is O(2 m) (where m is the number of at-

tributes in the dataset), our approach yields O(2 m/2
)

in the worst case (Algorithm 1).

Algorithm 1: Creation of the ART.

For each record in the database do:
• Count the number of non-empty entries in a record. This becomes the n-itemset.
• While n > 0 do:

a. Add the n-itemset to ART (see Section 3) and increment its count.
b. Compute all possible (n-1)-itemsets (subsets) of the n-itemset.
c. Add each (n-1)-itemsets to ART and increment their count.
d. n← n− 1

We will describe the algorithm, provide examples, and discuss the mathematical
behavior of the algorithm in the sections below.

2. Related Work
2.1. Literature Survey

Association rules, first introduced in 1993 [1], are used to identify relationships among
items in a database. These relationships are not based on inherent properties of the data
themselves (as with functional dependencies) but rather based on the co-occurrence of the
data items. The AIS algorithm was the first published algorithm developed to locate all
large itemsets in a transaction database [1]. The method generates a very large number
of candidate sets and for the truly Big Data cases, it can cause the memory buffer to
overflow. Therefore, a buffer management scheme is necessary to handle this problem for
large databases.
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The simplest and most commonly used method to reduce the number of rules is
applying a threshold to the support metric. This threshold (denoted minsupp) prevents
variables with a small number of occurrences from being considered as part of any itemset
and, therefore, part of any association rule. Thus, if the support of any itemset is less
than the minimum support (minsupp), we remove that itemset from any considerations
of being part of some association rule [1]. This way we eliminate rules and thus reduce
the computation complexity of Equations (6) and (7) (Section 2.2). On the other hand,
the decision regarding the value of the minimum support remains questionable because
eliminating itemsets of small support prevents us from discovering infrequent rules with
high confidence.

Since the 1990s, a large number of algorithms have been developed and published.
The following is a brief review of the literature most relevant to our method. The various
algorithms presented below aim to improve accuracy and decrease the complexity and
hence the execution time. However, there is usually a trade-off among these parameters.

The apriori algorithm [2] is the most well-known association rule algorithm. This
technique uses the property that any subset of a large itemset must be a large itemset. Also,
it assumes that items within an itemset are kept in lexicographic order. The AIS algorithm
generates too many candidate itemsets that turn out to be small. On the other hand, the
apriori algorithm generates the candidate itemsets by joining the large itemsets and deleting
small subsets of the previous pass. By only considering large itemsets of the previous pass,
the number of candidate itemsets is substantially reduced. The authors also introduced
two modified algorithms: Apriori TID and Apriori Hybrid. The Apriori TID algorithm [2]
is based on the argument that scanning the entire database may not be needed in all
passes. The main difference from apriori is that it does not use the database for counting
support after the first pass. Rather, it uses an encoding of the candidate itemsets used in
the previous pass. The apriori approach performs better in earlier passes, and Apriori TID
outperforms apriori in later passes. Based on the experimental observations, the Apriori
Hybrid technique was developed. It uses apriori in the initial passes and switches later as
needed to Apriori TID. The performance of this technique was also evaluated by conducting
experiments for large datasets. It was observed that Apriori Hybrid performs better than
apriori, except in the case when the switching occurs at the very end of the passes [3].

The Direct Hashing and Pruning (DHP) algorithm was introduced by Park et al. [4] to
decrease the number of candidates in the early passes. DHP utilizes a hashing technique
that attempts to restrict the number of candidate itemsets and efficiently generates large
itemsets. These steps are designed to reduce the size of the database [4]. An additional
hash-based approach for mining frequent itemsets was introduced by Wang and Chen in
2009. It utilizes a hash table to summarize the data information and predicts the number of
non-frequent itemsets [5].

The Partitioning Algorithm [6] attempts to find the frequent elements by partitioning
the database. In this way, the memory issues of large databases are addressed because the
database is divided into several components. This algorithm decreases database scans to
generate frequent itemsets. However, the time for computing the frequency of the candidate
generated in each partition increases. Nevertheless, it significantly reduces the I/O and
CPU overheads (for most cases).

