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Abstract: The rapid development of Internet of Things (IoT) networks has revealed multiple security
issues. On the other hand, machine learning (ML) has proven its efficiency in building intrusion
detection systems (IDSs) intended to reinforce the security of IoT networks. In fact, the successful
design and implementation of such techniques require the use of effective methods in terms of
data and model quality. This paper encloses an empirical impact analysis for the latter in the
context of a multi-class classification scenario. A series of experiments were conducted using six
ML models, along with four benchmarking datasets, including UNSW-NB15, BOT-IoT, ToN-IoT,
and Edge-IIoT. The proposed framework investigates the marginal benefit of employing data pre-
processing and model configurations considering IoT limitations. In fact, the empirical findings
indicate that the accuracy of ML-based IDS detection rapidly increases when methods that use
quality data and models are deployed. Specifically, data cleaning, transformation, normalization,
and dimensionality reduction, along with model parameter tuning, exhibit significant potential to
minimize computational complexity and yield better performance. In addition, MLP- and clustering-
based algorithms outperformed the remaining models, and the obtained accuracy reached up to
99.97%. One should note that the performance of the challenger models was assessed using similar
test sets, and this was compared to the results achieved using the relevant pieces of research.

Keywords: intrusion detection; Internet of Things; data quality; model quality; machine learning

1. Introduction

The continuous growth witnessed in various computing fields has promoted several
emerging technologies. In particular, the Internet of Things (IoT), in which wired and
wireless communications are coupled between devices, has emerged as a paradigm shift
regarding the future of the Internet. Diverse IoT devices are capable of sensing, collecting,
and communicating in an automated manner. They have been adopted within different
areas and services, including healthcare, manufacturing, transportation, education, and
smart cities [1–3]. In fact, the number of IoT devices is expected to grow from 0.3 billion
in 2003 to over 100 billion in 2040 [4]. This growth reflects the drastic impact of IoT
technologies on our daily life and the associated risk of security vulnerabilities. IoT devices
generate a massive amount of data that can be exploited to analyze the overall performance
of the IoT network. Advanced analyses of the generated data can be conducted to spot
security attacks and detect malicious events [1–3].

In this context, machine learning (ML) provides a great contribution to the efforts
intended to make IoT networks more secure. Despite the promising results recently re-
ported, the security attacks that target IoT networks, along with the concerns related to
resource and processing constraints, have arisen as challenging obstacles facing typical
IoT frameworks [1]. Since 2008, many pieces of research have promoted the utilization of
ML techniques in intrusion detection systems (IDSs) and have yielded accurate detections
of less suspicious traffic with low-cardinality intrusions [1]. Unlike signature-based IDSs
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that detect attacks based on the signatures of attacks, anomaly IDSs detect zero-day attacks
using machine learning techniques [2]. IDSs can also be categorized into (i) network-based
IDSs (NIDSs) at the network level and (ii) host-based IDSs (HIDSs) at the operation system
level. A network-based IDS (NIDS) is typically used to monitor the network traffic, whereas
the latter version is used to monitor specific malicious system activities, including traffic,
application logs, system calls, file-system changes, and others [3].

Mining for hidden patterns and insights in the data can guide the detection task
conducted using ML models. In particular, mining techniques consider the different aspects
of the data, such as size, data modality, and data processing speeds. Consequently, both
machine learning models and data quality play a critical role and affect IDS performance.
One should note that handling datasets specifically in security applications creates issues
such as incompleteness, duplication, timeliness, and lack of diversity. These issues represent
real obstacles to designing accurate ML-based IDSs [1].

Several studies [5–11] were carried out to investigate the quality of ML-based models
for IDSs regarding the IoT. The relevant works consider different quality criteria, such
as model creation, validation, and optimization. They also employ different ML algo-
rithms covering both conventional and deep learning techniques for intrusion detection
in low-power IoT networks. In particular, decision tree (DT), k-means clustering, naive
Bayes (NB), artificial neural networks (ANN), recurrent neural network (RNN), convolu-
tional neural networks (CNNs), genetic algorithms (GA), and other ML techniques were
extensively investigated [5–11]. Other research [12–14] studied the effects of data in terms
of quality, specifications, and issues in related datasets. Examples of popular datasets
for IDS-based IoT networks include ToN-IoT, BOT-IoT, and others. These benchmarking
datasets were proposed and used for data-related quality assurance purposes. The related
works presented useful techniques for handling data issues regardless of model complex-
ity [12–14]. However, these works considered either the data or the model quality-related
issues for IDS-based IoT networks. This reflects the need for a comprehensive analysis of
both perspectives.

Accordingly, this research is motivated by the need to investigate the impact of both
data and model quality in terms of the methods used for enhancing ML-based IDSs for
IoT networks. Particularly, experimental scenarios were designed based on six ML models
along with four benchmarking datasets to assess ML-based IDSs for IoT networks. This
research intends to answer the following research questions:

• What are the main criteria relevant to preparing and selecting proper datasets that
preserve the required quality for IDS performance in an IoT context?

• How would quality assurance factors, including both data and model perspectives,
impact multi-class ML-based IDSs within an IoT context?

• How would quality assurance methods enhance the performance of ML-based IDSs?
• Can a lightweight framework designed based on model quality assurance methods

enhance the IDS detection rate in an IoT context?

Accordingly, the main contributions of this study can be summarized as follows:

• Introducing dataset selection criteria to ensure high-quality data-driven modeling for
IDSs within an IoT environment;

• A comprehensive investigation and analysis of the trade-offs regarding quality assur-
ance challenges and solutions in ML-based IDSs considering an IoT environment;

• Improved generalization for the selected supervised ML techniques considering IoT
resource-constrained devices;

• A lightweight framework for enhancing the IDS detection rate in an IoT context
through employing selected data and model quality assurance methods.

To the best of our knowledge, this research represents the first study that comprehen-
sively investigates data and models quality assurance methods for an effective IDS within
an IoT context. The research findings can be perceived as new insights and directions
toward improving IDS performance with consideration of IoT constraints.
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The rest of the article is organized as follows. In Section 2, works related to ML-based
IDSs, data collection and pre-processing, and datasets for IoT-based IDSs are presented.
The best practices for efficient IDSs in IoT networks from the perspectives of both models
and data are provided in Section 3. Section 4 outlines the proposed approach, and Section 5
depicts the experiential design, including datasets, performance measures, and results. In
Section 6, a discussion about the performed experiments and findings is conducted. Finally,
the conclusions and future directions are provided in Section 7.

2. Related Works
2.1. ML-Based Intrusion Detection Systems for IoT Networks

Since 1980, IDSs have been introduced as a primary solution that can monitor host-
based or network-based traffic to detect intrusion attempts [3]. Typically, IDSs can be
grouped into three main categories: (i) signature-based, (ii) anomaly-based, and (iii) hybrid-
based IDSs. As mentioned earlier, signature-based IDSs use a database of known attack
signatures to flag intrusion patterns, which makes zero-day attacks undetectable. For the
anomaly-based category, the detection is carried out using ML techniques, whereby normal
behaviors are collected and analyzed to identify potential abnormalities so that zero-day
attacks can be identified. Lastly, the hybrid approach relies on both mechanisms, known
attack signatures and ML techniques, and exploits their advantages to enhance the overall
detection rate [14].

Despite the widespread use of IDSs in traditional networks, there are still several
issues when it comes to IoT environments and their specifications. These specifications
compose barriers, ranging from computing capabilities to storage capacities, that affect
the deployment of IoT-based IDSs. In terms of computing capabilities, the IoT contains
large-scale nodes that pose a greater number of real-time distribution and processing
issues. However, IoT computing-constraint issues create a situation where maintaining
the work of IDS agents is challenging [14]. Additionally, the multi-hop architecture of
the IoT poses an issue due to storage capacity constraints regarding the IoT. Moreover,
the specified protocols for IoT networks produce new security and privacy challenges.
Such protocols include IPv6, Low-Power Wireless Personal Area Network (6LoWPAN),
Constrained Application Protocol (CoAP), and others. Furthermore, administrating IoT
networks poses new issues since large amounts of alerts are generated by IDSs, which
cannot be analyzed manually. Several enhancements need to be considered to overcome
these issues, such as alert correlation, data visualization, and early detection [3].

Accordingly, several pieces of research have been proposed to investigate IDS adoption
for IoT networks using ML-based solutions. In fact, ML provides data-driven IoT-intelligent
solutions that are suitable for IoT security specifications. They exhibit a promising ability
to detect unknown attacks early and in real-time [15]. In this context, a set of instances
with a range of features is fed into the ML-based IDS. Those features are correlated with
either system events or network packets representing labeled incidents. Thus, labeled data
are considered crucial for building detection models using ML-based IDSs [16,17]. ML
algorithms are designed to learn the association between the considered features and the
pre-defined class labels. In addition, several data quality issues can be identified while
handling ML input data for IDSs. Such issues include data inconsistency, missing values, a
lack of labeled data, duplication, a lack of variety, imbalances, and noise [16]. The pieces of
research relevant to ML-based IDSs within the IoT have undertaken investigations using
databases from the ACM, Google Scholar, IEEE, Science Direct, Scopus, and Springer.
The main focus of the selected publications is ML categorization, ML-based IDSs for the
IoT, quality assurance for ML-based IDSs, and IoT security. The chosen timeframe of the
selected publications is between 2019 and 2023. The surveyed works are summarized in
Table 1, where the relevant information, such as the learning algorithms, datasets, and
evaluation metrics, is depicted.
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Table 1. A summary of ML-based IDS-related works regarding the IoT.

