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Abstract: In recent years, Mobile Edge Computing (MEC) has revolutionized the landscape of the
telecommunication industry by offering low-latency, high-bandwidth, and real-time processing.
With this advancement comes a broad range of security challenges, the most prominent of which
is Distributed Denial of Service (DDoS) attacks, which threaten the availability and performance
of MEC’s services. In most cases, Intrusion Detection Systems (IDSs), a security tool that monitors
networks and systems for suspicious activity and notify administrators in real time of potential cyber
threats, have relied on shallow Machine Learning (ML) models that are limited in their abilities to
identify and mitigate DDoS attacks. This article highlights the drawbacks of current IDS solutions,
primarily their reliance on shallow ML techniques, and proposes a novel hybrid Autoencoder–
Multi-Layer Perceptron (AE–MLP) model for intrusion detection as a solution against DDoS attacks
in the MEC environment. The proposed hybrid AE–MLP model leverages autoencoders’ feature
extraction capabilities to capture intricate patterns and anomalies within network traffic data. This
extracted knowledge is then fed into a Multi-Layer Perceptron (MLP) network, enabling deep learning
techniques to further analyze and classify potential threats. By integrating both AE and MLP, the
hybrid model achieves higher accuracy and robustness in identifying DDoS attacks while minimizing
false positives. As a result of extensive experiments using the recently released NF-UQ-NIDS-V2
dataset, which contains a wide range of DDoS attacks, our results demonstrate that the proposed
hybrid AE–MLP model achieves a high accuracy of 99.98%. Based on the results, the hybrid approach
performs better than several similar techniques.

Keywords: mobile edge computing; DDoS; machine learning; cyber security

1. Introduction

The advent of Mobile Edge Computing (MEC) has signaled a paradigm shift in the
design and management of wireless communication systems, especially in the current envi-
ronment of pervasive network connectivity and expanding data-driven applications. This
innovative idea involves assigning computational work and data processing to edge nodes
located near end users, reducing latency and increasing system effectiveness. As MEC gains
popularity for its potential to revolutionize network architecture, it simultaneously presents
a variety of complex cyber-security concerns that demand in-depth scholarly research.

The MEC framework faces a wide range of cyber-security challenges. One promi-
nent concern is the intensification of DDoS attacks. A DDoS attack, characterized by the
orchestrated flooding of network resources, poses a significant threat to the reliability
and availability of edge-hosted services [1]. The dynamic and distributed nature of MEC
environments, encompassing various devices connected through heterogeneous networks,
is well suited for DDoS attacks. Therefore, the threat of DDoS attacks on MEC networks
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highlights the need for effective and flexible cyber-security measures. These measures
should include proactive detection, quick response, and mitigation of malicious activities.
Additionally, MEC networks should be monitored continuously to identify any suspicious
activities and take necessary actions to prevent them.

In the field of cyber security, Intrusion Detection Systems (IDSs) are used to carefully
monitor network processes, in order to identify and prevent future security breaches [2].
These solutions carefully examine data flow and engage in a discriminating analysis of
patterns that differ from the norm, actions that raise suspicion, or attack signs that may
be easily identified. IDS solutions play a crucial and useful role in bolstering a network’s
defensive perimeter and minimizing the negative effects of cyber attacks. However, the use
of shallow machine learning is a notable drawback when it comes to IDSs.

While these techniques have been widely employed for anomaly detection and pattern
recognition, they often exhibit limitations in handling the complex and evolving nature of
modern cyber threats. Shallow machine learning models, such as SVM, decision trees, and
K-nearest neighbours are characterized by their relative simplicity and shallow hierarchical
structures. These algorithms may struggle to discern intricate patterns and subtle deviations
that are indicative of sophisticated attacks [3].

Deep learning, a subfield of machine learning, has emerged as a potent and promising
avenue for enhancing IDS [4]. Unlike traditional shallow machine learning techniques,
deep learning leverages multi-layered neural networks to automatically extract intricate
features and patterns from complex data, enabling it to more accurately capture the subtle
and dynamic nature of contemporary cyber threats.

In the age of information proliferation, where data are generated at an unprecedented
pace across diverse domains, the emergence of high-dimensional datasets is creating new
challenges for data analysis [5]. Analyzing data in high-dimensional spaces requires new
techniques and tools to uncover patterns and extract meaningful insights. As the dimension-
ality of data increases, the efficiency, interpretability, and generalization capacity of machine
learning models, particularly deep learning architectures, can be profoundly impacted. As
a result of this intricate interplay among the high-dimensional data environment, the need
for optimal accuracy and efficient model performance calls for innovative approaches to
feature reduction [6].

AE is an example of a feature reduction method with the overarching purpose of
identifying the salient features in data that contain the core information necessary for
model learning [7]. This transformative process seeks to strike a delicate balance between
retaining meaningful attributes and discarding redundant or noise-laden variables. By
condensing the data while preserving its intrinsic structure, these techniques not only
facilitate computational efficiency but also hold the potential to significantly bolster the
accuracy and generalization prowess of deep learning models.

The following are this article’s primary contributions.

• AE is proposed to reduce the dimension of the features. This technique compresses
large network traffic data into a lower dimension without sacrificing valuable essential
network data.

