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Abstract: Electromyography-based wearable biosensors are used for prosthetic control. Machine
learning prosthetic controllers are based on classification and regression models. The advantage of the
regression approach is that it permits us to obtain a smoother and more natural controller. However,
the existing training methods for regression-based solutions is the same as the training protocol used
in the classification approach, where only a finite set of movements are trained. In this paper, we
present a novel training protocol for myoelectric regression-based solutions that include a feedback
term that allows us to explore more than a finite set of movements and is automatically adjusted
according to real-time performance of the subject during the training session. Consequently, the
algorithm distributes the training time efficiently, focusing on the movements where the performance
is worse and optimizing the training for each user. We tested and compared the existing and new
training strategies in 20 able-bodied participants and 4 amputees. The results show that the novel
training procedure autonomously produces a better training session. As a result, the new controller
outperforms the one trained with the existing method: for the able-bodied participants, the average
number of targets hit is increased from 86% to 95% and the path efficiency from 40% to 84%, while
for the subjects with limb deficiencies, the completion rate is increased from 58% to 69% and the path
efficiency from 24% to 56%.

Keywords: electromyography; adaptive systems; prosthetics; proportional control; task analysis;
psychomotor performance; computer based training; machine learning; linear regression; muscles

1. Introduction

Electromyographic (EMG) sensors have been established as one of the most common
input sources for controlled hand and arm prostheses [1–4]. Placing electrodes on the skin’s
surface allows us to measure small electric potentials generated during muscle contractions [5].
The non-invasive access and low preprocessing of this technique present significant benefits
against other input sources like targeted muscle re-innervation (TMR) [6,7] or electroen-
cephalography (EEG) [8,9]. The prosthesis control learning problem consists of generating
a set of EMG signals that map them into the desired prosthesis movement.

Conventional prostheses commonly use a sequential switch protocol between active
functions controlled by a co-contraction EMG pattern [10]. These protocols limit the
functionality of the prostheses to just a single degree of freedom (DoF), with it usually not
being possible to control more than one DoF at the same time. In the last few years, with
the effort of academia, new prostheses capable of simultaneously controlling two DoFs
are being developed, but their performance is not consistent enough in non-controlled
environments to reach the market.

Looking to improve the prosthesis control behavior and its robustness, researchers
have been deeply exploring the four parts of the prostheses control loop: the EMG signal
acquisition [11,12], the feature extraction [13,14], the models [15,16], and the feedback
channel to the user from the prosthesis behavior [17,18].
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The model algorithms are mostly divided into two groups: classification [19,20] and
regression [15,16,21,22]. Initially, the classification-based approaches performed a discrete
control of each DoF by recognizing previously learned EMG patterns and mapping them
into discrete functions [23,24]. However, the aspiration for a more natural control led to
the development of proportional regression-based controllers, where the EMG input is
mapped into a continuous space of the controlled DoFs.

The linear regression problem consists of finding a mapping B(t) so that

u(t) = B(t)x(t) (1)

where u(t) ∈ Rm is the control signal for a prosthesis with m DoFs, the rows of the
B(t) ∈ Rm×n matrix are the regression coefficients for the corresponding DoF, and x(t) ∈ Rn

is the input feature vector obtained from the recorded EMG signals which represent the
state of the muscular contractions at time t.

The matrix B(t) is estimated during the training session under controlled conditions
and then validated in a testing session. When performance is deteriorated after some time
(for example, due to electrode shifting [25,26] or time degradation [27]), a retraining–testing
session is carried out.

In this paper, we focus on the training paradigm used to train the regression controller.
The rest of the paper is organized as follows. In Section 2, we review the training strategy
that is currently used in most regression-based controllers and show their limitations.
In Section 3, we introduce a new training paradigm to overcome these limitations. In
Section 4, we present the experimental setup to carry on the experiments, and in Section 5,
we show the results obtained with the old and the new training model and compare
their performances.

In summary, the major contributions of the paper are

• using a continuous training space for myoelectric regression control learning;
• automatically personalizing the training procedure so that the trained positions are

based on previous performance, instead of a universal training procedure for all users;
• creating a computer-based implementation that guarantees the training of a continu-

ous range of positions and the time that each user spends on each target.