An additional method is the Sampling Algorithm [7], where sample itemsets are taken
from the database instead of utilizing the whole database. This algorithm reduces the
database activity because it requires only a subsample of the database to be scanned [7].
However, the disadvantage of this method is less accurate results. The Dynamic Itemset
Counting (DIC) [8] algorithm partitions the database into intervals of a fixed size. This
algorithm aims to find large itemsets and uses fewer passes over the data in comparison
to other traditional algorithms. In addition, the DIC algorithm presents a new method of
generating association rules. These rules are standardized based on both the antecedent
and the consequent [8].
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There are additional methods based on horizontal partition, such as works by Kantar-
cıoglu and Clifton [9], Vasoya and Koli [10], and Das et al. [11]. These works attempt
to partition the dataset, process each part separately, and then combine the results with-
out the loss of small (with small minsupp) itemsets. Here, we have to emphasize that
the horizontal partition utilized in the above-mentioned articles is not the same thing as
the horizontal learning presented in our paper and is not as effective in addressing the
complexity/memory requirements issues in comparison to our method.

The Continuous Association Rule Mining Algorithm (CARMA) [12] is designed to
compute large itemsets online. The CARMA [12] shows the current association rules to
the user and allows the user to change the parameters, minimum support, and minimum
confidence at any transaction during the first scan of the database. It needs at most two
database scans. Similar to DIC, the CARMA generates the itemsets in the first scan and
finishes counting all the itemsets in the second scan. The CARMA outperforms apriori and
DIC on low-support thresholds.

The frequent pattern mining algorithm (which is based on the apriori concept) was
extended and applied to the sequential pattern analysis [13], resulting in the candidate
generation-and-test approach, thus leading to the development of the following two ma-
jor methods:

1. The Generalized Sequential Patterns Algorithm (GSP) [14], a horizontal data format-
based sequential pattern mining algorithm. It involves time constraints, a sliding time
window, and user-defined parameters [14];

2. The Sequential Pattern Discovery Using Equivalent Classes Algorithm (SPADE) [15],
an Apriori-Based Vertical Data Format algorithm. This algorithm divides the original
problem into sub-problems of substantially smaller size and complexity that are
small enough to be handled in main memory while utilizing effective lattice search
techniques and simple join operations [15].

Additional techniques that should be mentioned are based on the pattern–Growth-
based approaches, and they provide efficient mining of sequential patterns in large sequence
databases without candidate generation. Two main pattern–growth algorithms are fre-
quent pattern-projected sequential pattern mining (FREESPAN) [13] and prefix-projected
sequential pattern mining (PrefixSpan) [16]. The FREESPAN algorithm was introduced
by Han et al. [17] with the objective of reducing workload during candidate subsequence
generation. This algorithm utilizes frequent items and recursively transforms sequence
databases into a set of smaller databases. The authors demonstrated that FREESPAN
runs more efficiently and faster than an apriori-based GSP algorithm [13]. The PrefixSpan
algorithm [16] is a pattern–growth approach to sequential pattern mining, and it is based
on a divide-and-conquer method. This algorithm divides recursively a sequence database
into a set of smaller projected databases and reduces the number of projected databases
using a pseudo projection technique [16]. PrefixSpan performs better in comparison to GSP,
FREESPAN, and SPADE and consumes less memory space than GSP and SPADE [16].

Another approach is the FP growth [17], which compresses a large database into
a compact frequent pattern tree (FP tree) structure. The FP growth method has been
devised for mining the complete set of frequent itemsets without candidate generation.
The algorithm utilizes a directed graph to identify possible rule candidates within a dataset.
It is very efficient and fast. The FP growth method is an efficient tool to mine long-
and short-frequency patterns. An extension of the FP growth algorithm was proposed
in [18,19] utilizing array-type data structures to reduce the traversal time. Additionally,
Deng proposed in [20] the PPV, PrePost, and FIN algorithms, facilitating new data structures
called node list and node set. They are based on an FP tree, with each node encoding with
pre-order traversal and post-order traversal.

The Eclat algorithm introduced in [21] looks at each variable (attribute, item) and
stores the row number that has the value of 1 (list of transactions). Then, it intersects the
columns to obtain a new column containing the common IDs, and so on. This process
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continues until the intersection yields an empty result. For example, let the original matrix
be as follows (Table 1).

Table 1. Vertical (left) and horizontal display (right) of a sample dataset.