Reference Year ML
Technique Dataset Evaluation Metric Classification

Tareq et al. [12] 2022 DenseNet
Inception Time

ToN-IoT
Edge-IIoT

UNSW-NB15

Accuracy, Precision,
Recall, F1-measure Multi-class

Koroniotis et al. [18] 2019 RNN, SVM
LSTM BOT-IoT Accuracy, Precision,

Recall Multi-class

Kanimozhi et al. [19] 2019 ANN, RF-DT UNSW-NB15 Accuracy, Precision,
Recall, F1-measure Multi-class

Nawir et al. [20] 2019 NB, MLP
DT UNSW-NB15 Accuracy Binary

Alsaedi et al. [21] 2020

LR, LDA
KNN, RF
CART, NB

SVM, LSTM

ToN-IoT Accuracy, Precision,
Recall, F1-measure Multi-class

Kasongo et al. [22] 2020
ANN, LR

KNN, SVM
DT

UNSW-NB15 Accuracy, Precision,
Recall, F1-measure Multi-class

Thaseen et al. [23] 2020

C4.5, NB
RF, MLP

SVM, CART
KNN, ANN

Ensemble Learning

BOT-IoT
Accuracy, Precision,
Recall, F1-measure,
Specificity, AUC.

Multi-class

Sugi et al. [24] 2020 LSTM, KNN BOT-IoT Accuracy Multi-class

Sarhan et al. [25] 2021 DFF, RF ToN-IoT

Accuracy, AUC
F1-measure, Detection
Rate, False Alarm Rate,

Prediction Time

Multi-class

Ferrag et al. [26] 2021
DT, RF

SVM, KNN
DNN,

Edge-IIoT Accuracy, Precision,
Recall, F1-measure Multi-class

Fatani et al. [27] 2021 CNN BOT-IoT Accuracy, Precision,
Recall Multi-class

Yin et al. [28] 2023 MLP UNSW-NB15
Accuracy, Precision,
Recall, F1-measure,

AUC, FPR
Multi-class

Moustafa et al. [29] 2016 ANN UNSW-NB15 Accuracy, Precision,
Recall Multi-class

Gad et al. [30] 2021
LR, NB, DT, RF,

AdaBoost, KNN,
SVM, XGBoost

ToN-IoT Accuracy, Precision,
Recall Multi-class

2.2. Quality Assurance Challenges of ML-Based IDSs

Quality assurance regarding ML-based IDSs poses many challenges from both data
and model perspectives. Research work coins the term “data quality” as a metric of
data used to guarantee the proper building of ML systems. It can be described as a multi-
dimensional concept covering both the qualitative and quantitative aspects of data. In terms
of data quality challenges, these can be categorized into label-, instance-, and feature-based
challenges [16]. In terms of label-based issues, mislabeled data and imbalanced data are
typical examples in this category. KDD’99 [31] is an example of an imbalanced IDS dataset
that includes millions of records with very few data points representing malicious traffic.
Having such an imbalanced level of distribution leads to an inefficient decision boundary
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since most of the data points are benign. ML models rely highly on the accuracy of training
data, which, in turn, (if they are mislabeled) comprise the predictive accuracy of models and,
thereby, lower the confidence of it [32,33]. Research has shown that balancing data could
improve neural network performance in minor classes with few instances [34]. Another
type of label-based issue is the difficulty of labeling data due to huge volumes and noisy
labels. A terabyte of data is labeled in a manual manner by a knowledge expert within the
IDS field, meaning only a limited number of datasets are available for benchmarking [35].

The second category is mapped to instance-based issues where a shortage of data is
investigated. Such a problem includes data scarcity, where no strong distinction can be
made. This happens due to the lack of malicious traffic that needs to be learned when
compared to benign traffic behavior. It can also happen due to having many missing values
and outliers, which negatively affects the performance of the ML model. Different ML
algorithms are sensitive to outliers, such as clustering and regression analysis [36,37].

The last category relates to feature-based issues, covering the noise, redundancy,
feature sparsity, and correlation matters of data. Current IDSs primarily consider the
development of the ML model and dismiss the investigation of detailed feature selection.
The poor analysis of feature selection can cause limitations in terms of capturing the IoT
traffic in terms of semantic relationships and detecting unknown attack types [36,37].

With regard to model quality, this also represents an important element since the
building of the model is an integrated process that is drastically impacted by several factors,
such as model selection and fitting, the training process, and hyper-parameter optimization.
In other words, the careful selection of these criteria contributes toward a better general-
ization capability in the ML model [38]. For model selection, the complexities of space
and time represent critical criteria in the IoT environment, where computational resources
are scarce and require lightweight IDS solutions. Accordingly, adopting deep learning
techniques is quite challenging due to limitations in terms of power utilization, memory
consumption, and data processing resources. Therefore, conventional ML techniques are
preferred for the IoT environment because of their robustness, stable performance, and
relative simplicity [39,40]. Hansson et al. [41] reported the wide adoption of branching
logic, such as is found in decision trees (DTs), within several ML-based applications.

In terms of model fitting and training, unbiasedness and robustness prediction repre-
sent sensitive factors where errors can be found due to some bias and/or variance. Bias
represents the difference between the expected and the predicted values. Thus, a model
with high bias reflects a data underfitting problem and yields considerable misclassifica-
tions regarding training and test instances. On the other hand, variance pays attention
to the model’s sensitivity toward changes in the training dataset. Models with high vari-
ance typically overfit data and exhibit a low generalization capability. This gives high
error rates when using the test data, whereas it yields considerably good performance
when using the training data. Regularization or early stopping can be used to overcome
overfitting problems [37,38,40].

Finally, hyper-parameter optimization represents another issue that deals with select-
ing the perfect settings for these parameters iteratively. This is considered computationally
challenging since a new dimension to the search space is added when every new hyper-
parameter is defined. Moreover, insufficient knowledge about the classification problem
domain creates further issues in the optimization process. Examples of hyper-parameters
are DT depth, the kernel type of the support vector machine (SVM), and others [40].

2.3. Data Collection, Pre-Processing, and Selection for IDSs Regarding the IoT

IoT networks are associated with many objects that sense and collect huge amounts of
data through a sensor, gateway, or router. The collection of IoT data is a crucial step when
building a ML-based IDS. In fact, several sources are utilized to collect different formats
of data instead of having only a single data source. Moreover, several challenges, such as
inaccessible physical locations, changing environments, decentralized systems, and data
being updated, altered, or deleted while the IoT is rebooted, are faced [42,43].
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Furthermore, several pre-processing techniques are required to preserve good data
quality and thereby enhance the detection accuracy of IDSs [44]. Such techniques tackle
feature and pattern transformations for an efficient numerical representation. Moreover, the
optimal selection of highly relevant features can be employed for dimensionality reductions,
thereby preserving the meaningful properties of the data [25]. Additionally, removing out-
liers, omitting redundant data, fixing imbalances, ensuring real-time traces, and avoiding
data scarcity and overlapping also contributes to high-quality performance [16].

It is worth noting that inefficient pre-processing has a direct impact on data quality in
terms of bias, noise, sparsity, and data overlap [14]. For example, data imbalance can lead
to a sampling bias and, thereby, a misinterpretation of performance. Inferring a meaningful
conclusion becomes challenging since the dataset does not reflect the true data distribution
effectively. If some classes are predominant, then any potentially low false-positive rates
can affect the classification results. Moreover, a high amount of sampling bias is found
within the security domain due to the challenges of data collection and the rarity of publicly
available datasets. Another type of bias is data mislabeling, where the ground-truth labels
are inaccurate, leading to unstable ML-based security system performance. As such, it is
crucial to consider labeling uncertainty to avoid the inherent bias in ML-based IDSs [45].

In terms of IoT datasets, the relevant datasets at present are constrained by their
reduced size and limited quality [43]. In fact, the current IDS datasets are characterized
by several issues. For example, NSL-KDD [42] is not comprehensive and contains many
redundant records. These drawbacks become even more important when the dataset is
considered in an IoT context. Moreover, protecting IoT devices in an IDS context needs
extensive experiments to find and adopt any tailored solutions. The authors in [46] refer
to this problem in regard to privacy, such as the system owners not sharing the security
information publicly [46]. This led to several efforts to create new publicly labeled datasets.
Authors have worked on incorporating both benign and malicious instances of either real
or simulated IoT traffic into new benchmark datasets [47]. Małowidzki et al. [48] and Ring
et al. [49] identified a group of essential features for a good cybersecurity dataset. They
mentioned features such as being realistic, being up-to-date, covering all typical attacks,
being labeled, being flow-based, and system working hours.

As such, the dataset selection process is associated with several properties that con-
tribute toward building benchmark datasets. Such properties consist of general information,
duration, context, labels, and features. Regarding general information, many elements,
including data timeframe, data availability, data size, data format, and metadata, are con-
sidered. These elements also identify the total number of packets, flows, logs, and instances,
as well as the associated format. Moreover, they use metadata to present attributes like IP
addresses, hosts, network structures, network configurations, and current attacks. In terms
of duration, data are used with a timestamp to reflect their collection time, such as daytime,
nighttime, weekdays, or weekends. For the context aspect, it indicates the scenario of
collecting the network data by taking into consideration information about the monitored
system, such as the environment, operating systems, and processes. Moreover, data labels,
which are identified as either benign or malicious, require an accurate process for correct
labeling for all training, testing, and validation data. Finally, the features associated with the
input data are categorized into qualitative or quantitative types, such as network features,
packet features, n-gram features, and so on. Dimensionality-reduction techniques can be
applied to the feature set to enhance detection performance [16,36].