2. Related Work

Features extracted from myoelectric signals train models to estimate users’ intent [28].
To learn this relationship between myoelectric activity and corresponding prosthetic move-
ment, the training and calibration sessions usually include a virtual target-tracing task,
where the participant in the experiment has to follow a visual cue. The most common
machine learning paradigm is the myoelectric pattern recognition approach [15,22,29,30],
which formulates the control problem as one of supervised machine learning [31]. Within
this framework, example segments of a multichannel sEMG time series and co-occurring
movements are fed to a machine learning algorithm, which generates the controller. To
overcome some inherent limitations of the classification approach (non-proportional, dis-
crete set of movements), regression modeling is one learning approach that allows for
simultaneous, independent, and proportional multi-DoF control [32–34]. Compared with
classification models, the continuous outputs of regression estimates may more naturally
mimic human movement. In addition, regression models have been found to be more
robust to some unpredictable small variations in EMG signals and may generate better
performance during untrained conditions compared to classification models [32,35].

In spite of the advantages of the regression approach, the training sessions are very
similar to the ones used in classification, i.e., based on a categorical movement instruction
stimuli [14,15]. In [31], Olsson et al. presented a deep learning implementation of the
regression approach. The subject was seated comfortably at approximately 1 m distance
from a computer screen with the elbow resting on a table. That study concerned the
independent control of two separate DoFs: flexion and extension of the wrist (left-rest–right
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hand movement) and flexion and extension of all digits simultaneously (open-rest–close
hand). Since there are three options for each DoF, a ternary movement-encoding approach
was employed, resulting in nine possible compound movements; for example, rest position
is encoded by vector [0,0], wrist flexion and extension of the digits by [−1,1], and so on. As we
can see, this training is based on a discrete set of movements encoded by corresponding
vectors and is the same for all subjects, not taking into account the performance of the
subject during the training session.

In [36], Hahne et al. demonstrated that the regression approach outperformed two
clinical control approaches in most conditions for tasks mimicking daily life activities.
With respect to the training used to learn the controller, they say: “similar to classification
approaches, labeled training data are required to train the regressor”, i.e., another case
where the learning process is based on a finite dictionary of predefined movements.

Although we can find differences in the used cost function or details in the specific
training set up, the same training paradigm is used by most papers using the regression
solution. We can summarize this training approach as a three-step procedure. First, a set
of I targets are defined D = {d1, d2, . . . , dI}. Second, a target di is selected from the list
and shown to the participant during some time Ti by using a computer visual interface,
d(t) = di, ti < t ≤ ti + Ti. During this time, the corresponding EMG pattern x(t) ≃ xi
generated by the participant is recorded. It is common that the duration of each target is
the same, i.e., Ti = T, as well as to repeat the whole procedure L times so that the targets
are shown several times to the participant. Third, the supervised learning u(t) = B(t)x(t)
is carried out using the input–output pairs (x(t), d(t)), t = 1, . . . , T′, with T′ = L · T · I.

The B(t) matrix is estimated by solving the least squares problem:

B(t) = arg min
T′

∑
t=1

∥d(t)− u(t)∥2 (2)

The B(t) matrix is usually estimated iteratively and sometimes the cost function is
modified by including a forgetting factor: ∑t

k=1 λt−k∥d(k)− u(k)∥2, being λ ≤ 1.
This procedure corresponds to the block diagram in Figure 1. Note that there is no

feedback in the learning process; it is an open-loop controller. Afterwards, some of them
include a post-processing stage where the position training algorithm is used to obtain a
velocity controller for the prosthesis (directions of the movement).

Figure 1. Current controller learning model (open loop).

Limitations

The use of the classification training paradigm for the regression solution has some
limitations. First, how many targets I are needed? In the ideal case, we should include
all possible prosthesis movements. For a typical 2 DoF velocity control prosthesis, this is
a continuous two dimensional space; thus, it may require a lot of time and consistency
from the user to generate a reliable set of EMG signals for a dense grid of possible targets.
Obviously, this optimal training makes no sense from a practical point of view as it will
take an excessive amount of time; therefore, a trade off between the accuracy of the model
and the duration of the training must be chosen in advance by the experiment designer.
In conclusion, to use a discrete set of training movements [15,16] does not exploit the
advantages given by the regression model in terms of training a continuous space instead
of a discrete set of movements.