• A hybrid AE–MLP is proposed for network traffic classification. This method analyzes
the network traffic and classifies it based on a hybrid combination of AE and MLP.
The AE is used to learn the hidden representation of the network data. Subsequently,
the MLP is used to classify the network traffic.

• A comprehensive set of experiments was conducted with the NF-UQ-NIDS-V2 dataset
to verify the performance of the hybrid AE–MLP model in binary classification scenarios.

• The proposed model’s results were compared with other similar models to show
its performance.

The rest of the paper is organized as follows. Section 2 discusses the related work.
Section 3 describes the dataset, its preprocessing, and the preliminary analysis carried out
on it. Section 4 details the proposed hybrid AE–MLP model along with the dimension
reduction process and classification method. Section 5 discusses the experimental setup,
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the results, the performance of the proposed model, as well as comparisons with existing
models of a similar nature. Conclusions and future works have been presented in Section 6

2. Related Work

Detection and classification of DDoS attacks are crucial to preventing malicious activi-
ties on a network. It is necessary to have a system in place that can detect and classify these
attacks in real time. In addition, this system should be able to identify the different types of
DDoS attacks and respond accordingly.

A series of approaches have been utilized by researchers to address the detection and
classification of DDoS attacks. For instance, Wani et al.’s [8] study focused on the analysis
and detection of DDoS attacks using ML. The study utilized some ML algorithms, including
Naïve Bayes, random forest, and support vector machine. Overall, SVM performed better
than others with an accuracy of 99.7%. The study identified SVM as an effective algorithm
for detecting DDoS attacks with high accuracy. Bindra and Sood [9] also examined five ML
models to determine which one would produce the best DDoS detection results. The study
revealed that random forest achieved the highest accuracy of 96%.

Khare et al. [10] presented DT as a model for DDoS attack detection. The process
involves extracting features, and the information obtained is calculated. Using the informa-
tion obtained, a decision tree is constructed that identifies DDoS attacks and categorizes
them. The author claimed the model achieved a 90.2% success rate. Kousar et al. [11] also
show that the decision tree outperforms SVM and Naive Bayes.

Arshi et al. [12] presented a survey of machine learning techniques to detect DDoS
attacks. The study discussed techniques, such as SVM, Naive Bayes, and DT. The author
also provided more information on different types of DDoS attacks. The author concluded
that the use of machine learning techniques is essential for understanding DDoS attacks
and taking the necessary precautions to minimize them.

It is worth noting that all these methods are based on shallow machine learning, which
has been widely studied and deployed for years, and has shown success in many ways.
However, in recent times, the use of deep learning has been on the increase. This is partly
due to the fact that shallow ML methods—though they may have high accuracy—perform
poorly when used with large datasets [13]. Generally, in ML, dataset features play an
important role in the outcome of the model. Getting the appropriate features that well
represent the dataset is of uttermost importance. Dimensionality reduction is an important
step in data pre-processing [14]. It helps to reduce noise, eliminate irrelevant features, and
reduce the computational complexity of algorithms. It also helps to increase the accuracy
of the model by removing redundant features. Researchers in recent times have utilized
various methods to reduce high data dimensions and achieve the necessary accuracy.

For instance, Elsayed et al. [15] proposed Ddosnet to address DDoS attacks in SDN
environments. The authors utilized a combination of RNN and autoencoder to build a
model and evaluated the model’s performance with the CIDDoD2019 dataset. According
to the author, the results showed that the method offered a substantial improvement over
alternative methods in detecting attacks.

Yuan et al. [16] proposed an approach called deep defense. The approach focuses on
the optimal feature representation of the dataset. Recurrent deep neural networks were
used to identify patterns from batches of network traffic and track network attack activity.
The author claimed the model achieved a better performance when compared with other
ML models. However, the dataset used is old and may not contain the latest form of attacks.

Mushtaq et al. [17] explored the feasibility of designing an effective intrusion detection
system for the protection of networks from cyber attacks. The researchers propose a hybrid
framework that combines deep autoencoder (AE) with long short-term memory (LSTM)
and bidirectional long short-term memory (Bi-LSTM) for intrusion detection. The author
validated the performance of the proposed model on the well-known NSL-KDD dataset.
The results indicate that the proposed AE-LSTM framework outperforms other deep and
shallow machine learning techniques, as well as recently reported methods.
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Lee and Park [18] addressed the development of a high-performance network in-
trusion detection system (NIDS) using deep learning, specifically focusing on situations
where there are significant imbalances between normal and abnormal network traffic
data. The researchers proposed an AE-CGAN (Autoencoder-Conditional GAN) model
that combines autoencoders and generative adversarial networks to improve intrusion
detection in data-imbalanced situations [19]. The model’s performance was evaluated on
the CICIDS2017 dataset. According to the author, the proposed model effectively reduces
false detections and improves the detection of rare classes, leading to better intrusion
detection performance.