Consequently, a detailed list of dataset selection criteria was proposed by Gharib
et al. [50], which is presented in Table 2. Identifying such criteria can contribute to new
reliable network intrusion datasets where the compliance issues related to these criteria
are addressed, thereby leading to good generalization performance. For example, the
Canadian Institute for Cybersecurity (CIC) at the University of New Brunswick follows
Gharib et al. [50] criteria, where improvements in terms of duplications and uncertainties
are adopted for their datasets [51]. Accordingly, the chosen datasets for this paper were
evaluated to comply with these criteria.
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Table 2. Dataset selection criteria introduced in [50].

No. Criteria Brief

1 Complete Network Configuration Realistic network configuration with all essential equipment such as PCs, servers, routers,
and firewalls.

2 Complete Traffic Contains a sequence of packets that originate from a source (to a destination) and can be realistic or
pseudo-realistic with both real and simulated world traffic.

3 Labeled Dataset All dataset instances are tagged with correct labels for a valid and reliable analysis.

4 Complete Interaction All network interactions, such as within or between internal LANs, are recorded for better
interpretation and evaluation of the prediction results.

5 Complete Capture All network traffic without removing any non-functional or not labeled parts is captured to better
calculate the false-positive rate of an IDS.

6 Available Protocols All protocols of network traffic are recorded and traced, such as HTTP, FTP, VOIP,
and other protocols.

7 Attack Diversity Different attacks and threat scenarios are supported by the offline dataset, including a variety
of categories.

8 Anonymity Datasets without payload information for privacy concerns that affect the usefulness of the dataset.

9 Heterogeneity Building datasets from different sources such as network traffic, operating systems logs, or network
equipment logs.

10 Feature set A group of related features from several data sources, such as traffic or logs.

11 Metadata A complete documentation of the network configuration, operating systems, attack scenarios,
and others.

3. Best Practices for Efficient IDSs in IoT Networks

Since quality issues affect the reliability, efficiency, and robustness of IDS performance,
different quality requirements have been recently proposed [16,52]. Particularly, IoT-based
IDSs entail several quality requirements to enhance their detection performance. These
requirements can be grouped into two main categories: (i) data-related and (ii) model-
related quality requirements. Data-related requirements cover the needed pre-processing
methods, whereas the model-related requirements tackle the proper selection of detection
in ML models, the performance measures, and the related hyper-parameters [16,52].

3.1. Data-Related Quality Assurance Solutions

Several solutions have been proposed and implemented to handle the aforementioned
issues. For example, solutions related to label-based issues might include oversampling and
under-sampling, optimal feature extraction, and genetic programming. For instance-based
issues, the solutions might include adversarial example augmentation, transfer learning, and
reinforcement learning. For feature-based issues, the solutions might include feature selection,
feature normalization, dimensionality reduction, and redundancy elimination methods [30].
Consequently, some well-known data-related solutions can be selected as follows.

3.1.1. Class Sampling

Sampling methods are popular solutions intended to tackle the issue of imbalanced
data. They can be classified into under-sampling and over-sampling methods. On the
one hand, under-sampling is a reduction mechanism performed on dataset instances to
balance class distribution by eliminating the majority of class instances. It can be classified
into two categories: (i) fixed ratio under-sampling and (ii) cleaning under-sampling. Fixed
ratio under-sampling is a statistical measure that relies on random selection methods. It
calculates the proportions of the numbers of a given class over the total number of other
classes. Accordingly, major class instances are calculated and randomly down-sampled to
a specific number of records; this number is obtained using data exploration and analysis
techniques. On the other hand, under-sampling relies on different mechanisms, such as
clustering, nearest-neighbor analysis, or classification accuracy. One should note that no
specific number of target classes is defined due to performing cleaning when considering
the feature space. Overall, under-sampling penalizes the over-representation of major
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classes without affecting the minor classes and decreasing the imbalanced cases. However,
under-sampling might cause a loss of useful data for the classification process [51,53].

In addition, over-sampling can be perceived as a replication mechanism performed on
dataset instances to balance class distribution by increasing the minority class instances.
Such balancing can be performed either using data-balancing methods, such as random
up-sampling, or feature-space methods, such as the synthetic minority over-sampling
technique (SMOTE) [54]. The random up-sampling works on replicating minor class
instances randomly to balance their distribution. However, it leads to potential overfitting
problems. SMOTE avoids this problem by increasing the minor class instances without
performing replication. Linear interpolating is employed between the close minor class
instances using k nearest neighbors to create new ones. This overcomes the overfitting
obstacle where the classifier’s decision boundaries are moved from the space of the minority
classes and up-sample in specific dimensions. Both under-sampling and over-sampling can
be combined to remove all class instances from the training set that are misclassified [51].

3.1.2. Feature Pre-Processing and Selection

Dataset instances are associated with a set of attributes that can be quantitative features,
qualitative features, n-gram features, network features, and packet features [16]. However,
redundancy, noises, outliers, and missing and irrelevant values in the feature set degrade
detection accuracy. Several methods are proposed to overcome the performance inhibitors [55].

These methods include feature selection, which plays an important role in the en-
hancement of detection performance for the machine learning classifiers. It is employed
to manage computational complexity, reduce the data dimensions, and avoid data du-
plications, thereby lowering the rate of false alarms [56]. According to Shetye [57], three
methods of feature selection are recommended in several contexts, including imbalanced
data issues. Such methods are grouped as follows: (i) filter-based, which works on analyz-
ing the correlation and relevance, (ii) wrapper-based, which employs the ML algorithm in
eliminating recursive features, and (iii) embedded-based, which iteratively extracts features
using the methods of regularization and optimization. In such a context, SelectKBest [58]
is a well-known solution that represents a filter-based method used to extract the first
k features with the highest scores. The scores are calculated using a specific function,
such as an ANOVA F-measure, the information gain ratio, or X2. The features with high
scores contribute the most toward the quality of the training dataset. However, SelectKBest
dismisses the rare classes with strong consideration for the largest classes. This requires
the experimental design to first consider finding the rarest class with important features,
followed by adding the features needed for every class [55,56].

Normalization is also a well-known method that handles the issue of having features
on different scales and the potential strong bias with large-scale features. Normalizing the
features is performed on both the training and testing sets. It gives better convergence,
adds suitable regularization, and decreases the generalization error. As such, the features
are converted into a suitable range using different techniques like MinMax scaling, Stan-
dardScaler, and others [36,59,60]. Another method consists of a transformation, which
deals with feature engineering by deriving new attributes from existing ones using some
domain knowledge. A baseline can be employed to assess the usability and suitability
of new features. The new features can be derived by combining, encoding, augmenting,
discretization, and other methods. This involves converting the features from categorical
into numerical representations or vice versa using mechanisms such as one-hot encoding.
Moreover, this involves discretizing continuous features into ranges and augmenting the
features with other features to form new dimensions [56,59]. Furthermore, noise reduction
is another pre-processing task that is conducted to filter out irrelevant and unwanted
instances. However, removing the noise requires careful analysis and evaluation to avoid
removing typical instances [59]. Finally, a data imputation method is used that handles the
missing, NaN, and unique values to ensure the preparation of a completely meaningful
dataset. The imputation process might calculate interpolated values, mean or median
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values, or a special value symbol. It might also include value substitution using model
predictions, matrix factorization, or performing multiple imputations. However, multiple
experiments need to be conducted to find out the most proper techniques [59].

3.2. Model-Related Quality Assurance Solutions

Assuring the quality of ML models involves many aspects that can be grouped into
two main categories: the selection of the ML technique and performance evaluation. In
terms of ML technique selection, dataset availability and the required learning task both
define the proper selection of the model. With regard to performance evaluation, several
metrics have been introduced in the literature to study the effectiveness of ML models.
Consequently, the well-known model-related solutions are presented below:

3.2.1. ML Technique Selection

Various conventional and deep learning techniques are being adopted today in differ-
ent fields. The model selection process encounters several considerations, such as the data
type and the learning problem. The model needs to be tailored to incorporate the suitable
features and characteristics of the dataset for better solutions. The no free lunch theorem
confirms this fact, as ML models cannot perform the same when used on different problems.
Using simpler models with lower capacities as a baseline is recommended as a starting at-
tempt, followed by enhancing the capacity gradually. It also includes the validation aspect
to ensure the appropriateness of the model parameters without increasing unnecessary
complexity and isolation. Accordingly, ensuring domain knowledge contributes toward
boosting model quality [59].

For learning problems, several aspects need to be considered while training the model,
including the objective, optimization, regularization, and cross-validation. The objective of
the learning problem is derived from the target application to measure the model’s perfor-
mance. On the other hand, optimization works on tuning the model hyper-parameters and
applying cost-sensitive learning to support achieving the objective. Cost-sensitive learning
shows an optimization solution where the weight of misclassification errors is calculated
based on the class weight. Regularization attempts to ensure a bias-variance trade-off
and avoid related problems, such as overfitting or underfitting. Finally, cross-validation is
used to support the proper generalization of the ML model by splitting data into training,
validation, and testing sets [51,59].