Second, this is a positional training paradigm; while in terms of human experience, it
is more natural to use a velocity control of the prostheses, where the system’s output is the
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direction of movement and not the absolute prostheses position. This led to a transforma-
tion into a velocity control model after the learning phase [15], shifting the meaning of the
learned positional targets from prosthesis positions to directions of movement. Despite
this, the model kept being trained in a position-based environment. Some studies tried
to reduce this gap with mobile targets [32] or directional feedback [37,38]; but, at the end,
it is still a model that maps the EMG signal into target positions. It means that the target
positions that are not trained are interpolated by the regression model once it is trained,
while it should be better to train as many positions in the continuous space as possible.

The third issue is that this training protocol is the same for all subjects; it does not
consider any feedback from the user performance so the training cannot be modified in
real time during the experiments to improve and speed up the learning process. Since the
target input d(t) does not depend on the estimated output u(t), all users will see the same
targets; i.e., the training is the same for all users, no matter their previous performance.
As a result, the learning process mainly depends on the consistency of the input data
generated by the patient. If something goes wrong during the training session, e.g., the
participant introduces some unintentional errors (outliers) due to distractions or fatigue
effects, there is no way to detect them and performance will deteriorate. Of course these
errors can be partially mitigated by increasing the duration of the experiment, but it is
cumbersome, and even if that was not a problem, it is not optimal to extend the duration
for all the I targets when the outliers are just generated during a short period of time that
may only affect to one or two of them. In conclusion, the training experiment is based on
the assumption that the skills of any user are almost the same. In fact, since all users run
the same training protocol, it is implicitly considered that their ability to generate EMG
signals and the learning procedure are almost the same, i.e., one-size-fits-all approach. This
also considers that, for the same target at different times, the generated EMG signals will
be approximately equal. It is clear that this general approach is not optimal in training
efficiency; for example, why should we keep on training some directions that the user has
already learned? All of these assumptions are far from real-world users, where a wide
range of different anatomies, deficiencies, learning abilities, and many other variables may
alter their EMG pattern generation/recognition. All of this variability makes it clear that
a personalized training is preferred instead of a general universal one [39], with the goal
of giving the best possible training to each user. However, from a practical point of view,
it is not realistic to think that we can manually develop a personalized real-time training
protocol for each patient. We want a personalized training that is automatically generated
by the system that does not require any external human intervention.

In the next section, we present a new training paradigm for regression-based con-
trollers that overcome these issues.

3. A New Regression-Based Controller Training Paradigm

The basic idea of the new training strategy is that the subject must train a continuous
space of movements and that the training time spent in each direction should be allocated
according to performance in that direction: directions in which the user performs poorly
should be trained longer than directions in which the user performs well (users should
be trained longer in directions they have not yet learned). To achieve this goal, an output
feedback training algorithm is proposed, where the previous performance of the user is
taken into account in real time in order to determine the next training target.

The proposed new paradigm introduces a closed-loop term that modifies the current
target, d(t), based on the previous errors d(t′)− u(t′), t′ < t. A block diagram of this new
controller learning paradigm is shown in Figure 2.
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Figure 2. New controller learning model (closed loop).

The targets are modified according to the next rule:

d̄(t) = d(t)−
t−1

∑
k=1

∥d(k)− u(k)∥2 (3)

If there exists a persistent error e(t) = u(t)− d(t) between the direction computed
with the current regression coefficients u(t) = B(t)x(t) and the desired direction d(t), the
feedback term reinforces the learning in such direction. If the learning is correct, then
e(t) ≈ 0 and it reduces to the open-loop training in Figure 1.

The second term in Equation (3) updates the final target d̄(t) in real time, increasing
the training time in those movements where the algorithm performs poorly and reducing
the time spent in the directions where the model is already working well. This effect persists
until the error is corrected; i.e., if the next target is the same as the previous one, it means
that the algorithm did not learn anything and it must continue the training by repeating
the same movements until it finally learns how to perform that movement (exploitation
learning phase). The model learns by itself how to generate the training movements starting
from a universal set of targets, the predefined d(t), designed to guarantee the exploration
learning phase by introducing movements in different directions.