To improve the accuracy and efficiency of Network Intrusion Detection Systems
(NIDSs) using deep learning techniques, Kunang et al. [20] combined a DNN with a
Pretraining Technique with Deep Autoencoder (PTDAE) to create a deep learning Intru-
sion Detection System (IDS [21]. An automated optimal hyperparameter procedure was
developed through grid search and random search techniques. The pretraining phase in-
volves applying three feature extraction methods: Deep Autoencoder (DAE), Autoencoder,
and Stack Autoencoder (SAE). According to the author, the results show that the DAE
method provides the best performance, outperforming previous approaches in terms of
performance metrics in multiclass classification.

Ultimately, to effectively address DDoS attacks in a high-dimensional data environ-
ment, there is a need for feature reduction to enhance the quality and efficiency of deep
learning outcomes as demonstrated by the state-of-the-art research carried out.

3. Dataset Description, Preprocessing, and Preliminary Analysis

The NF-UQ-NIDS-V2 dataset contains network traffic data for intrusion detection
generated from flows from multiple network setups and different attack settings. It com-
bines four datasets (UNSW-NB15, BoT-IoT, ToN-IoT, and CSE-CIC-IDS2018.) released
between 2015 and 2018 [22]. The dataset has a total of 11,994,893 records, out of which
9,208,048 (76.77%) are benign flows and 2,786,845 (23.23%) are attacks. The dataset contains
43 features, and the size is 13.73 GB.

The features of the dataset are listed in Table 1. The class label is a binary variable
indicating whether the traffic is normal or benign traffic (labeled as 0) or malicious traffic
(labeled as 1). In the data preprocessing stage, the study identified and selected relevant
features that contributed the most to the modeling task. Redundant features, such as ‘At-
tack’ and ‘Dataset’, were removed to simplify the dataset and improve model performance.
The dataset was split into training, validation, and testing sets to evaluate model perfor-
mance. The study also ensures that the splitting maintains the original data distribution to
avoid bias.

Table 2 provides a breakdown of the different types of attacks from the 100,000 rows
of the NF-UQ- NIDS-V2 dataset utilized for this experiment. It also shows the distribution
of the nineteen different attacks in the dataset and it reveals DoS and DDoS at the top of
the list.

A preliminary analysis conducted on the NF-UQ-NIDS-V2 dataset using the Pycaret
Python library is shown below. The Pycaret Python library automates ML workflows,
allowing experiments to be conducted more quickly [23]. This library contains a com-
prehensive set of tools for data exploration, preprocessing, feature engineering, model
training, and evaluation. It contains several pre-trained models that can be used to build a
model quickly and it provides visualization capabilities to help users better understand
their models.

Table 3 shows the model’s settings. It shows a binary classification type and the shape
of the training and test dataset. It also shows the model utilized, StratifiedKFold, which
exposes the model to various subsets of the data. Stratifiedkfold is a variant of the k-fold
cross-validation technique. It is particularly useful in a situation where samples in some
classes are more than others, a situation known as class imbalance. Class imbalance can
lead to bias in the training model. This technique splits data into K-folds or subsets. It
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ensures that each fold contains roughly the same number of samples from each class as the
original data. Consequently, each class in the original dataset is adequately represented
in the training and validation sets. Hence, the likelihood of the model’s evaluation being
biased is minimized.

Table 1. NF-UQ-NIDS V2 dataset features.

Number Feature Number Feature

1 IPV4_SRC_ADDR 25 RETRANSMITTED_IN_BYTES
2 L4_SRC_PORT 26 RETRANSMITTED_IN_PKTS
3 IPV4_DST_ADDR 27 RETRANSMITTED_OUT_BYTES
4 L4_DST_PORT 28 RETRANSMITTED_OUT_PKTS
5 PROTOCOL 29 SRC_TO_DST_AVG_THROUGHPUT
6 L7_PROTO 30 DST_TO_SRC_AVG_THROUGHPUT
7 IN_BYTES 31 NUM_PKTS_UP_TO_128_BYTES
8 IN_PKTS 32 NUM_PKTS_128_TO_256_BYTES
9 OUT_BYTES 33 NUM_PKTS_256_TO_512_BYTES
10 OUT_PKTS 34 NUM_PKTS_512_TO_1024_BYTES
11 TCP_FLAGS 35 NUM_PKTS_1024_TO_1514_BYTES
12 CLIENT_TCP_FLAGS 36 TCP_WIN_MAX_IN
13 SERVER_TCP_FLAGS 37 TCP_WIN_MAX_OUT
14 FLOW_DURATION_MILLISECONDS 38 ICMP_TYPE
15 DURATION_IN 39 ICMP_IPV4_TYPE
16 DURATION_OUT 40 DNS_QUERY_ID
17 MIN_TTL 41 DNS_QUERY_TYPEDNS_QUERY_TYPE
18 MAX_TTL 42 DNS_TTL_ANSWER
19 LONGEST_FLOW_PKT 43 FTP_COMMAND_RET_CODE
20 SHORTEST_FLOW_PKT 44 Label
21 MIN_IP_PKT_LEN 45 Attack
22 MAX_IP_PKT_LEN
23 SRC_TO_DST_SECOND_BYTES
24 DST_TO_SRC_SECOND_BYTES

Table 2. Attack distribution.