3.2.2. Performance Evaluation

The performance of IDSs is typically affected by the quality of both the datasets and
models. Several performance metrics have been employed for evaluating the classification
and detection tasks. The most popular evaluation metrics are derived from the confusion
matrix, such as accuracy, precision, recall, F1-measure, and others. They are simple, clear,
and widely used, which eases comparisons with other related research work. However,
those metrics are very sensitive to the classes’ representation within the dataset. They can
be affected by minor changes in the proportions of the classes. Other measures have been
introduced by authors to tackle some of the specifications of either the datasets or models.
Such measures include the index of balanced accuracy (IBA) for calculating the geometric
mean of recall G¯ that is used for imbalanced classes. Another metric is the balanced
accuracy score (BAS), which calculates the recall and discards the precision. Prediction
bias also can be used to assure performance quality as the difference between the expected
prediction and true prediction regarding model accuracy. Finally, variance is measured by
repeatedly computing the model’s prediction using training data to track its changes [51].

Another important aspect of performance evaluation is the validation of model per-
formance. In other words, it is important to have an additional test set that is disjointed
from the validation and training sets. The test set should reflect the real scenarios of the
original datasets, including all dataset dimensionalities, and avoid dependencies on the
training set [59]. In the case of dataset availability limitations, a cross-validation technique
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is proposed to overcome such challenges. Different types of this technique can be found,
such as leave-one-out cross-validation (LOOCV) and k-fold cross-validation. The first type
splits a dataset of size n into two subsets of size 1 and n − 1 in a repeated manner n − 1
times. The second type is more efficient in terms of computation power, where random
splits are performed repeatedly for the dataset into k-folds of equal size [37].

4. Proposed Approach

In this section, we outline the proposed framework intended to assess the performance
of the classification tasks. Specifically, the main objective of the proposed framework is to
investigate the impact of data and model quality on enhancing the detection rate of IDSs. It
works on maintaining the trade-off between the quality factors and performance efficiency
when building ML-based IDSs for the IoT. Such constrained IDSs deal with several types
of traffic data that require tailored solutions. Accordingly, both quality perspectives need
to be carefully considered to balance the relevant constraints in terms of time, cost, and
performance. A multi-class scenario is designed to yield the identification of multiple
pre-defined labels. These labels include different types of popular attacks targeting IoT
networks. Moreover, further consideration of IoT network limitations is given through
time and space complexity analysis. Accordingly, typical machine learning algorithms are
associated with a selected number of IoT-oriented datasets.

The proposed framework, including several components, is depicted in Figure 1. As
seen, the first component consists of benchmark datasets enclosing labeled traffic flows and
their related attributes. The considered datasets are detailed in Section 5. Then, the data are
fed into the pre-processing component, which incorporates several critical mechanisms for a
high-quality learning process. Specifically, four main steps are deployed. Namely, cleaning,
transformation, normalization, and feature selection are conducted. Data cleaning includes
the removal of “NaN”, duplicate, and noisy values, while data transformation targets the
categorical features and represents them using a numerical format. Data normalization
solves the issue of having features on different scales and putting them in a range with a
mean of 0 and a standard deviation of 1. Finally, feature selection is achieved using the
SelectKBest method to identify the relevant features.

Next, the dataset is split into training and test sets at 70% and 30%, respectively. Ac-
cording to the related surveys and review papers, a set of ML techniques have been adopted
due to their effectiveness in the security domain. These techniques have demonstrated
good and effective performance when used for IDS design in the IoT environment. They
include the following:

• Decision tree (DT): A family of tree-based algorithms used for both classification and
regression problems. They apply certain rules inferred from the data features to decide
the value of newly examined inputs. The trees are split into several branches and
leaves based on the provided rules [1,61].

• Random forest (RF): A family of tree-based algorithms used for training an army of
trees instead of one. These trees are built up randomly from different training subsets
for both classification and regression tasks. They are scalable and can handle large
datasets, minimizing the overall generalization error with high accuracy [1,61].

• Support vector machine (SVM): A family of non-probabilistic algorithms used for
both classification and regression problems. It performs prediction by identifying the
dividing hyper-plane that separates the inputs with the maximum margin. Both binary
and multi-class systems can be handled and classified into a suitable dimensional space.
SVM performs both linear and non-linear classification using a kernel trick [1,61].

• Naïve Bayes (NB): A family of probabilistic classification algorithms based on Bayes’
theorem for both binary and multi-class inputs. Naïve represents an oversimplified
assumption so as to calculate the probabilities of attributes. They are assumed to be
conditionally independent and can be high-dimensional attributes [1,61].

• K nearest neighbor (KNN): A family of clustering algorithms used for both classifi-
cation and regression problems. It works on combining new unseen datapoints with



Computers 2023, 12, 148 11 of 27

similar given points by searching the closest neighbors in the feature space of the
available dataset. A distance metric is used to find the K nearest neighbors, such as
Euclidean distance, L∞ norm, and others [1,61].

• Multi-layer perceptron (MLP): A family of basic artificial neural networks consisting of
three layers: input, hidden, and output layers, which allows for solving both linearly
separable and non-linearly separable problems. It is a feed-forward neural network
that connects neurons in a forward manner without having loops. An activation
function and a set of weights are employed, whereby the weights can be fine-tuned
using a supervised learning technique called backpropagation [62].Computers 2023, 12, x FOR PEER REVIEW 12 of 29 
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Since an exhaustive search of the best settings of the candidate models’ parameters
is impractical, the GridSearch [63] method is adopted for model hyper-parameter tuning.
In fact, GridSearch can be introduced as a generic technique used for hyper-parameter
optimization and configuration at distinct levels. Specifically, it performs a complete
search over the space of the hyper-parameter subset in accordance with the chosen ML
algorithm. In particular, a boundary specification is needed to limit the values for each
hyper-parameter of interest, followed by training and testing models for such parameters.
Accordingly, the model is trained using the training set, which incorporates the hyper-
parameter specifications set by the GridSearch method. Finally, a performance analysis is
conducted on the test set to measure the effectiveness of the quality assurance techniques
adopted by the multi-class ML-model-based IDS system.

To sum up, the proposed framework considers the essential quality factors that affect
detection performance. Those factors are driven by the perspectives of the data and model,
such as data source, data completeness, data diversity, model choice, feature space size,
and others. They can be employed to optimize ML-based IDS behavior, taking into account
IoT-relevant constraints.

5. Experiments
5.1. Datasets

Several datasets are used by the research community in the context of IDSs to evaluate
the overall performance of the considered ML models. However, some of these datasets lack
considerable information and need to incorporate new emerging attack types. Well-known
datasets, such as KDD’99 [31], or similar sets are developed specifically for a wired network
environment that is not intended for the IoT ecosystem. Thus, the creation of optimized
IDSs targeting the IoT is not possible using these datasets. Accordingly, benchmark datasets
are required that are modern, context-related, and updated with the latest novel attacks for
the sake of better performance [31,64].

For this research, four publicly available IoT-based IDS datasets were considered.
These datasets were recently released for IoT applications, including a suitable amount
of traffic. They represent real or simulated network traffic for academic purposes that
were compiled according to the proposed criteria mentioned by Gharib et al. [50]. For
classification purposes, all four datasets are divided into 70% training and 30% testing sets
to avoid overfitting and ensure proper generalization. A summary of all four datasets is
reported in Table 3.

Table 3. Overview of the datasets chosen for this research.

Dataset Year Attacks Features Total Records IoT Devices

UNSW-NB15 [38] 2015 10 attacks 45 2 million NA

BOT-IoT [18] 2019 5 attacks 43 72 million Simulated

ToN-IoT [35] 2020 9 attacks 31 22 million Simulated

Edge-IIoT [36] 2022 14 attacks 61 20 million More than 10 devices

5.1.1. UNSW-NB15 Dataset

The UNSW-NB15 dataset [65] is frequently adopted by research works for IDSs. The
dataset was released by the Cyber Range Lab of the Australian Center for Cyber Security
(ACCS) in 2015. One should mention that the PerfectStorm tool was utilized to create benign
traffic. On the other hand, nine attack scenarios were adopted, including DoS, generic,
reconnaissance, fuzzes, shellcode, exploits, analysis, worms, and backdoors. For feature
extraction, the Argus [65] and Bro-IDS [65] tools were employed to extract 49 network
traffic features. The dataset is not dedicated to IoT-based IDSs, but it has gained wide
popularity in that context. It exhibits a class imbalance of 2,218,761 and 321,283 benign
and malicious traces, respectively [65]. With regard to the compliance criteria introduced
in [50], the 11 arguments are evaluated and presented in Table 4.
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Table 4. Overview of the UNSW-NB15 dataset [65].

Criteria Complied Criteria Complied

Complete Network Configuration Yes Attack Diversity 10

Complete Traffic Yes Anonymity No

Labeled Dataset Yes Heterogeneity Yes

Complete Interaction Yes Feature set 45

Complete Capture Yes Metadata No

Available Protocols TCP, UDP, ICMP and others

In these datasets, several pre-processing steps are performed for quality assurance
purposes: (a) combining the training and test datasets due to having some different attack
category labels, followed by splitting it into training and testing sets later; (b) the removal of
several values, such as NaN values, those classes with few instances, and duplicated rows
within the classes; (c) the transformation of categorical features, such as encoding protocol
type, services, states, and labels; (d) selecting the best features using SelectKBest [58] with
K = 30; and (e) oversampling minor classes that are represented by malicious traffic and
that are also bootstrapped to overcome the issue of imbalanced class records. A summary
of the applied pre-processing steps is presented in Table 5.

Table 5. Pre-processing results for UNSW-NB15 dataset.