TID A B C D

1 A D 1 2 3 1
2 B 4 5 4 3
3 C D 5 6 5
4 A C =⇒ 7 8 7
5 A B D
6 B
7 A D
8 B

Now, as a next step, if we intersect columns 1 and 2, we obtain set {5}, and so on.
Each time, the result is added to the matrix (see Table 2).

Table 2. Adding two itemsets to Table 1.

A B C D A∧B . . .

1 2 3 1 5
4 5 4 3
5 6 5
7 8 7

In [22–24], Manjit improved the Eclat algorithm by reducing escape time and the
number of iterations via a top-down approach and by transposing the original dataset.

Refs. [6,11,25] describe algorithms that partition the database, find frequent itemsets
in each partition, and combine the itemsets in each partition to obtain the global candidate
itemsets, as well as the global support for the items. The approaches described above
reduce the computation time and memory requirements and make the process of searching
for candidates simple and efficient. However, they all compare columns in their quest to
find the proper itemsets.

Prithiviraj and Porkodi [26] wrote a very comprehensive article in which they compare
some of the most popular algorithms in the field. They concluded their research by creating
a table that compares the algorithms by some criteria. This table (Table 3) is presented below.

Table 3. Comparison of some leading association rules algorithms.

Algorithm Algorithm Data Support Merits Demerits

Apriori (2003) Best used for closed
itemsets.

Fast.
Uses minsupp to eliminate small
itemsets.

Takes a lot of memory.

Apriori TID (1994) Used for minor itemsets.
Better than SETM.
Better than apriori for small databases.
Time saving.

Does not use the whole database
to count candidate sets.

SETM (1994) Not frequently used. Separates generation from counting.
Very large execution time.
The size of the candidate set
is large.

Apriori Hybrid
(1994)

Used where apriori and
Apriori TID are used.

Better than both apriori and
Apriori TID.

An extra cost is incurred when
shifting from apriori to
Apriori TID



Computers 2024, 13, 62 8 of 18

Table 3. Cont.

Algorithm Algorithm Data Support Merits Demerits

AIS (1994)
Not frequently used, but
when used, it is used for
small itemsets.

Better than SETM.

Easy to use candidate sets
generated on the fly.
The size of the candidate set
is large.

FP Growth (2003)

Used in cases of large
itemsets, as it does not
require the generation of
candidate sets.

Only two passes of the dataset.
Compresses the dataset.
No candidate set generation is required,
so it is better than Eclat and apriori.

Using a tree structure creates
complexity.

Győrödi and Gyorodi [27] also studied some association rules algorithms. They
compared several algorithms and concluded that the dynamic one (DynFP growth) is the
best. Hence, in order to evaluate the performance of our horizontal learning algorithm, we
compared the performance of horizontal learning to DynFP growth. The comparison is
presented in Table 4.

Table 4. Comparison of FP growth to horizontal learning.

FP Growth (2003)
Used in cases of large itemsets,
as it does not require the
generation of candidate sets.

Only two passes of the dataset.
Compresses the dataset.
No candidate set generation is
required, so it is better than
Eclat and apriori.

Using a tree structure
creates complexity.

Horizontal Learning (2023) Used for any size dataset. Only one path through
the dataset.

Use a 2-dimentional hash
table to represent all necessary
information to generate
association rules.

The comparison above clearly demonstrates that horizonal learning performs better
than other algorithms that were studied.

2.2. The Horizontal Learning Approach
When comparing columns, we need to count all 1 itemsets, 2 itemsets, and m itemsets.

In addition, the dataset must be scanned once (each scan requires n comparisons) in order
to compute the support. Let Ctrad be the traditional approach to computing the itemsets.
Then, the total number of operations required for computing the itemsets is as follows:

Ctrad = n
(

m
1

)
+ n

(
m
2

)
+ · · ·+

(
m
m

)
= n

(
m!

1·(m− 1)!
+

m!
2!·(m− 2)!

+ · · ·+ m!
m!·(1)!

)
= n(2m − 1) (6)

The horizontal learning approach (HL) is quite different. We analyze each record (row)
in the dataset by extracting all the possible non-zero (non-blank for non-numerical data)
values in that record. The possible values are stored in temporary set A. Then, we compute
all possible subsets of A, excluding the 0 subset. For example, let a record contain the
following data ‘00703’. Here, we have two non-zero values, so the possible subsets that can
be generated will be ‘00700’, ‘00003’, and ‘00703’. These subsets will be stored in the special
matrix C, and the counters for each string will be set to 1. Later, we will present the formal
algorithm for generating the subsets, but for simplicity, we will use a binary dataset.