Class Count

DoS 23,542
Benign 32,986

Scanning 4955
DDoS 28,742

Xss 3217
Bot 197

Reconnaissance 3444
Password 1519
Fuzzers 25
Injection 930

Theft 1
Brute Force 190
Infilteration 161

Exploits 34
Generic 19
Analysis 2
Backdoor 23

Mitm 8
Shellcode 2

Ransomware 3
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Table 3. Model set up.

Description Value

0 Session id 539
1 Target Label
2 Target type Binary
3 Original data shape (100,000, 44)
4 Transformed data shape (100,000, 44)
5 Transformed train set shape (70,000, 44)
6 Transformed test set shape (30,000, 44)
7 Numeric features 43
8 Preprocess True
9 Imputation type simple
10 Numeric imputation mean
11 Categorical imputation mode
12 Fold Generator StratifiedKFold
13 Fold Number 10
14 CPU Jobs −1
15 Use GPU False
16 Log Experiment False
17 Experiment Name clf-default-name
18 USI 5465

Table 4 shows the results of using fifteen different models on the dataset. The models
included various algorithms, such as random forest classifier, decision tree, and K-nearest
neighbors, among others. The models were evaluated in terms of accuracy, precision,
recall, and F1 score. The results showed that some models performed better than others.
In particular, the random forest classifier gave the best performance with an accuracy of
99.59%, recall of 99.63%, precision of 99.75%, and F1-score of 99.69%. This result shows the
potential of the random forest classifier to accurately classify data.

Table 4. Model comparison result.

Model Accuracy AUC Recall Prec. F1 Kappa MCC TT (s)

rf Random Forest Classifier 0.9959 0.9995 0.9963 0.9975 0.9969 0.9906 0.9906 7.4260
lightgbm Light Gradient Boosting Machine 0.9958 0.9998 0.9964 0.9974 0.9969 0.9905 0.9905 5.1650

et Extra Trees Classifier 0.9956 0.9991 0.9962 0.9972 0.9967 0.9901 0.9901 5.4460
xgboost Extreme Gradient Boosting 0.9954 0.9998 0.9962 0.9968 0.9965 0.9895 0.9895 1.6770

dt Decision Tree Classifier 0.9937 0.9926 0.9958 0.9948 0.9953 0.9857 0.9857 0.6430
knn K Neighbors Classifier 0.9917 0.9957 0.9931 0.9945 0.9938 0.9811 0.9811 7.9770
gbc Gradient Boosting Classifier 0.9908 0.9990 0.9919 0.9944 0.9931 0.9792 0.9793 18.7560
ada Ada Boost Classifier 0.9818 0.9975 0.9831 0.9896 0.9863 0.9589 0.9589 4.4750
ada Ada Boost Classifier 0.9818 0.9975 0.9831 0.9896 0.9863 0.9589 0.9589 4.4750
lda Linear Discriminant Analysis 0.8571 0.9499 0.8275 0.9531 0.8859 0.6974 0.7099 0.9540

ridge Ridge Classifier 0.8569 0.0000 0.8281 0.9522 0.8858 0.6968 0.7091 0.1760
qda Quadratic Discriminant Analysis 0.7656 0.7261 0.9876 0.7454 0.8496 0.3630 0.4503 0.5010
svm SVM—Linear Kernel 0.6870 0.0000 0.9418 0.6973 0.8013 0.1358 0.1789 8.9140
nb Naive Bayes 0.6711 0.8242 0.9998 0.6708 0.8029 0.0041 0.0154 0.2720

dummy Dummy Classifier 0.6701 0.5000 1.0000 0.6701 0.8025 0.0000 0.0000 0.1170
lr Logistic Regression 0.3299 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 1.7520

Figure 1 shows the confusion matrix result for the dataset. The result shows that 20,034
of the attacks were correctly classified, and 70 of the benign class were misclassified. This
shows an appreciable performance of the model.

Figure 2 shows the feature importance of the dataset, highlighting the most significant
features. This can help identify features that are most relevant to the problem, which can
then be used to build a more accurate model. It shows the source address having the
highest importance of 0.14, indicating that this feature has the most significant impact on
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the outcome or predicting the target variable. This is followed by the destination address,
with 0.12, a higher importance score. This shows that this feature holds more influence
on the outcome or predicting the target variable when compared to other features. The
diagram also shows flow duration in the third place of importance, with 0.09. This position
shows relatively higher importance, and this suggests the feature plays a notable role in
predicting the target variable.

The source and destination IP are important features relevant to the detection of DDoS
attacks [24]. The source and destination IP can be used to track the attackers and determine
the origin of the attack. Additionally, they can be used to block the source and prevent
further attacks. It is possible that these IP addresses have been used and blocked elsewhere
in the past, which provides a quick warning sign. IP addresses can also be used to identify
malicious patterns, such as a large number of requests coming from a single source.

In the same way, SHAP was used to analyze the dataset. SHAP is a Python pack-
age that uses game theory to explain machine learning models [25]. It estimates how
individual features contribute to the outcome of a machine learning model. This tool is
useful for analyzing a model’s performance and determining which features are most
important for predicting the outcome accurately. As shown in Figure 3, the destination
address, source address, and duration are at the top of the list of the features with the most
significant impact on the outcome of the model. Based on the absolute SHAP value, it is
clear that Stripped_IPV4_DST made a substantial contribution to prediction, followed by
Stripped_IPV4_SRC. The model is either more likely to increase or decrease its prediction
based on the colors red and blue, respectively.