Method
Examples of Results

Before After

Combining
training and test datasets

Training dataset = 82,331 records
Test dataset = 175,340 records

Combined dataset = 257,673
records

Removal of NaN values
Rows = 257,673 Rows= 257,673

Columns = 45 Columns = 43

Transformation of categorical
features
(Ex: Attack category values)

‘Analysis’, 0

‘Backdoor’, 1

‘DoS’, 2

‘Exploits’, 3

‘Fuzzers’, 4

‘Generic’, 5

‘Normal’, 6

‘Reconnaissance’, 7

‘Shellcode’, 8

‘Worms’ 9

Selection of best features All SelectKBest
K = 30

Removal of duplicate values

Class 0 len: 2031 Class 0 len: 450

Class 1 len: 1879 Class 1 len: 350

Class 2 len: 5499 Class 2 len: 3623

Class 3 len: 27,433 Class 3 len: 25,548

Class 4 len: 20,954 Class 4 len: 19,044

Class 5 len: 7599 Class 5 len: 7324

Class 6 len: 85,027 Class 6 len: 85,024

Class 7 len: 9991 Class 7 len: 9991

Class 8 len: 1456 Class 8 len: 1456

Class 9 len: 171 Class 9 len: 171
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5.1.2. BOT-IoT Dataset

The BOT-IoT dataset [18] was developed for IoT networks in the Research Cyber
Range lab of UNSW Canberra. It includes real and simulated traffic for both benign and
malicious traces generated by IoT-based botnets. In terms of traffic, the Node-red tool
is employed for simulating the network activities of five types of IoT devices, such as
garage doors, weather monitoring systems, refrigerators, lights, and thermostats. The
attacks are categorized into DoS, DDoS, port scanning, OS fingerprinting, information theft,
and Keylogging attacks. In addition, two types of network flows are used, including the
parameters of real protocols and simulated ones. For the IoT environment, the Message
Queuing Telemetry Transport (MQTT) protocol is used, as it is a lightweight messaging
protocol. More than 72 million records make up the dataset, indicating several attack types
with a size of 16.7 GB in the CSV format. One should note that a smaller version of the
dataset, including around 3 million records, was also used in previous works [18,66]. With
regard to the compliance criteria provided in [50], the 11 arguments are evaluated and
presented in Table 6.

Table 6. Overview of the BOT-IoT dataset [18].

Criteria Complied Criteria Complied

Complete Network
Configuration Yes Attack Diversity 5

Complete Traffic Yes Anonymity Yes

Labeled Dataset Yes Heterogeneity Yes

Complete
Interaction Yes Feature set 43

Complete Capture Yes Metadata No

Available Protocols TCP, MQTT, ARP, IGMP,
and others

Only the 10 best feature subsets of the BOT-IoT dataset were employed for the experi-
ments. This subset is composed of only 10 out of 43 independent features. It was developed
by the UNSW research team and was derived by calculating the correlation coefficient and
joint entropy for the total number of features [67]. In this dataset, several pre-processing
steps are performed for quality assurance, such as the pre-processing steps in Section 5.1.1.

5.1.3. ToN-IoT Dataset

The ToN-IoT dataset [68] is a heterogeneous collection of data with multiple network
traffic features published by the Cyber Range Lab of the Australian Centre for Cyber
Security (ACCS) in 2019. The dataset is typically used to connect several resources, such
as cloud layers, edges, blur, virtual machines, and physical systems. It contains several
features based on the adopted environments, such as the IoT, IIoT-connected devices,
operating system logs, and system network traffic. The traffic type and attack type in the
case of malicious traffic are examples of such features. Several attack scenarios were found,
such as injection, ransomware, DoS, distributed DoS (DDoS), man-in-the-middle (MITM),
cross-site scripting (XSS), backdoors, password cracking, and scanning attacks. With regard
to the compliance criteria identified in [50], the 11 arguments are evaluated and presented
in Table 7.

The ToN-IoT dataset is employed for experimental design. It contains several subsets:
IoT, Linux, Windows 7, Windows 10, and Network subsets with different feature sets [68].
For the sake of consistency, only the network subset was employed for similar feature
sets with the other aforementioned datasets. Accordingly, several pre-processing steps are
performed for quality assurance purposes, such as the pre-processing steps in Section 5.1.1.
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Table 7. Overview of the ToN-IoT dataset [68].

Criteria Complied Criteria Complied

Complete Network
Configuration Yes Attack Diversity 9

Complete Traffic Yes Anonymity Yes

Labeled Dataset Yes Heterogeneity Yes

Complete
Interaction No Feature set

IoT: 44
Linux: 36

Windows 7: 135
Windows 10: 127

Network: 46

Complete Capture Yes Metadata Yes

Available Protocols TCP, UDP, DNS, HTTP,
SSL, and others

5.1.4. Edge-IIoT Dataset

The Edge-IIoT dataset [69] is a newly released IoT and IIoT dataset intended to support
research in the cybersecurity field. It represents real traffic that is generated from more than
10 types of IoT devices. Such devices include digital sensors that are low-cost for sensing
temperature and humidity, soil moisture sensors, ultrasonic sensors, heart rate sensors,
flame sensors, water level detection sensors, pH sensors, and others. The Edge-IIoT dataset
encompasses both benign and malicious traffic. The latter covers around 14 attack scenarios
related to IoT services. These scenarios are grouped into five categories of threats: DoS and
DDoS attacks, man-in-the-middle (MITM) attacks, information gathering, injection attacks,
and malware attacks [26]. With regard to the compliance criteria introduced in [50], the
eleven arguments are evaluated and presented in Table 8.

Table 8. Overview of Edge-IIoT dataset [69].

Criteria Complied Criteria Complied

Complete Network
Configuration Yes Attack Diversity 14

Complete Traffic Yes Anonymity Yes

Labeled Dataset Yes Heterogeneity Yes

Complete
Interaction No Feature set 61

Complete Capture Yes Metadata Yes

Available Protocols TCP, ARP, DNS, ICMP,
HTTP, and others

The ML-Edge-IIoT dataset is employed for experimental design. The subset is com-
posed of 61 features and was nominated to be used for evaluating conventional ML algo-
rithms [69]. In the selected datasets, several pre-processing steps are performed for quality
assurance purposes, as mentioned for the UNSW-NB15 dataset.

5.2. Performance Measures

Several performance measures have been used in the literature to tackle the model
evaluation task. Specifically, five standard metrics, namely, accuracy, precision, recall,
F1-measure, and AUC score, are derived indirectly from a confusion matrix [14]. In fact, the
confusion matrix includes four main values: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). TP and TN represent the successful classification of
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benign and malicious inputs, respectively. The misclassified benign and malicious inputs
can be represented by FP and FN, respectively.

Accuracy represents one of the derived metrics that measures the detection capability
of a system to identify benign and malicious inputs. It can be mathematically expressed
as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
× 100 (1)

Precision identifies the percentage of positive predictions that are correctly classified.
It can be mathematically expressed as follows:

Precision =
TP

TP + FP
× 100 (2)

Recall can be defined as the percentage of positive predictions over all the positive
instances. It shows the ability of IDSs to correctly detect malicious inputs and can be
mathematically expressed as follows:

Recall =
TP

TP + FN
× 100 (3)

However, precision and recall lack the utilization of TN and, thereby, neglect the
correct classification of negative inputs within the overall IDS detection rate.

In terms of the remaining metrics, the F1-measure gives the harmonic mean between
recall and precision. The macro version of this measure is not affected by class weight since
all the classes are weighted equally. It helps to handle data quality issues, such as data
imbalance problems.

F1-measure = 2 × Precison × Recall
Precison + Recall

(4)

Finally, the AUC score computes the area under the ROC curve to determine the
prediction performance between both the normal and intrusion classes when compared to
random prediction [16].

To sum up, the best model performances can be achieved when obtaining the highest
scores in all the five measures: F1, accuracy, precision, recall, and AUC score, but with
the lowest scores in FPR and FNR. FPR reflects the number of benign instances that are
incorrectly classified as intrusion. FNR reflects the number of intrusion instances that are
incorrectly classified as normal. As such, an IDS with a high FPR represents a weakness in
identifying the actual characteristics of the normal class. However, an IDS with a high FNR
is more threatening and can cause more damage to the network environment [1,16].

5.3. Results

In the following, we report the results and findings obtained using the four main
benchmarking datasets described in the previous section. The traffic flow features of the
datasets were considered for their increasing use because of being more resource-efficient
and suitable to the ML detection task [70]. The detailed results obtained using the five
pre-defined ML algorithms are reported in particular. These algorithms are chosen to
reduce the computational limitations associated with IoT devices while achieving better
performance [71]. ML algorithms are employed to perform multi-class classification with
several pre-processing steps. Such steps include removing missing values, removing NaN
values, removing duplicate records, encoding categorical features, feature selection, and
feature normalization. This is followed by a classification task over the complete datasets.
The supervised ML classifiers are evaluated using Equations (1)–(4), where Equation (1) is
used to measure the overall performance. Accordingly, both the training and testing set
are evaluated in terms of forecasting the accuracy of the classifiers. Such evaluation can
investigate potential overfitting, underfitting, and time-consuming model configuration.
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5.3.1. Classification Results Obtained Using Pre-Processed UNSW-NB15 Dataset

The UNSW-NB15 dataset was employed in this experiment to first evaluate the can-
didate models’ performance in a generic IDS scenario. A multi-class classification is
performed, covering 10 types of attack classes. Figure 2 shows the class distribution over
the dataset instances. In terms of performance evaluation, the dataset is partitioned into 80%
training and 20% testing sets. For quality assurance, several feature-based mechanisms are
applied to enhance detection performance. Feature conversion, feature normalization, and
feature selection were employed by using LabelEncoder, StandardScaler, and SelectKbest,
respectively. Only a subset of the 30 best features was used in the performance analysis.
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Figure 2. Class distribution for the UNSW-NB15 dataset.