As a consequence of this feedback in the learning process, we assure that the training
is automatically personalized for each user. This is very important since there is a large
diversity in physiological characteristics, e.g., the ability to generate some myoelectric
signals depends strongly on the kind of amputation and active muscles of the patient. It
is very important that the training session is able to detect those difficult movements and
over-train them until the user-controller system performs well, as well as under-train those
movements that are already learned by the algorithm.

In next section, we show how this new paradigm can be effectively implemented with
EMG sensors and any controller in order to obtain better training sessions compared to the
uniform non-adaptive controller open-loop traditional mode.

4. Materials and Methods

In this section, we explain the data acquisition process and the implementation of the
new training method for the 2 DoF velocity regression controller.

4.1. Data Acquisition

The sensor used to acquire the EMG signals in this experiment is a Myo Armband
from Thalmics. The armband has a flexible diameter between 7.5 to 13 inches. It is built
with eight bipolar EMG electrodes working at a sampling frequency of 200 Hz at 8-bit
resolution. The data are sent via Bluetooth to a Matlab 16a 64-bit environment running on
a 2.6 GHz personal laptop with 8 GB RAM.

The armband is placed in the upper part of the forearm, 0.5–1 inches in the direction
from the elbow to the end of the limb. This experiment targets the muscles from an upper
limb with a forearm stump of 3 inches or longer. The targeted muscles are the flexor carpi
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radialis and ulnaris muscles, and extensor carpi radialis longus and the brachioradialis
muscle, among other residual EMG measurements. However, this experiment is indepen-
dent of the muscles source, therefore reproducible with other EMG signals from different
origins. Previous works [16,35] have used these specifications for the data acquisition
protocol with successful results.

4.2. Participants

The experiment was performed by 20 able-bodied participants (13 males and 7 fe-
males), without neuromuscular or musculoskeletal disorders, and 4 with limb deficiencies
(2 males and 2 females), with ages ranging between 20 to 60 years. All subjects provided
written informed consent before the experiment. We included individuals with no sig-
nificant uncorrectable visual problems, communication, or neurocognitive deficits; skin
conditions preventing the wearable device; electrically controlled medical devices; severe
circulatory problems; or cognitive or mental health problems. For the limb-deficient group,
they were transradial amputees (three below elbow and one near the wrist) and one of
them was familiar to prosthesis (a single DoF with in/off controller system). We decided
not to exclude him since the regression controller is very different to the one he is familiar
(commercial prosthesis) and it is very difficult to recruit amputees.

4.3. Prostheses Control System

We will use the velocity controller based on the one-pole IIR regression linear filter
explained in our previous work [16]:

u(t) = y(t)− y(t − 1) = B(t)x(t) (4)

where u(t) is the controlled output (direction of movement), y(t) is the current estimated
position, and x(t) is the input features (in this case, the root mean squared (RMS) vector of
the EMG raw signal). It is important to emphasize that the proposed training procedure
is independent of the regression model used. For example, an alternative can be found
in [15], where they use a position control-based model without the IIR filter part.

4.4. Experimental Training Protocol

Since the purpose of the paper is to compare the training paradigm detailed in Section 2
currently used in regression-based controllers and the new one explained in Section 3, the
experimental protocol includes both of them. We call open-loop training to the first one
(see Figure 1) and closed-loop training to the new one (see Figure 2) to make clear that the
new one introduces an automatic feedback into the training session during the learning
process. All participants run both training sessions: half of them first run the open loop
and the other half first run the closed-loop training. Participants are assigned to each group
randomly. Before starting the experiment, participants are asked to sit in a comfortable
position with the elbow flexed 90 degrees and the forearm pointing forward. In order to
improve the user experience, the interface for each training model is explained to each
participant in advance. Finally, once the armband is placed and the Bluetooth connection is
opened, the experiment starts. We now explain each of them.

4.4.1. Open-Loop Training

In Figure 3a, we show the user–screen interface that participants see during the open-
loop training experiment. Each axis correspond to a DoF. It is the typical training that is used
in many works, e.g., [15,16,31]. The vertical axis corresponds to wrist flexion/extension
movements and the horizontal axis to wrist radial/ulnar deviation. The center corresponds
to the rest position. The green circle shows the positional target d(t) = yd(t) and the
red cursor represents the current estimated output u(t) = y(t) after each iteration of
the algorithm.
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(a) (b)
Figure 3. (a) User interface for the traditional open-loop controller training paradigm. Red cross:
estimated output u(t). Green circle: current target d(t). (b) User interface for the new closed-loop
controller training paradigm. Green arrow: desired target d̄(t).