Figure 1. Confusion matrix result.

Figure 2. Feature importance result.
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To create a global measure of feature importance, the mean absolute value was
utilized as shown in Figure 4. Using the mean absolute shapely value of each feature,
Stripped_IPV4_DST was the most important feature that changes the DDoS attack probabil-
ity prediction by an average of 0.27 on the x-axis, as seen in Figure 4. Also, in Figure 5, the
y-axis shows the features in their order of importance, while the x-axis reveals the SHAP
values. The x-axis has both positive and negative sides. The graph has red and blue color
representations of the values. Red indicates high values, while blue indicates low values.
The figure illustrates that MN_TTL is high and has negative SHAP values. Thus, higher
MN_TTL counts tend to have a negative impact on output. In all cases mentioned above,
the destination address was shown to have the greatest magnitude effect.

Figure 3. Feature importance results using SHAP.

Figure 4. Mean absolute value to determine feature importance.

Figure 5. Feature impact on model’s output.
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Summary

In this section, two Python libraries (pycaret and shap) have been used to carry out
a preliminary analysis of the NF-UQ-NIDS-V2 dataset. This preliminary work indicates
that shallow machine learning models can effectively classify the attack traffic from benign
traffic as seen by the accuracy result achieved by random forest in the analysis conducted.
However, more complex models, such as deep neural networks, may be needed to further
increase the accuracy of the classification. Additionally, further research is needed to explore
how to use deep learning techniques to detect more sophisticated attack traffic. In addition,
a future importance analysis is carried out on the dataset. Future importance analysis is
crucial to discovering how the features impact the model’s result. In this way, features that
are not beneficial to the model’s performance can be identified and removed, resulting in a
more accurate and better-performing model. Based on the results, fundamental network
traffic information, such as source IPs and destination IPs, had a significant impact on the
model’s output. This confirms why most researchers rely on them for malware detection.
Meanwhile, the analysis indicates some features have no impact on the model’s results.
Consequently, some features may not be useful. Thus, it is important to carefully consider
which features to include in a model to ensure its effectiveness.

The task of reliable labeling in the domain of cyber security, particularly in DDoS
sample identification, emerges as a critical and formidable task that is made challenging due
to various factors. A potential misclassification can be attributed to the evolution of attack
techniques, intentional mislabeling by threat actors, and the complexity and multifaceted
nature of these attacks. Furthermore, the absence of universal standards and the possibility
of human error further complicate the process of accurately labeling and classifying DDoS
samples. The cooperation of security experts in establishing standardized labeling criteria,
the continuous updating of systems to address new threats, and the implementation of
rigorous validation processes are vital in improving the reliability of these labels. Despite
these measures, the achievement of absolute accuracy continues to be a persistent challenge
in the constantly evolving field of cyber-security threats.

4. Proposed Hybrid Method for DDoS Attack Detection in MEC Networks

This section presents the proposed hybrid AE–MLP approach to DDoS attack detection
in MEC. The hybrid AE–MLP combines an autoencoder with a multilayer perceptron for
improved performance. It uses the compressed representation of the autoencoder as an
input to the MLP for further processing. The hybrid architecture is advantageous as it
utilizes the benefits of both components for better performance.

4.1. Autoencoder

Autoencoders are artificial neural networks used primarily in unsupervised learning
tasks in machine learning [26]. Generally, it works by reconstructing input data at the out-
put through the compression of the information into a latent or bottleneck layer. In essence,
it encodes the input data into a lower-dimensional representation and then reconstructs
the original input from this compressed representation. This type of neural network archi-
tecture is referred to as an auto-associative neural network. In an auto-associative neural
network, input patterns are encoded and decoded within the same network architecture,
making it ideal for tasks such as data reconstruction and pattern completion.

Dimensionality reduction is one of the principal uses of autoencoders. Autoencoders
can capture the most significant characteristics and patterns in the data while eliminating
less significant information [27]. Dimensionality reduction makes it possible to display the
data in a more condensed manner, which lowers the amount of storage space needed and
the computing complexity.

There are two distinct components of AE, an encoder and a decoder. The encoder
takes the input data x, applies a linear transformation using weights W, adds a bias term b,
and then applies an activation function g() to produce the compressed representation Z.
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This compressed representation Z can later be used in the decoder part of the autoencoder
to reconstruct the original input data.

Z = g(Wx + b) (1)

where the bottleneck layer representation = Z , the weight of the matrix = W, bias = b, and
the activation function = g.

The decoder is

X′ = g′(W ′z + b′) (2)

where the decoder output = X′, weight of the matrix = W′, bias = b′, and the activation
function = g′.

Z indicates the input, while X′ indicates the output. The decoder utilizes the output of
the bottleneck layer to reconstruct the original input data.