In terms of performance evaluation, the pre-mentioned performance measures were
utilized to evaluate the detection rate. The reported results show a variation specifically for
NB, which yielded only 26% accuracy. The other models’ performance ranged from 77%
to 86% for DT and KNN, respectively. Moreover, the accuracy of extremely rare classes,
such as Analysis and Backdoor, is very low compared to the dominant classes, like Normal
and Generic. The top accuracy of 89% was achieved by the MLP model. The details of the
performance of each label classification can be seen in Table 9.

Table 9. Performance results obtained by related works using the UNSW-NB15 dataset.

Research Year ML
Technique Accuracy Feature Selection Class

Kanimozhi et al. [19] 2019 ANN
RF-DT

89.00%
75.62%

Recursive Feature Elimination (RFE) Multi

Kasongo et al. [22] 2020

ANN
LR

KNN
SVM
DT

77.51%
65.29%
72.30%
61.53%
67.57%

XGBoost-based feature selection Multi

Yin et al. [28] 2023 MLP 84.24% Information Gain (IG) and
Random Forest (RF) Multi

Moustafa et al. [29] 2016 ANN 81.34% Chi-square
(

Chi2
)

Multi

The proposed method 2023

DT
RF

KNN
SVM
NB

MLP

77.44%
79.50%
86.16%
84.02%
26.08%
89.00%

ANOVA
F-value Multi
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Moreover, several research works utilized the UNSW-NB15 dataset to measure the
IDS detection rate. Accordingly, a comparison of these research works using the proposed
model was also conducted. The results reported in Table 9 reflect the superiority of all the
proposed conventional ML models in classifying multi-class attacks when compared to
other studies. However, some research studies achieved higher accuracy since they adopted
deep learning (DL) models. DL models require high implementation costs in terms of
memory and computational power, which is very challenging in IoT resource-constrained
devices [71]. Moreover, MLP obtained the highest accuracy when compared to the same
conventional ML types of models, either from the results of other works or the proposed
candidate models.

5.3.2. Classification Results Obtained Using the Pre-Processed BOT-IoT Dataset

The BOT-IoT dataset is utilized for its specificity with IoT networks. It contains several
subsets; only the 10 best feature subsets were adopted, including its training and testing
collections. The same candidate models were evaluated on a five attacks classification
problem. Figure 3 shows the class distribution for the BOT-IoT dataset.
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For evaluation purposes, the dataset was split into 70% and 30% for the training and
testing subsets, respectively. In terms of pre-processing, the feature-based mechanisms
were used to ensure better detection rates. This step covers feature conversion, feature
normalization, and feature selection. Accordingly, LabelEncoder, StandardScaler, and
SelectKbest were applied based on the proposed framework. It is worth noting that only 10
of the best features were used in the classification task.

In terms of performance evaluation, the six candidate models were used to address
the attack detection problem and, thereby, the detection rate. The reported results show
minor variations for the NB and SVM classifiers, which yielded 71% and 89% accuracy,
respectively. They achieved the lowest accuracy when compared to the detection rates of
other models, which ranged from 98% to 99%. The best accuracy of 99.94% was achieved
by the KNN model.

In terms of the comparative analysis, multiple research works have employed the
BOT-IoT dataset for evaluating their proposed IDS. As such, a comparison between these
research works, and the proposed model was conducted. As depicted in Table 10, the
reported results reflect the superiority of our candidate ML models in classifying multi-
class attacks when compared to other studies. Moreover, KNN gave the highest accuracy
compared to the same conventional ML types in either the results of other works or from
the proposed candidate models.
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Table 10. Results achieved by related works using the BOT-IoT dataset.

Research Year ML
Technique Accuracy Feature Selection Class

Koroniotis et al. [18] 2019
SVM 88.3%

Correlation
Coefficient MultiRNN 99.7%

LSTM 99.7%

Thaseen et al. [23] 2020

C4.5
NB
RF

MLP
SVM

CART
KNN
ANN

Ensemble Learning

92.0%
87.6%
92.7%
87.4%
89.5%
80.3%
88.4%
97.0%
99.0%

Correlation
Coefficient Multi

Sugi et al. [24] 2020 LSTM
KNN

77.51%
Information Gain (IG) Multi92.29%

Fatani et al. [27] 2021 CNN 99.47% Transient Search
Optimization (TSO) Multi

The proposed method 2023

DT
RF

KNN
SVM
NB

MLP

99.88%
99.89%
99.94%
89.00%
71.00%
98.00%

ANOVA
F-value Multi

5.3.3. Classification Results Obtained Using the Pre-Processed ToN-IoT Dataset

The pre-mentioned ToN-IoT dataset consists of several subsets, where the network
subset was selected for the sake of consistency with the other benchmarking datasets.
A multi-class classification scenario was performed covering 10 types of target classes.
Figure 4 shows the class distribution over the dataset instances.
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The dataset was divided into 80% training and 20% testing prior to the performance
evaluation. Feature conversion and normalization using LabelEncoder and Standard-
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Scaler were applied, respectively. Their needs come from the variety of dataset variables
found in the dataset with different scales. Moreover, only the subset from the 30 best
features achieved using the SelectKbest feature selection method was used for the classifi-
cation tasks.

In terms of performance evaluation, several competing results were achieved by the
selected models, ranging from 98% to 99% accuracy, except for SVM with 87%. The highest
accuracy of 99.97% was achieved by the MLP classifier, followed by RF and KNN, with
slight differences. The lowest accuracy of 86% was obtained by a linear kernel SVM.

Several pieces of research that investigated the ToN-IoT dataset were considered for a
comparative analysis, which was conducted to assess the proposed model’s performance.
The results reported in Table 11 reflect the superiority of all the proposed models in
classifying multi-class attacks when compared to other studies. Moreover, MLP yielded
the highest accuracy compared to the other research works, as well as the remaining
candidate models.

Table 11. Results obtained using the related works and the ToN-IoT dataset.

Research Year ML
Technique Accuracy Feature Selection Class

Tareq et al. [12] 2022 DenseNet
Inception Time

98.57%
99.65% - Multi

Sarhan et al. [20] 2021 DFF
RF

96.58%
97.49% Chi-square

(
Chi2

)
Multi

Alsaedi et al. [21] 2020

LR
LDA
KNN

RF
CART

NB
SVM

LSTM

61%
62%
72%
71%
77%
54%
60%
68%

- Multi

Gad et al. [30] 2021

LR
NB
DT
RF

AdaBoost
KNN
SVM

XGBoost

85.9%
69.2%
97.2%
97.2%
90.6%
98.2%
86.0%
98.3%

Chi-square
(

Chi2
)

Multi

The proposed method 2023

DT
RF

KNN
SVM
NB

MLP

98.06%
99.95%
99.87%
87.22%
99.39%
99.97%

ANOVA
F-value Multi

5.3.4. Classification Results Obtained Using the Pre-Processed Edge-IIoT Dataset

The pre-mentioned Edge-IoT dataset contains multiple subsets, whereby a subset,
namely the “ML-EdgeIIoT” dataset, is chosen for the sake of the type of the candidate
models. In particular, a multi-class classification scenario targeting 15 types of classes
was conducted to assess the performance of the candidate models. Figure 5 shows the
class distribution over the dataset instances. The dataset is divided into 80% training and
20% testing subsets prior to the pre-processing phase. Due to the variety of the feature
scales, feature conversion and normalization using LabelEncoder and StandardScaler were
applied, respectively. Moreover, the SelectKbest feature selection method was adopted,
yielding the best features for enhancing the detection rate.
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For evaluation purposes, four performance measures were employed: the accuracy,
precision, recall, and F1-measure. The reported results show very competitive performance,
ranging from 95% to 99%. The best accuracy reached 99.97% for the RF classifier, followed
by DT, MLP, and KNN, with slight differences. The lowest accuracy values were 97% and
95.01% for SVM and NB, respectively.

Table 12 shows a comparison between the proposed methods and the related studies.
The tabulated results reflect the superiority of all proposed models in classifying multi-
class attacks when compared to the results obtained using the related research. As seen,
RF achieved the highest accuracy when compared to the related works, as well as the
remaining candidate models.

Table 12. Results obtained using related works and the Edge-IIoT dataset.

Research Year ML
Technique Accuracy Feature

Selection Class

Ferrag et al. [26] 2021

DT 67.11%

Generic Model
(RF) Multi

RF 80.83%
SVM 77.61%
KNN 79.18%
DNN 94.67%

Tareq et al. [12] 2022 Inception
Time 94.94% - Multi

The proposed
method

2023

DT 99.87%

ANOVA
F-value Multi

RF 99.97%
KNN 99.65%
SVM 97.00%
NB 95.01%

MLP 99.87%
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6. Discussion

In this study, several ML techniques were adapted to assess IDS performance and
model the traffic flow in the IoT environment. The candidate models include DT, RF,
KNN, SVM, NB, and MLP. They were employed in the context of a multi-class classification
scenario. In addition, four benchmarking datasets, namely, UNSW-NB15, BOT-IoT, ToN-IoT,
and Edge-IIoT, were selected based on the criteria proposed by Gharib et al. [50].