It trains a set of discrete positions (green circles at predefined set of locations) with no
target personalization (all participants see the same consecutive green circles). The user
has 10 s to get into the green circle and maintain the red cross within it for one second. If
this happens, the target is hit and the next target is shown. If the user is not able to reach
the target in less than 10 s or is not able to keep the red cross in it for at least one second,
the target is missed and the next target appears. The experiment consists of five laps, i.e.,
L = 5 in Equation (2). Each lap is divided into four active targets (up, left, down, and
right) and four rest targets alternated with the active ones. For each target, the user has
to generate the related EMG pattern x(t). During the training, the model updates the B(t)
matrix (Equation (2)).

4.4.2. Closed-Loop Training

In Figure 3b, we show the user–screen interface for the closed-loop training paradigm.
In this case, the targets d̄(t) are a modified version of the predefined trajectory
d(t) = yd(t) − yd(t − 1), where yd(t) is the previously defined position. The interface
presents the target d̄(t) (Equation (3)) as an arrow pointing to the direction to be learned.
The user has to generate the related EMG pattern x(t) in order to point to that direction. The
targets are directional (a two-dimensional vector pointing to the direction of movement),
instead of positional targets as in the open-loop training case; this directional representa-
tion is much more natural since the user has only to learn how to move muscles in the
correct direction (velocity-based model) instead of also considering absolute distances
(position-based model). The meaning of each axis is the same as in the previous case: wrist
flexion/extension and wrist ulnar/radial deviation are assigned to the horizontal and verti-
cal movements, respectively. This new training model has a great advantage with respect
to the open-loop strategy: it achieves that the user practices a continuous set of directions
starting from a predefined set of positions I, and all of this happens in a transparent way to
the user, since it is the training procedure which evaluates the performance of the user and
modifies the training directions accordingly during the experiment.

A lap is initiated at the center and starts moving in the up direction for 6 s with
constant speed, i.e., d(t) = [0, 1], 0 < t < 6, and bounces back to the center for the next 6
s, i.e., d(t) = [0,−1], 6 < t < 12. After those 12 s, the target generates the same kind of
trajectory, except for the other three semiaxes in a counterclockwise direction (left–right,
bottom–up and right–left). A lap consists of these four movements. The whole training
process consists of five laps, totaling 240 s.

Note that to make the experiments similar for both training systems, both of them start
with the same initial target list (up, down, right, and left). However, the closed-loop model
is able to generate new training directions while the open-loop paradigm is constrained to
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the predefined set (in the open-loop case d(t), is not modified before it is shown to the user,
no matter the previous performance, while in the open-loop case, the user sees d̄(t))).

4.5. Experimental Testing Protocol

Once the subject is trained with the corresponding training paradigm, the same
experimental testing protocol is run to all of them in order to obtain some metrics to
compare the performance of the two different training paradigms. The test consists of
reaching 36 targets in different locations that are shown in a random order (the same order
for all participants). Participants have 10 s to reach the corresponding target and remain
inside for 1 s. After these 10 s or the completion of the task, the next target appears. The
goal is not only to reach as many targets as possible, but to do it in an optimal way, i.e.,
following the straightest trajectory from target to target in the minimum time.

4.6. Performance Metrics

To quantify performance, we used several metrics used previously in aforementioned
related works [15,16,31]: the completion rate defined as the number of hit targets over the
total, the path efficiency as the shortest path between targets over the path followed by the
user, the completion time as the time to complete a target (or 10 s in case of a missed target),
and the attempt ratio as the number of entrances in a target per complete targets (the case
when user get into the target but is not able to stay for a second).

5. Results

In this section, we analyze the results obtained with each training experiment for
each group of subjects (able-bodied and limb-absent). First, we analyze if the theoretical
advantages of the new method (personalization and more trained movements) are true in
studying the training sessions for this method (closed-loop training). Second, we compare
the performance of both training paradigms to see if the controller learned by the new
training strategy is better than the one trained in the traditional open-loop method.