4.2. Multilayer Perceptron

Multilayer perceptrons (MLPs) are a class of feedforward artificial neural networks
with multiple layers, including input, hidden, and output layers [28]. The MLP is called a
feedforward network because it transfers data from input to output in a single direction
without requiring loops or feedback connections between neurons. This enables efficient
learning and prediction compared to recurrent neural networks that rely on feedback
connections [29]. As a result of its ability to model intricate relationships in data via
interconnected nodes and layers, it is widely used for various tasks, including classification,
regression, and pattern recognition.

The multilayer perceptron forms the foundation for more sophisticated architectures,
such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
An MLP consists of multiple layers of interconnected neurons (also called nodes or units).
In a typical network, there are three types of layers: the input layer, the hidden layer, and
the output layer.

MLPs learn optimal weights and biases through a process called backpropagation
during training. This process involves iteratively adjusting the network’s parameters to
minimize the difference between the predicted output and the actual target values. The
choice of an appropriate optimization algorithm and loss function is critical for success-
ful training.

MLPs are capable of learning complex and nonlinear relationships in data, enabling
them to perform tasks, such as image recognition, natural language processing, and speech
recognition. However, they are also prone to overfitting, especially on small datasets. In
order to achieve good generalization performance, regularization techniques and careful
tuning of hyperparameters are often required.

y = l(Wx + b) (3)

where l is the activation function, W is weight, x is the input, b is bias, y is the output.

4.3. Proposed Hybrid AE–MLP Model Architecture

Our proposed model consists of two main components. The first component utilizes
AE for feature dimensionality reduction. Figure 6 shows the architecture of AE and its
working principle. The second component utilizes MLP for DDoS detection. AE learns
from the input data and produces an output that represents the reduced-dimensional
encoding of the input data. The MLP takes the encoded representations produced by the
autoencoder as input. The MLP then learns to classify whether the input represents normal
or potentially malicious network behavior. The hidden layers of the MLP enable it to
capture more complex relationships in the data and make more accurate predictions.
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Figure 6. A representation of the hybrid AE–MLP architecture.

5. Results and Discussion

In this section, we provide the details of the experiment, the setup of the environment,
the results, the analysis, and the conclusions.

The main system’s processor is Intel(R) Core(TM) i7-4510U CPU @ 2.00 GHz 2.60 GHz,
RAM-8.00 GB, and OS-Win 10, with the Google Colab Setting-Python 3 Google Compute
Engine backend, RAM: 1.13 GB, and Disk: 26.26 GB.

To evaluate the strength of our proposed model, we utilized performance metrics,
such as accuracy, precision, recall, and F1-score. These metrics measure the performance of
the model in terms of its ability to correctly classify data points.

Accuracy =
TP + TN

TP + FN + TN + FP
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(7)

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false
negative, respectively.

5.1. Hybrid AE–MLP Was Employed for the Detection of DDoS Attack

The simulations for the NF-UQ-NIDS-V2 dataset have been conducted with 80/20,
70/30, and 60/40 data splits. In the first batch of experiments, the effectiveness of the
model was evaluated in a binary class scenario. Experiments were conducted by using
an 80/20 split. Performance scores of the proposed hybrid AE–ML are presented in bar
graphs in Figure 7. The proposed method attained the highest accuracy of 99.98%. In
the second stage, all experiments were repeated for a 70/30 split. Performance scores of
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the proposed AE–MLP are presented in bar graphs in Figure 7. The proposed method
attained the highest accuracy of 99.97%. In the third stage, all experiments were repeated
for a 60/40 split. Performance scores of the proposed hybrid AE–MLP are presented in bar
graphs in Figure 7. The proposed method attained the highest accuracy of 99.96%. The
80/20 split achieved the highest accuracy score for the model.

Table 5 shows the different train and test splits that were utilized, as well as the metrics.

Table 5. Train/Test split comparison-Hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model
results.

Train/Test Split Accuracy Precision Recall F1-Score

80/20 99.98 98.92 94.24 96.52
70/30 99.97 98.10 95.20 97.20
60/40 99.96 98 95.10 97

Figure 7. Result of the hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model train and
test split.

The time taken for training and prediction was also captured with 80/20, 70/30,
60/40 splits for the NF-UQ-NIDS-V2 dataset, as shown in Figure 8. Experiments conducted
using an 80/20 split took 4.96 s for training and 0.74 s for prediction. The shortest time
recorded for training was with a 60/40 split, while the shortest prediction time recorded
was with an 80/20 split. In comparison, the 80/20 split recorded the shortest prediction
time, making it the most preferable split for our scenario.

Table 6 shows the time taken for training and prediction for the different train and test
splits that were utilized.

Table 6. Time for hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model.

Train/Test Split Training Time (s) Prediction Time (s)

80/20 4.96 0.74
70/30 4.8 1.32
60/40 3.71 1.44

In this analysis, the hybrid AE–MLP method was found to be the most effective
method for detecting DDoS attacks. The proposed DDoS detection model outperformed all
other algorithms with an accuracy of 99.98%. Table 7 shows the performance comparison
between the proposed hybrid algorithm and two others.
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Figure 8. Time taken for hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model.

Table 7. Literature comparison-Hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model
results.