Making an exaggerated (and very conservative) assumption that on average, half of
the values in each row have a non-zero value and the number of variables in the dataset
is m, this would yield 2

m
2 comparisons. Since there are n rows in the original database T,

the execution time will be n·2 m
2 . So, if we denote CHL as the itemset count (based on the

horizontal learning approach), then

CHL = n·2m/2 (7)
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To compute the complexity of the algorithm, we define the number of variables (items)
as m and the number of records as n. To be as conservative as possible, we assume that on
average, the number of non-zero values in each record is m

2 . Under this assumption, the
complexity of the process is as follows:

CmplexHL = O
(

n·2m/2
)

(8)

and the memory requirement of the process is as follows:

M = O(2m) (9)

where CmplexHL is the processing complexity and M is the memory requirement. For
example, for n = 1000 and m = 20, then C = O

(
106) ≈ 1 Mcycles and M = O(1 Mbyte).

When comparing Equations (6) and (7), we can erase coefficient n.
Figure 3 compares the two equations for m = [1, 2, 3, . . . , 20], where m is the number

of variables. The X-axis represents the number of variables, while the Y-axis represents the
number of operations needed to generate association rules (computational complexity).
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3. Horizontal Learning

The trade-off between the value of the minimum support and the information gained
or lost is a bit troubling. Increasing the minimum support reduces the memory needed to
store all phases of the process of discovering association rules. Therefore, the computation
time becomes more manageable. On the other hand, removing some of the variables due to
low support may cause a loss of potentially important information.

The task of the following algorithm is to obtain the association rules without forcing
the activation of the minimum support.

Horizontal learning is a two-step process:

1. Convert the data matrix T into a better-represented binary matrix B;
2. Use matrix B to create the Association Rules Table (ART).

3.1. From Dataset T to a Binary Representation B

Let T be the matrix containing the original data. Also, let T contain m variables and n
transactions. Also, let us assume that the data contained in T can be of any value and any
type. The process of creating matrix B can be divided into three parts:

1. Create the header for the binary table B;
2. Optimize the header;
3. Add the appropriate data from the original dataset T.
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3.1.1. Creating the Header for B

In this initial step, we scan the original database and create a two-dimensional vector.
Since the original database T contains n records and m variables, the original dimensions
of matrix B will be nm× 2. For example, assume we have the following database (Table 5).

Table 5. Example of database T.

. A1 A2

1 1 4

2 5 3

3 2 1

4 5 3

In this case, the header of B will contain one row of size eight (two variables multiplied
by four rows) for the variable names and the second row for their value. This is shown in
Table 6.

Table 6. Creating the header for B.

A1 A1 A1 A1 A2 A2 A2 A2

1 5 2 5 4 3 1 3

This is not optimal since there are columns that have the same values, and we want
to create a header that contains only unique values. In Table 6, we can see that A1 = 5 is
repeated twice. Also, A2 = 3 is repeated twice. We need to omit these columns.

3.1.2. Optimizing the Header for Binary Table B

After the header of matrix B is created, scan the header for repeated patterns. If found,
they are omitted. The resulting header now contains only unique patterns. This is shown
in Table 7.

Table 7. Optimized header for matrix B.

A1 A1 A1 A2 A2 A2

1 5 2 4 3 1

Now, we can proceed to complete the binary table B by adding the locations of each of
the values created in the header of matrix B.

3.1.3. Completing the Construction of B

The algorithm for completing the construction of matrix B is as follows (Algorithm 2).

Algorithm 2: The process of completing matrix B.

For i = 1 to n do (n is the amount of rows in T)
For j = 1 to m do (m is the amount of columns in T)
• Get the value in Ti,j
• Find its location (j) in the header of matrix B

When the process is completed, matrix B (Table 8) will contain all the needed informa-
tion for finding the association rules.
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Table 8. The complete binary matrix B.