For IDS quality improvement, several data pre-processing techniques were applied.
Specifically, the instance-based and feature-based approaches were investigated. Instance-
based pre-processing deals with data cleaning and the corresponding removal techniques.
On the other hand, feature-based pre-processing includes feature transformation, nor-
malization, and dimensionality reduction through proper feature selection. Accordingly,
several records were removed from the selected datasets. The removed records contain
NaN, duplicate, network flow identifiers, and noisy values. In addition, feature transforma-
tion was applied to all the categorical features of the selected datasets to obtain numerical
representations of the datasets. On the other hand, encoding is performed over multiple
important features, such as encoding protocol type, services, states, attack categories, attack
subcategories, network protocols, DNS-related features, HTTP-related features, SSL-related
features, and so on. Feature normalization was applied to all instances by using the stan-
dardization method StandardScaler with outputs with a mean of 0 and standard deviation
of 1. This was performed in conjunction with dimensionality reduction for all datasets,
including 30 to 40 features. The latter was carried out using SelectKBest [58], which relies
on the ANOVA F-measure. Such feature selection contributes to reducing the feature vector
by selecting the most relevant features. An additional condition is applied to the selection
with a defined threshold to filter out less important feature selections. For instance, the
feature vector of the ToN IoT dataset was reduced from 44 to 30 and then minimized
further to 14 only. These methods are proven to enhance overall IDS detection and reduce
complexity after several iterations of experiments.

Another aspect of IDS quality improvement was proposed to enhance the performance
of the candidate models. For model parameter tuning, the GridSearch method [63] was
applied to find the optimal parameter values for better detection performance. This method
has drastically improved the results, such as with the increment of the tree-based methods,
where performance was around 9% higher. The four metrics: accuracy, precision, recall,
and F1-measure, were also used to measure the efficiency of the models with regard to
individual label detection, as well as overall detection. Different attacks were correctly
classified, whereas in some cases, models underperformed in terms of minority classes,
such as Backdoor and Worms in UNSW-NB15.

Based on the obtained results, one can claim that MLP is the best-performing classifier
on the four benchmarking datasets. It achieved 86% accuracy on UNSW-NB15, while it
performed even better on the other datasets with 99% accuracy. Overall, all the candidate
models yielded satisfactory results using all dedicated IoT-based datasets. On the other
hand, they proved to be less efficient for UNSW-NB15. Tree-based techniques are the easiest
methods in terms of implementation since their interpretation is obvious using conditional
rules. Moreover, the results achieved within the proposed framework are superior when
compared to those obtained in [12,18–22,26–28,72]. A detailed comparison of the results
obtained using the related works and each dataset for the multi-class classification task are
reported in Tables 9–12.

The confusion matrices obtained using the best-performing models, along with all
four benchmarking datasets, are presented in Figure 6. As can be seen, the diagonals reflect
the performance of each best model with respect to each class in the different datasets. The
darker the square becomes, the higher the achieved accuracy is of a given class.
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Figure 6. The confusion matrices obtained using the best performing models: (a) MLP and ToN-IoT
datasets; (b) RF and Edge-IIoT datasets; (c) MLP and UNSW-NB15 datasets; (d) and KNN and
BOT-IoT datasets.

7. Conclusions and Future Works

Day by day, the IoT environment is exposed to an increasing number of cyber-attacks.
Enhancing the performance of IDSs contributes toward the better protection of IoT cross-
platform applications and connected devices. Various researchers have devoted efforts
to developing a secure, lightweight framework for the IoT using ML techniques. Two
main elements play an important role in assuring the quality of ML-based IDSs: dataset
pre-processing and model generalization capability. The major contribution of this work
consists of designing a framework for quality ML-based IDSs, taking into consideration
IoT environment specifications.

Several dimensions relevant to both data quality and model quality were explored for
more accurate intrusion detection. Accordingly, several experiments were conducted on
four benchmarking datasets using six different classification techniques, namely decision
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tree, random forest, k-nearest neighbors, support vector machine, naive Bayes, and multi-
layer perceptron. The considered algorithms were assessed using datasets, including
UNSW-NM15, BOT-IoT, ToN-IoT, and Edge-IIoT, in a multi-class classification scenario.
Moreover, a review of each considered dataset was performed according to the criteria
recommended by Gharib et al. [50]. The performance of the proposed framework was
assessed using precision, recall, F1-measure, and accuracy. The reported results proved
the superiority of the MLP technique when using both the UNSW-NB15 and ToN-IoT
datasets. When using the relevant pre-processing techniques, MLP and RF achieved the
highest accuracy of 99.97% using a selected set of features on the ToN-IoT and Edge-IIoT
datasets, respectively. Moreover, KNN yielded superior performance when associated with
the BOT-IoT dataset, reaching 99.94% accuracy. Overall, there was an increase in terms of
accuracy for all proposed models using the four benchmarking datasets when compared to
related works.

Based on the obtained results, one can claim that (i) data pre-processing techniques,
such as transformation and normalization, enhance the detection rate significantly; (ii) di-
mensionality reduction and/or feature selection represent crucial pre-processing steps
that require careful selection and yield a less complex model; (iii) hyper-parameter tun-
ing should be conducted for all candidate models using the GridSerach method; and
(iv) most of the candidate models achieve good performance on the datasets after applying
the pre-processing steps. This reflects the importance of quality methods, such as data
pre-processing and model tuning, for performance enhancement.

Regarding future work, more investigations would need to be carried out to incor-
porate techniques such as adversarial machine learning (AML) for quality improvement
purposes. In fact, AML, as an emerging research field that has gained wide popularity in
image processing, is still growing in terms of intrusion detection scenarios and, more specifi-
cally, in an IoT context. Particularly, AML deals with the generation of adversarial examples
to measure detection performance when typical classifiers are deceived by such inputs.
The consideration of AML methods for the proposed framework can contribute to hard-
ening ML-based IDSs. Specifically, this can be achieved by associating adversarial attack
scenarios and AML-based defensive mechanisms iteratively until the best overall detection
performance is reached. In other words, designing a coherent framework that combines
both attacks and defense mechanisms that reflect the “defense-in-depth” concept would
represent a promising research direction to further improve the findings in this article. This
would also yield an additional cost for the adversary in terms of knowledge, time, and
computational resources to evade such a solution [39,72]. Moreover, AML techniques can
be employed in data-driven modeling scenarios, representing an active learning method to
target human actions in terms of unsafe behavior. The target action features are expressed
in mathematical formalisms to ease the use of formal methods. Formal methods are works
from the computer science field that formulate mathematical specifications, designs, and
verifications to form proof obligations that are met by systems. This reflects the importance
of formal methods to enable trustworthy AI-based system assurance and verification to
achieve better accuracy and convergence in terms of prediction performance. Consequently,
further investigation in such a field can be proposed for future considerations [73,74].

Author Contributions: Conceptualization, S.A., S.A.-A. and M.M.B.I.; methodology, S.A.; software,
S.A.; validation, S.A. and M.M.B.I.; formal analysis, S.A.; investigation, S.A.; resources, S.A., S.A.-A.
and M.M.B.I.; data curation, S.A.; writing—original draft preparation, S.A.; writing—review and
editing, S.A., S.A.-A. and M.M.B.I.; visualization, S.A.; supervision, S.A.-A. and M.M.B.I.; project
administration, M.M.B.I.; funding acquisition, S.A.-A. All authors have read and agreed to the
published version of the manuscript.

Funding: The authors would like to thank the Deanship of Scientific Research at King Saud University
for funding and supporting this research through the DSR Graduate Students Research Support
(GSR) initiative.

Institutional Review Board Statement: Not applicable.



Computers 2023, 12, 148 25 of 27

Data Availability Statement: All data has been present in main text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for Internet of Things data

analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [CrossRef]
2. Almseidin, M.; Alzubi, M.; Kovacs, S.; Alkasassbeh, M. Evaluation of machine learning algorithms for intrusion detection system.

In Proceedings of the 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia,
14–16 September 2017; pp. 277–282.

3. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw.
Comput. Appl. 2017, 84, 25–37. [CrossRef]

4. Capra, M.; Peloso, R.; Masera, G.; Ruo Roch, M.; Martina, M. Edge computing: A survey on the hardware requirements in the
internet of things world. Future Internet 2019, 11, 100. [CrossRef]

5. Shukla, P. ML-IDS: A machine learning approach to detect wormhole attacks in Internet of Things. In Proceedings of the 2017
Intelligent Systems Conference (IntelliSys), London, UK, 7–8 September 2017; pp. 234–240.

6. Viegas, E.; Santin, A.; Oliveira, L.; Franca, A.; Jasinski, R.; Pedroni, V. A reliable and energy-efficient classifier combination scheme
for intrusion detection in embedded systems. Comput. Secur. 2018, 78, 16–32. [CrossRef]

7. Canedo, J.; Skjellum, A. Using machine learning to secure IoT systems. In Proceedings of the 2016 14th Annual Conference on
Privacy, Security and Trust (PST), Auckland, New Zealand, 12–14 December 2016; pp. 219–222.

8. Kim, J.; Kim, J.; Thu HL, T.; Kim, H. Long short term memory recurrent neural network classifier for intrusion detection. In
Proceedings of the 2016 International Conference on Platform Technology and Service (PlatCon), Jeju, Republic of Korea, 15–17
February 2016; pp. 1–5.