Algorithm Accuracy Precision Recall F1-Score

LSTM 94.98 98.30 94.14 96
GRU 97.10 97.20 98.52 98

AE-MLP 99.98 98.92 94.24 96.52

Figure 9 compares the accuracy, precision, recall, and f1-score for LSTM, GRU, and
hybrid AE–MLP.

Figure 9. Comparison between Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU),
and the hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model.

Table 8 shows the performance comparison between the proposed hybrid AE–MLP
algorithm and MLP.

Figure 10 shows the performance comparison between the proposed hybrid AE–MLP
and MLP.

Table 9 and Figure 11 show the accuracy comparison among different feature selections
of the proposed hybrid AE–MLP algorithm and MLP.
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Table 8. Proposed work comparison-Hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model
results.

Algorithm Accuracy Precision Recall F1-Score

MLP 98.63 99.40 98.55 99
AE-MLP 99.98 98.92 94.24 96.52

Figure 10. Hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model comparison with Multi-
Layer Perceptron (MLP).

Figure 11. Feature hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model comparison with
Multi-Layer Perceptron (MLP).

Table 9. Number of features comparison-Hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP)
model results.

Nos of Features Accuracy MLP AE-MLP

Feature-42 Accuracy 98.63 99.98
Feature-32 Accuracy 97.41 99.93
Feature-16 Accuracy 95.62 99.91
Feature-8 Accuracy 92.45 99.91
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Table 10. The result of individual attack class with hybrid Autoencoder–Multi-Layer Perceptron
(AE–MLP) model.

Class Accuracy Precision Recall F1-Score FNR TNR FPR TPR AUC-ROC

DoS 94.54 94.29 94.50 94.24 0.04 0.94 0.04 0.94 0.90
DDoS 94.56 94.37 94.44 94.36 0.04 0.94 0.04 0.94 0.90

Scanning 93.92 93.90 93.92 93.88 0.05 0.93 0.05 0.93 0.89
Xss 93.90 93.97 93.89 93.80 0.05 0.93 0.05 0.93 0.89

Reconnaissance 93.90 93.10 93.90 93.79 0.05 0.93 0.05 0.93 0.89

Table 10 shows the results of some of the individual attacks as enumerated in Table 2
with the proposed hybrid AE–MLP model. The purpose of this is to provide a more
comprehensive evaluation of the proposed model. As can be seen, other metrics, such
as False Negative Rate (FNR), True Negative Rate (TNR), False Positive Rate (FPR), True
Positive Rate (TPR), and Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) have been added to provide a more detailed analysis of the model’s performance.

Table 11 shows the performance of the proposed hybrid AE–ML model against shallow
ML models using the NF-UQ-NIDS-V2 dataset. The shallow RF model had an accuracy of
99.59%, demonstrating its effectiveness in this instance. On the other hand, SVM performed
significantly lower, with an accuracy of 68.70%. The discrepancy may be explained by
SVM’s sensitivity to the selected kernel and its difficulty handling large-scale, non-linear
datasets, both of which are relevant in this case [30].

Table 11. Comparison of proposed hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model
with Multi-Layer (ML) models.

Algorithm Accuracy Precision Recall F1-Score Training Time (s)

XGB 99.54 99.68 99.62 99.65 1.67
Random Forest 99.59 99.75 99.63 99.69 7.42

SVM 68.70 69.73 94.18 80.13 8.91
KNN 99.17 99.45 99.31 99.38 7.97

AE-MLP 99.98 98.92 94.24 96.52 4.96

When considering the training time, XGB stands out as the fastest learner, with an
impressive time of 1.67 s. The accelerated training speed can be attributed to XGB’s built-in
optimization techniques, such as parallel computing and its decision tree-based approach,
which facilitate efficient computation and model development. Among the models, SVM
demonstrates the longest training time of 8.91 s, primarily due to its iterative nature and
the computational intensity associated with computing the support vectors [30].

Table 12 shows a comparison between the proposed hybrid AE–MLP model and
three related works, demonstrating its superiority with a 99.98% attack detection accuracy.
Furthermore, the proposed model maintains a competitive edge across precision, recall, and
F1-score metrics, standing at 98.92%, 94.24%, and 96.52%, respectively. This demonstrates
its comprehensive approach to discerning threats.

Table 12. Comparison of proposed hybrid Autoencoder–Multi-Layer Perceptron (AE–MLP) model
with existing work.

Study Technique Accuracy Precision Recall F1-Score

Alghazzawi et al. [31] CNN + BiLSTM 94.52 94.74 92.04 93.44
Tanveer [32] CNN + LSTM 96 95.94 97.06 96.50

Mhamdi et al. [33] SAE + 1SVM 99.35 99.97 98.28 99.11
Our proposal AE + MLP 99.98 98.92 94.24 96.52
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5.2. Key Findings

Various experiments were conducted, and comparisons were made to show the effec-
tiveness of the proposed hybrid AE–MLP model:

• In the first category of the experiment, an 80/20 split of the training and test dataset
yielded the highest accuracy score of 99.98% for the model.

• The training time was found to be 4.96 s, and the prediction time was 0.74 s.
• The proposed hybrid AE–MLP model was compared with other deep learning models

in the second category of the experiment. The hybrid AE–MLP achieved a higher ac-
curacy of 99.98% compared with 94.98% and 97.10% for LSTM and GRU, respectively.