A1 A1 A1 A2 A2 A2

1 5 2 4 3 1

1 1 0 0 1 0 0

2 0 1 0 0 1 0

3 0 0 1 0 0 1

4 0 1 0 0 1 0

We can apply the same process when database T contains alpha-numeric data. Assume
we have the following database.

A1 A2

1 Tom 4

2 Tim 3

3 Jin 1

4 Tim 3

We apply the conversion process as described above. This will yield the following
binary representation.

A1 A1 A1 A2 A2 A2

Tom Tim Jin 4 3 1

1 1 0 0 1 0 0

2 0 1 0 0 1 0

3 0 0 1 0 0 1

4 0 1 0 0 1 0

Now that we have a binary matrix, we can use the horizontal learning process to
generate the Association Rules Table. In other words, since we have generated a binary table,
we can use any of the algorithms described in the literature survey to find association rules.

However, due to the issues of complexity and memory limits mentioned above (in the
case of very large datasets), we introduce a different representation (the ART representa-
tion) that will speed up the process and enable the user to choose his/her preferences by
controlling various parameters.

3.2. From Matrix B to the ART

The purpose of the following algorithm (Algorithm 3) is to create an environment in
which all the necessary information regarding the construction of the association rules will
be available and that the process will be conducted fast.

Algorithm 3: The process of completing matrix B.

For i = 3 to n + 2 do (n is the amount of data rows in B)
a. Get the ith record. This record represents some k-itemset.
b. Find all possible j-itemsets, such that 0 < j ≤ k
c. If the j-itemset is found in ART, add 1 to counter. Else add the j-itemset to the ART and

set its counter to 1.
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An important issue to discuss here is the reason for finding all sub-itemsets for a given
k itemset. Recall Equations (3)–(5). In order to compute the confidence of a rule generated
from some k itemset, it is essential to know the support of the sub-itemsets. By computing
all possible support of all possible sub-itemsets, we guarantee that the ART contains all the
necessary information to generate the association rules.

When the process of creating the ART is completed, each row in the ART represents
an itemset and a counter, which is the support. For example, the first line in B is {1 0 0 1 0
0}. The possible itemsets are as follows:

{1 0 0 0 0 0}

{0 0 0 1 0 0}

{1 0 0 1 0 0}

These three itemsets are added to the ART and their counter is set to 1. This process
continues until all records in B are processed. A more comprehensive example will be
given next.

3.3. A Comprehensive Example of Moving from Matrix B to the ART

As was discussed above, the horizontal learning algorithm can handle both binary
and non-binary data. In this section, we show how to create the matrix ART, where the
dataset is binary (either originally or transformed as described in the previous section). Let
our database T be as follows.

1 2 3 4 5 6

1 1 1 1
2 1 1
3 1 1
4 1 1 1
5 1 1 1 1
6 1
7 1 1 1
8 1
9 1 1

10 1 1 1
11 1 1 1 1 1

Generally, let p be the number of non-zero values in a row; then, the number of possible
sub-itemsets that we can generate is 2p − 1. The reason we subtract 1 from the total is
because we exclude the possibility that no value is selected. Starting with row 1, it contains
1′s in locations, 1, 4, and 6. This means that we can generate seven different sub-records.
They are shown below.

000001

000100
100000

000101

100001

100100

100101

One way to compute all possible combinations is breaking the k itemset into k 1
itemsets and building on that. In our example, k = 3, so we create three 1 itemsets.
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000001

000100

100000

Based on the above information we can generate all possible 2 itemsets.

000101

100001

100100

And finally, we generate the 3 itemset.

100101

After this information is calculated, we can add it to the ART.

Itemset Count

000001 1
000100 1
000101 1
100000 1
100001 1
100100 1
100101 1

The second row in the example contains 1′s in columns 2 and 5. We repeat the process
to obtain the following information.

000010

010000

010010

We add this information to the ART.

Itemset Count

000001 1
000010 1

000100 1

000101 1

010000 1

010010 1
100000 1
100001 1
100100 1
100101 1

We continue the process until we scan the entire original database T. Since each entry
in the ART represents a possible itemset and since the count is the support (Supp) of any
subset, we can summarize the results of the process in Table 9.
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Table 9. The final state of the ART.