5.1. Training Results for the Closed-Loop Method

To analyze if the new training closed-loop strategy is able to train more movements
than the open-loop one, we collect and compare the angles explored by each subject during
the whole training session (the five laps of the open-loop training explained in Section 4.4.1
and the five laps for the closed-loop training detailed in Section 4.4.2). Since there are able-
bodied and limb-deficient participants, we plot in different figures a case belonging to each
group. We show the results of the open-loop training for an able-bodied subject in Figure 4a
and for a limb-deficient one in Figure 5a. For the closed-loop case, the results for the same
able-bodied and limb-deficient subjects are shown in Figures 4b and 5b, respectively. In
blue, we represent the percentage of time spent in each trained direction, and in red, the
percentage of the accumulated angle error for the corresponding subject and training. As
we can see in Figures 4a and 5a, the open-loop strategy only allows the user to train four
given directions. This is due to the open-loop strategy that only includes a discrete set
of four predefined movements: up 0◦, down −180◦, right 90◦, and left −90◦. Therefore,
subjects only train these four angles. The different percentages for each angle are due to
the fact that the subject is doing better in one or another direction. However, the controller
closed-loop training protocol is able to explore all the directions in a continuous way, i.e.,
it is clear that the user practices more movements than the list of predetermined targets
up–down, right–left. We see the same behavior in the case of the able-bodied subject in
Figure 4b and the limb-deficient case in Figure 5b. To confirm that these variability in
the training space is due to the training protocol, we compare the blue and red lines in
Figures 4b and 5b. As we can see, both lines are very similar in both figures, showing that
the accumulated error during the training and the trained directions are highly correlated,
as we anticipated when explaining the new training strategy. The new model automatically
detects and emphasizes the training in those directions that generate errors. As the targets
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depend on the error, the larger the error in one direction, the longer the time to learn and
minimize that error, i.e., the algorithm by itself is able to smartly smartly the training time
dynamically depending on the performance.
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Figure 4. Able−bodied case. Percentage of time used to train a specific direction over the total
training (blue) and percentage of the accumulated error in a specific direction over the total of the
complete training (red). (a) Controller open-loop training paradigm for an able-bodied participant.
(b) Controller closed-loop training paradigm for an able-bodied participant.
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Figure 5. Same plot as in Figure 4 but for a limb−deficient participant. (a) Controller open-loop
training paradigm for a limb-deficient participant. (b) Controller closed-loop training paradigm for a
limb-deficient participant.

We have shown in previous figures a visual demonstration of the characteristics of the
new training paradigm: a continuous set of training movements and a personalized training
session spending more time where required. Repeating the analysis for all participants
in each group, we obtain that the average correlation value between error and trained
directions for the able bodied is ρ = 0.799± 0.108, while in the amputees group, the average
correlation value is even higher, at ρ = 0.863 ± 0.052 (p = 0.27 > 0.05 for a two-sample
t-test, so we cannot reject the null hypothesis that the average correlation of the able-bodied
and amputees populations are equal). As an example, in Figure 6, we show the Pearson
correlation for one able-bodied case (ρ = 0.79) and an amputee case (ρ = 0.93).

As a consequence of this high correlation, both paradigms also differ in the user
customization of the training session. While an open-loop protocol is fixed and does not
depend on the user, we observed that the closed-loop paradigm generates targets dependent
on the accumulated error and therefore on the user performance. This difference in the
trained direction distributions leads to a customized training in the controller closed-loop
training version. With this method, each participant spends more time in those movements
that are more difficult to learn for him/her, which is of great importance in order to improve
the learning process.

(a)
Figure 6. Cont.
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(b)
Figure 6. Correlation between the trained directions (Direc) and the accumulated error (Error) for
the controller closed-loop training paradigm. (a) Able−bodied participant. (b) Participant with
limb deficiency.

Figure 7a shows the histograms of the trained directions for two able-bodied par-
ticipants. It is clear that the training is very different for each of them; e.g., able-bodied
participant 1 (blue) trained directions between −45º and 0º much more than participant 2
(orange); on the other hand, participant 2 found it harder to learn the movements associated
to directions between 90º and 180º. In Figure 7b, we show the results for a limb-deficiency
case. Again, we see that both participants had different training sessions.

(a)

(b)
Figure 7. Trained direction probability histogram for two participants in each case (blue and or-
ange). Note that the histograms are different due to the adaptation to each patient performance.
(a) Able−bodied participants. (b) Participants with limb deficiency.