• The proposed hybrid AE–MLP model was also compared with MLP. The hybrid model
achieved a higher accuracy of 99.98% compared with MLP, which was 98.63%.

• The hybrid AE–MLP model was compared with the shallow ML model, and the
training time was recorded. The proposed hybrid model achieved a remarkable
accuracy of 99.98% in a record time of 4.96 s.

5.3. Advantages of AE–MLP Hybrid Approach

An AE–MLP (Autoencoder–Multi-Layer Perceptron) hybrid approach offers signifi-
cant advantages for intrusion detection systems (IDSs) [34]. Firstly, autoencoders excel at
anomaly detection, which is pivotal for identifying unknown and novel threats. They can
automatically learn patterns and anomalies in network traffic or system behavior, reducing
the reliance on manual feature engineering. Furthermore, the feature extraction capabili-
ties of autoencoders enable them to capture both common and rare patterns, enhancing
the IDS’s adaptability and robustness to evolving attack techniques. By employing an
MLP for classification after the autoencoder, the hybrid model can validate the anomalies
detected and make informed decisions about the maliciousness of network events or sys-
tem activities, reducing false positives and improving the overall accuracy of intrusion
detection [35].

Secondly, the hybrid approach benefits from transfer learning and adaptability. A
transfer learning method uses pre-trained models to solve a problem related to the origi-
nal problem, allowing for efficient and effective learning on smaller datasets and in new
domains [36]. Autoencoders can be pre-trained on large datasets, allowing the IDS to
generalize better to new and emerging threats. This pre-training serves as a form of transfer
learning, enabling the model to detect threats that were not present in the training data.
Additionally, the hybrid model is more adaptable to changing attack scenarios and network
environments. It can be updated and fine-tuned with new data to capture evolving attack
patterns, making it more responsive and effective in addressing emerging security chal-
lenges. The combination of multiple models in the AE–MLP ensemble not only enhances
detection capabilities but also provides a robust and resilient defense against a wide range
of security threats.

5.4. Drawback of AE–MLP Hybrid Approach

The downside of using a hybrid model is the time taken for the process to complete.
As can be seen in the experiment, the hybrid model recorded the highest training time of
4.96 s. This was significantly higher than the other models. This suggests that the hybrid
model is more computationally intensive. This drawback can be mitigated by employing
a cloud-edge collaboration technique. In this technique, the training is conducted in the
cloud environment where there are vast resources to do this in a record time. The trained
model is then deployed to the edge for prediction. Considering the proposed model’s
fastest prediction time, it is obvious that malicious activities will be detected quickly.

6. Conclusions

Mobile Edge Computing (MEC) has undeniably ushered in a new era of computing,
offering unparalleled speed and responsiveness at the edge of the network. However, with
the immense potential of MEC come security challenges, and none is more formidable
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than the threat of Distributed Denial of Service (DDoS) attacks. One critical issue that
has plagued MEC security is the reliance on shallow Machine Learning (ML) models for
Intrusion Detection Systems (IDSs). While these systems have served as a valuable line of
defense, their limitations in accurately detecting and mitigating DDoS attacks have become
increasingly evident. The shallow ML models lack the depth and sophistication required to
discern the evolving tactics employed by attackers in the dynamic MEC environment.

To resolve these shortcomings, this study presents a hybrid DL method for the detec-
tion of DDoS attacks in the MEC environment. The proposed hybrid DL model’s architec-
ture comprises two components: the autoencoder and the multi-layer perceptron network.
The AE extracts the most important and relevant features necessary to find malicious DDoS
network payloads from a large-scale network traffic sample. The compressed and reduced
features produced by the AE model are then fed into MLP to effectively classify different
DDoS attack types. The proposed model’s effectiveness was validated by performing
extensive experiments with the most relevant publicly available dataset (NF-UQ-NIDS-V2).
Based on experimental results, the proposed AE–MLP outperforms single models in the
vast majority of situations. Similarly, comparisons were drawn between the proposed
model and various existing related studies. The accuracy achieved by the proposed model
was higher than that of its counterparts. A hybrid model is more suitable for IDS because
it can learn patterns in a large amount of traffic data and classify it quickly as benign
or malicious. However, due to the time element involved in hybrid models, cloud–edge
collaboration is suggested. In this suggested method, the hybrid model training could take
place in the cloud, and the trained model is deployed to the MEC environment for effective
DDoS attack detection.

Utilizing the hybrid AE–MLP model in MEC environments holds significant impli-
cations. The integration of AE’s data compression and feature extraction capability with
MLP’s classification capabilities, results in effective processing and extraction of significant
features from data at the edge. This integration enables quicker decision making and
optimizes latency and bandwidth utilization. Thus, the hybrid AE–MLP model provides an
ideal solution for MEC applications that require real-time decision making. Furthermore,
the AE–MLP model can also be used for predictive analytics, allowing for more accurate
prediction of future outcomes. Future work could examine methodologies for facilitating
effective collaboration between edge and cloud resources. The development of frameworks
will facilitate the hybrid model’s seamless offloading of complex processing to the cloud,
therefore, optimizing overall system performance.
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