IS Sup IS Sup IS Sup IS Sup

000000 010000 5 100000 7 110000 2
000001 3 010001 1 100001 3 110001 1
000010 4 010010 3 100010 3 110010 2
000011 1 010011 1 100011 1 110011 1
000100 7 010100 2 100100 6 110100 2
000101 2 010101 1 100101 2 110101 1
000110 3 010110 2 100110 3 110110 2
000111 1 010111 1 100111 1 110111 1
001000 3 011000 101000 2 111000
001001 1 011001 101001 1 111001
001010 011010 101010 111010
001011 011011 101011 111011
001100 2 011100 101100 1 111100
001101 011101 101101 111101
001110 011110 101110 111110
001111 011111 101111 111111

3.4. Moving Directly from T to the ART

We can construct the matrix ART directly from the original database T. It is more
effective and much faster but lacks the ability to have a nice display.

For example, the first record in Table 10 contains values {1, 4}. From that record, we
can generate all possible sub-records, {0, 1}, {4, 0}, and {1, 4}, and set their counters to 1. This
procedure is very fast and is a space saver, but it is harder to read than a binary sequence.
It is up to the users to decide their preferences.

Table 10. Moving from T to the ART.

Database ART

A1 A2
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Itemset Support k-Itemset
1 1 4 1 0 1 1
2 5 3 0 4 1 1
3 2 1 1 4 1 2
4 5 3 5 0 2 1
5 0 3 2 1
6 5 3 2 2
7 2 0 1 1
8 0 1 1 1
9 2 1 1 2

As we will see later, in order to find association rules, we need to obey two rules. 1. The support of an itemset
must be above a predefined minimum support. 2. The number of items in the itemset must be above 1.

In any case, the complete transformation of T to the ART using Algorithm 4 is depicted
in Table 10.

Algorithm 4: Constructing the ART table directly from database T.

For i = 1 to n do (n is the number of data rows in T)
a. Get the ith record. This record represents some k-itemset.
b. Find all possible j-itemsets, such that 0 < j ≤ k.
c. If the j-itemset is found in ART, add 1 to counter. Else add the j-itemset to the ART and

set its counter to 1.

4. Discussion

Table 11 provides all the necessary information we need to construct the possible
association rules. First, we can see that 27 out of 64 (almost 50%) possible itemsets are not
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participating in the construction of the itemsets since their support is zero. In our practical
applications of the method, the percentage has consistently been much smaller. One small
example will illustrate this point. When a customer enters a store to buy some products, it
is not reasonable to expect that he/she will buy up to 50% of the products sold in that store.
It is more reasonable to expect that only a very small percentage of the products will be
purchased. This is also the reason for the assumption in Equation (8) in Section 2.2, which,
as we stated above, is very conservative. Therefore, if we design the ART as a hash matrix,
we will utilize only half of the memory to store the relevant itemsets.

Table 11. Reduction in the ART after applying minimum support.

Itemset Count Itemset Count

000001 3 010010 3
000010 4 100000 7
000100 7 100001 3
000110 3 100010 3
001000 3 100100 6
010000 5 100110 3

Now, assume we want to generate all the rules associated with the string “100110”.
We have six choices.

conf(“100000” =⇒ “000110”) = Supp(“100110”)
Supp(“100000”) =

3
7

conf(“000100” =⇒ “100010”) = Supp(“100110”)
Supp(“000100”) =

3
7

conf(“000010” =⇒ “100100”) = Supp(“100110”)
Supp(“000010”) =

3
4

conf(“100100” =⇒ “000010”) Supp(“100110”)
Supp(“100100”) =

3
6

conf(“100010” =⇒ “000100”) = Supp(“100110”)
Supp(“100010”) =

3
3

conf(“000110” =⇒ “100000”) = Supp(“100110”)
Supp(“000110”) =

3
6

If we set the minimum confidence to 0.8, then only one rule is chosen.

conf(“100010” =⇒ “000100”) =
Supp(“100110”)
Supp(“100010”)

= 1

Let vi be the ith attribute. Then, the rule above can be translated to

i f (v1 = 1) and (v4 = 1) then (v3 = 1)

This means that every time attributes 1 and 5 are set to 1, so is attribute 4. We can
confirm the result by observing Table 11.

In many applications, we want to find infrequent rules, such as rules that can be
derived from the string “100001”. In this case, we can generate two rules as follows:

con f (“100000” =⇒ “000001”) = Supp(“100001”)
Supp(“100000”) =

3
7

con f (“000001” =⇒ “100000”) = Supp(“100001”)
Supp(“000001”) =

3
3 .