5.2. Test Results: Comparison of the Training Methods

In order to test if the new training model is able to obtain a better controller, after
training with each paradigm, we test both controllers following the experimental testing
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protocol explained previously. Each subject has to hit 36 targets located in different positions
(the same for all subjects). In Table 1, we show the obtained average corresponding metric
for the two trainings and groups of subjects. As we can see, all metrics improve for both
groups with the new training system. For the completion rate, 86% of the test targets
were hit by the able-bodied group on average when using the open-loop training, while
it was increased up to 95% when the same controller algorithm is trained with the new
closed-loop strategy (there is a significant difference p = 0.002 paired t-test). In the case of
limb-deficient subjects, the increment is from 58% for the open loop to 69% for the closed
loop, p = 0.09.

The trajectories to get from one target to the next one during the test are also improved
when training with the new system as the average path efficiency values show for both
groups: 39.55% for the traditional training and 83% for the new one for the able bodied
(24% and 56% for the limb deficient, respectively). There is also a statistical large difference
in the path efficiency between both training paradigms for each group, p < 0.001 (able
bodied), p = 0.004 (limb deficient). Combined with the improvement in the number of
targets hit, it means that the controller not only is better when trained with the new method,
but it is more efficient, since it takes a much shorter path to hit the targets. The stability is
also improved as we can see with the decay of the attempt ratio, which is close to one in
both groups with the closed-loop strategy (p < 0.001 for the able bodied and p = 0.1 for
the deficient limb), indicating that once the targets were hit, the participants were able to
stay inside easily, i.e., it is a much more stable controller.

Table 1. Average metrics among all participants divided by groups for the test phase.

Able Bodied Limb Deficient
Open Loop Closed Loop Open Loop Closed Loop

Completion rate (%) 86.25 95.83 58.33 69.44
Path efficiency (%) 39.55 83.74 24.83 56.55

Completion time (s) 4.81 6.79 6.76 7.32
Attempt ratio 1.67 1.08 2.27 1.17

6. Discussion

The new training introduces a changing control input signal that achieves the explo-
ration of a continuous set of possible outputs during the training, generating a diverse
and complete training dataset. It is more exhaustive compared to traditional training
paradigms focused on learning some correspondences between EMG signals and a set of
targets. The new approach allows us to explore many targets that are not included in the
predefined training list and, more importantly, it automatically allocates the training time
dynamically among a continuous training space. As a consequence, a better controller is
obtained since no interpolation is required, as it happens with current training models for
those movements that were included in the predefined list of targets.

From a user point of view, the new model is also more friendly since it is based on
a velocity control that better reproduces the way our brain works. It is easier to assign
a prosthetic movement to a direction no matter how close or far we are from the target
than the target location itself. The user can concentrate on learning the mapping between
the muscle contractions and the direction of the movement. From a practical point of
view, it also helps us to obtain less noisier input EMG signals since the visual information
provided to the user during the experiment is easier to understand, and the user can run the
experiment longer than if the task to be completed is more complicated to be implemented
by the EMG signals needed.

A relevant feature of the new training procedure is that it is not reproducible offline.
Since the reaction of the subject, and therefore the EMG signal generated and the update
of the regressor controller, is performed in real time, the new target presented is also
updated based on previous performance (in real time), and there is no way to replicate the
experiments. There is a tradeoff between personalization and repeatability. This is not a
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problem since the goal is to obtain a better controller, and this is achieved with the new
method as we have shown in the results in Table 1. Note that this is a huge difference with
respect to controllers following the classification approach, since the EMG signals for the
intended movement can be recorded in advance and then trained with different classifiers
later offline using those recordings. This approach does not have any feedback loop during
the realization of the experiment beyond the visual performance of the user.

7. Conclusions

We have presented a new training paradigm for prostheses regression-based con-
trollers that includes a feedback that personalizes the training experience according to the
previous performance of the user. All of this allows us to obtain a better training experience
and to improve the performance in terms of accuracy and efficiency (completion rate and
path efficiency improvements by +10% and +50%, respectively).

This opens the door to more challenging cases such as the 3 DoFs with more compli-
cated movements than left–right and up–down. A very interesting feature to explore is
that the idea of the new closed-loop training strategy can be used in any other prosthetic
control task, not just the one we have presented in this article (upper limb disability).
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