From the above, we can see that each time v6 is set to 1, so is v1.
We can also define the minimum support (say minsupp = 3), an action that will result

in a reduction in the ART, as shown in Table 11.
We can also search for the largest/smallest itemset given some minimum support. For

example, based on Table 11, we see that the largest itemset is in the string “100110”. In
this case, we can generate six possible rules. We can also see that there are four itemsets
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with two 1′s in them. So, we can generate an additional eight different rules. In total,
we can generate 14 possible rules from the original database (without considering the
confidence factor).

5. Evaluation

The ART generates the association rules based on the specified support and the
confidence of the rule. Now, we need to test the idea in practice. We compare the set of
rules generated by the learning algorithm with each record in the testing to find out if the
association rules are working successfully.

To evaluate an association rule, we need to define a procedure by which we can
measure the effectiveness/correctness of the rule. To do so, we define the coverage of
the rule.

Recall that an association rule has the general format of X → Y, where both X and Y
are itemsets. The coverage of a rule means how well the association rule is covering a line
(record) in a dataset. In other words, if we check that all the items in X are found in given
records, that means that the premise coverage of that record is full. If not, then the coverage
is 0. (It is possible to use partial coverage, but this is not within the scope of this paper). If
the premise coverage of the rule is 1 (full coverage), we can compute the coverage of the
conclusion of the association rule (Y). Again, if all the items in Y are part of the record in
question, the conclusion coverage is full, and we set the evaluation grade to 1; otherwise,
the grade is set to zero. Here, we can also use a partial match.

In order to further investigate our approach, we have chosen three datasets (denoted
as DS1, DS2, and DS3). All three datasets contain forty− three attributes (variables). DS1
contains 4000 records, DS2 contains 7000 records, and DS3 contains 8000 records.

We implemented the HL algorithm and learned new association rules using DS1. In
order to understand more about the influence of the support on the quality of the rules, we
divided the support into small groups (Supp = [3..15]) all the way to Supp = [200..1000]. The
following table shows the number of rules generated by the HL affected by the value of
the support.

Support 3–15 10–50 25–100 50–200 150–400 200–1000

Rules 22 16 29 13 114 30

As can be seen, when the size of the support is small (up to 15 occurrences in the
dataset), the number of rules generated is 22. As we increased the support, the number of
rules increased.

Next, we tested it against DS2 and DS3. The results are displayed in Table 12.

Table 12. Simulation results.

Support 3–15 10–50 25–100 50–200 150–400 200–1000

Rules 22 16 29 13 114 30

DS2_Total 156 969 4423 3569 39,744 14,661

DS2_Success 98 865 4354 3547 38,079 12,211

DS2_Failure 58 104 69 22 1665 2450

DS3_Total 141 945 4509 3569 39,256 14,678

DS3_Success 78 832 4437 3547 37,976 12,080

DS3_Failure 63 113 72 22 1280 2598

The first row in Table 12 shows the support used to test the algorithm. For example,
values 10–50 indicate that we are looking for itemsets having support between 10 and 50.
The second row displays the number of rules generated using the support defined earlier.
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The “Total” rows indicate the number of cases in which the matching of the premise
of a rule and any given data line was above the matching threshold (in the above table, it
was set to 100%). The “Success” lines show the number of times the premise was matched
and the conclusion. In other words, if the premise of some rule is matched against some
data line, so was the conclusion, and we mark it as a success. If the premise of some rules
is matched against a data line but the conclusion does not match, we mark it a “Fail”.

An additional example can be seen in the last column in Table 11. We used the support
of 200 to 1000 to generate 30 different rules. When we tested it with DS3, we found out that
the system found 14,678 cases in which the rules were matched against the data lines in DS3.
From these, in 12,080 cases, we also found a match in the conclusion. This indicates that
we were successful in the rule generation. In 2598 cases, we were successful in matching
the data line against the premise of the rules but failed to match the data line against the
conclusions of the association rules.

6. Conclusions

In this paper, we presented a new algorithm that is capable of mining association rules
from datasets. Its main contribution is the capability of our method to substantially reduce
the process complexity, reflected in a greatly diminished run time and memory require-
ments, which are two main obstacles for associate rules mining in very large databases.

Specifically, we demonstrated how to generate the possible itemsets that constitute dif-
ferent association rules. For that, we created the Association Rules Table (ART) containing
all possible and necessary information needed to generate the association rules.

From this table, we can generate all possible types of association rules. We can generate
infrequent as well as frequent association rules. We can create rules from any combination
we choose by clicking the specific entries in the ART.

In order to validate our method, we utilized large datasets containing 43 attributes
(variables) and 19,000 records. The results of the testing (see Table 11) clearly indicate a
very high success rate.
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International Conference Extending Database Technology (EDBT’96), Avignon, France, 25–29 March 1996; pp. 3–17.

15. Zaki, J.M. SPADE: An efficient algorithm for mining frequent sequences. Mach. Learn. 2001, 42, 31–60. [CrossRef]
16. Pei, J.; Han, J.; Asl, J.M.; Pinto, H.; Chen, Q.; Dayal, U.; Hsu, M.C. Prefix Span: Mining Sequential Patterns Efficiently by

Prefix-Projected Pattern Growth. In Proceedings of the 17th International Conference on Data Engineering (ICDE), Heidelberg,
Germany, 2–6 April 2001.

17. Han, J.; Pei, J.; Yin, Y. Mining Frequent Patterns Without Candidate Generation. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data—SIGMOD’00, Dallas, TX, USA, 16–18 May 2000; pp. 1–12.

18. Grahne, O.; Zhu, J. Efficiently Using Prefix-trees in Mining Frequent Itemsets. In Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining, Brighton, UK, 1 November 2004.

19. Grahne, G.; Zhu, J. Fast Algorithm for frequent Itemset Mining Using FP-Trees. IEEE Trans. Knowl. Data Eng. 2005, 17, 1347–1362.
[CrossRef]

20. Deng, Z.H.; Wang, Z. A New Fast Vertical Method for Mining Frequent Patterns. Int. J. Comput. Intell. Syst. 2010, 3, 733–744.
21. Zaki, M.J. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 2000, 12, 372–390. [CrossRef]
22. Omiecinski, E.R. Alternative interest measures for mining associations in databases. IEEE Trans. Knowl. Data Eng. 2003, 15, 57–69.

[CrossRef]
23. Liu, J.; Paulsen, S.; Sun, X.; Wang, W.; Nobel, A.; Prins, J. Mining Approximate Frequent Itemsets in the Presence of Noise:

Algorithm and Analysis. In Proceedings of the 2006 SIAM International Conference on Data Mining, Bethesda, MD, USA, 20–22
April 2006; pp. 407–418.

24. Manjit, K. Advanced Eclat Algorithm for Frequent Itemsets Generation. Int. J. Appl. Eng. Res. 2015, 10, 23263–23279.
25. Pujari, A.K. Data Mining Techniques; Universities Press (India) Ltd.: Hyderabad, India, 2001.
26. Prithiviraj, P.; Porkodi, R. A Comparative Analysis of Association Rule Mining Algorithms in Data Mining: A Study. Am. J.

Comput. Sci. Eng. Surv. AJCSES 2015, 3, 98–119.
27. Győrödi, C.; Gyorodi, R. A Comparative Study of Association Rules Mining Algorithms. In Proceedings of the SACI 2004, 1st

Romanian—Hungarian Joint Symposium on Applied Computational Intelligence, Timisoara, Romania, 25–26 May 2004.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TKDE.2004.45
https://doi.org/10.1023/A:1007652502315
https://doi.org/10.1109/TKDE.2005.166
https://doi.org/10.1109/69.846291
https://doi.org/10.1109/TKDE.2003.1161582

	Introduction 
	Basic Terms 
	General Discussion of the Association Rules Table (ART) 

	Related Work 
	Literature Survey 
	The Horizontal Learning Approach 

	Horizontal Learning 
	From Dataset T to a Binary Representation B 
	Creating the Header for B 
	Optimizing the Header for Binary Table B 
	Completing the Construction of B 

	From Matrix B to the ART 
	A Comprehensive Example of Moving from Matrix B to the ART 
	Moving Directly from T  to the ART 

	Discussion 
	Evaluation 
	Conclusions 
	References