9. Saeed, A.; Ahmadinia, A.; Javed, A.; Larijani, H. Intelligent intrusion detection in low-power IoTs. ACM Trans. Internet Technol.
(TOIT) 2016, 16, 1–25. [CrossRef]

10. Zhang, J.; Qin, Z.; Yin, H.; Ou, L.; Zhang, K. A feature-hybrid malware variants detection using CNN based opcode embedding
and BPNN based API embedding. Comput. Secur. 2019, 84, 376–392. [CrossRef]

11. Agarap, A.F. Towards Building an Intelligent Anti-Malware System: A Deep Learning Approach Using Support Vector Machine
(SVM) for Malware Classification, No. 1. 2017. Available online: http://arxiv.org/abs/1801.00318 (accessed on 13 April 2022).

12. Tareq, I.; Elbagoury, B.M.; El-Regaily, S.; El-Horbaty, E.-S.M. Analysis of ToN-IoT, UNW-NB15, and Edge-IIoT Datasets Using DL
in Cybersecurity for IoT. Appl. Sci. 2022, 12, 9572. [CrossRef]

13. Nesa, N.; Ghosh, T.; Banerjee, I. Non-parametric sequence-based learning approach for outlier detection in IoT. Future Gener.
Comput. Syst. 2018, 82, 412–421. [CrossRef]

14. Khan, H.U.; Sohail, M.; Ali, F.; Nazir, S.; Ghadi, Y.Y.; Ullah, I. Prioritizing the Multi-criterial Features based on Comparative
Approaches for Enhancing Security of IoT devices. Phys. Commun. 2023, 59, 102084. [CrossRef]

15. Mazhar, T.; Talpur, D.B.; Shloul, T.A.; Ghadi, Y.Y.; Haq, I.; Ullah, I.; Ouahada, K.; Hamam, H. Analysis of IoT Security Challenges
and Its Solutions Using Artificial Intelligence. Brain Sci. 2023, 13, 683. [CrossRef] [PubMed]

16. Tran, N.; Chen, H.; Bhuyan, J.; Ding, J. Data Curation and Quality Evaluation for Machine Learning-Based Cyber Intrusion
Detection. IEEE Access 2022, 10, 121900–121923. [CrossRef]

17. Si-Ahmed, A.; Al-Garadi, M.A.; Boustia, N. Survey of Machine Learning Based Intrusion Detection Methods for Internet of
Medical Things. arXiv 2022, arXiv:2202.09657. [CrossRef]

18. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

19. Kanimozhi, V. Jacob PUNSW-NB15 dataset feature selection network intrusion detection using deep learning. Int. J. Recent
Technol. Eng. 2019, 7, 443–446.

20. Nawir, M.; Amir, A.; Yaakob, N.; Lynn, O.B. Effective and efficient network anomaly detection system using machine learning
algorithm. Bull. Electr. Eng. Inform. 2019, 8, 46–51. [CrossRef]

21. Alsaedi, A.; Moustafa, N.; Tari, Z.; Mahmood, A.; Anwar, A. TON_IoT telemetry dataset: A new generation dataset of IoT and
IIoT for data-driven intrusion detection systems. IEEE Access 2020, 8, 165130–165150. [CrossRef]

22. Kasongo, S.M.; Sun, Y. Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15
dataset. J. Big Data 2020, 7, 105. [CrossRef]

23. Thaseen, I.S.; Mohanraj, V.; Ramachandran, S.; Sanapala, K.; Yeo, S.S. A hadoop based framework integrating machine learning
classifiers for anomaly detection in the internet of things. Electronics 2021, 10, 1955. [CrossRef]

24. Sugi, S.S.S.; Ratna, S.R. Investigation of machine learning techniques in intrusion detection system for IoT network. In Proceedings
of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, India, 3–5 December 2020;
pp. 1164–1167.

25. Sarhan, M.; Layeghy, S.; Portmann, M. Feature Analysis for Machine Learning-based IoT Intrusion Detection. arXiv 2021,
arXiv:2108.12732.

https://doi.org/10.1016/j.dcan.2017.10.002
https://doi.org/10.1016/j.jnca.2017.02.009
https://doi.org/10.3390/fi11040100
https://doi.org/10.1016/j.cose.2018.05.014
https://doi.org/10.1145/2990499
https://doi.org/10.1016/j.cose.2019.04.005
http://arxiv.org/abs/1801.00318
https://doi.org/10.3390/app12199572
https://doi.org/10.1016/j.future.2017.11.021
https://doi.org/10.1016/j.phycom.2023.102084
https://doi.org/10.3390/brainsci13040683
https://www.ncbi.nlm.nih.gov/pubmed/37190648
https://doi.org/10.1109/ACCESS.2022.3211313
https://doi.org/10.1016/j.asoc.2023.110227
https://doi.org/10.1016/j.future.2019.05.041
https://doi.org/10.11591/eei.v8i1.1387
https://doi.org/10.1109/ACCESS.2020.3022862
https://doi.org/10.1186/s40537-020-00379-6
https://doi.org/10.3390/electronics10161955


Computers 2023, 12, 148 26 of 27

26. Ferrag, M.A.; Friha, O.; Hamouda, D.; Maglaras, L.; Janicke, H. Edge-IIoTset: A new comprehensive realistic cyber security
dataset of IoT and IIoT applications for centralized and federated learning. IEEE Access 2022, 10, 40281–40306. [CrossRef]

27. Fatani, A.; Abd Elaziz, M.; Dahou, A.; Al-Qaness, M.A.; Lu, S. IoT intrusion detection system using deep learning and enhanced
transient search optimization. IEEE Access 2021, 9, 123448–123464. [CrossRef]

28. Yin, Y.; Jang-Jaccard, J.; Xu, W.; Singh, A.; Zhu, J.; Sabrina, F.; Kwak, J. IGRF-RFE: A hybrid feature selection method for
MLP-based network intrusion detection on UNSW-NB15 Dataset. J. Big Data 2023, 10, 15. [CrossRef]

29. Moustafa, N.; Slay, J. The evaluation of Network Anomaly Detection Systems: Statistical analysis of the UNSW-NB15 data set and
the comparison with the KDD99 data set. Inf. Secur. J. A Glob. Perspect. 2016, 25, 18–31. [CrossRef]

30. Gad, A.R.; Nashat, A.A.; Barkat, T.M. Intrusion detection system using machine learning for vehicular ad hoc networks based on
ToN-IoT dataset. IEEE Access 2021, 9, 142206–142217. [CrossRef]

31. KDD Cup 1999. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 1 February 2023).
32. Amit, I.; Matherly, J.; Hewlett, W.; Xu, Z.; Meshi, Y.; Weinberger, Y. Machine learning in cyber-security-problems, challenges and

data sets. arXiv 2018, arXiv:1812.07858.
33. Kayacik, H.G.; Zincir-Heywood, A.N.; Heywood, M.I. Selecting features for intrusion detection: A feature relevance analysis

on KDD 99 intrusion detection datasets. In Proceedings of the Third Annual Conference on Privacy, Security and Trust, Saint
Andrews, NB, Canada, 12–14 October 2005; Volume 94, pp. 1722–1723.

34. Sahu, A.; Mao, Z.; Davis, K.; Goulart, A.E. Data processing and model selection for machine learning-based network intrusion
detection. In Proceedings of the 2020 IEEE International Workshop Technical Committee on Communications Quality and
Reliability (CQR), Stevenson, WA, USA, 14 May 2020; pp. 1–6.

35. Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE
Commun. Surv. Tutor. 2015, 18, 1153–1176. [CrossRef]

36. Yang, X.; Peng, G.; Zhang, D.; Lv, Y. An Enhanced Intrusion Detection System for IoT Networks Based on Deep Learning and
Knowledge Graph. Secur. Commun. Netw. 2022, 2022, 4748528. [CrossRef]

37. Gudivada, V.; Apon, A.; Ding, J. Data quality considerations for big data and machine learning: Going beyond data cleaning and
transformations. Int. J. Adv. Softw. 2017, 10, 1–20.

38. Cawley, G.C.; Talbot, N.L. On over-fitting in model selection and subsequent selection bias in performance evaluation. J. Mach.
Learn. Res. 2010, 11, 2079–2107.

39. Alkadi, S.; Al-Ahmadi, S.; Ismail MM, B. Better Safe Than Never: A Survey on Adversarial Machine Learning Applications
towards IoT Environment. Appl. Sci. 2023, 13, 6001. [CrossRef]

40. Paleyes, A.; Urma, R.G.; Lawrence, N.D. Challenges in deploying machine learning: A survey of case studies. ACM Comput. Surv.
2022, 55, 1–29. [CrossRef]

41. Hansson, K.; Yella, S.; Dougherty, M.; Fleyeh, H. Machine learning algorithms in heavy process manufacturing. Am. J. Intell. Syst.
2016, 6, 1–13.

42. Monasterios, Y.D.P. Adversarial Machine Learning: A Comparative Study on Contemporary Intrusion Detection Datasets; The University
of Toledo: Toledo, OH, USA, 2020.

43. Khraisat, A.; Alazab, A. A critical review of intrusion detection systems in the internet of things: Techniques, deployment strategy,
validation strategy, attacks, public datasets and challenges. Cybersecurity 2021, 4, 18. [CrossRef]

44. Luo, Z.; Zhao, S.; Lu, Z.; Sagduyu, Y.E.; Xu, J. Adversarial machine learning based partial-model attack in IoT. In Proceedings of
the 2nd ACM Workshop on Wireless Security and Machine Learning, Linz, Austria, 13 July 2020; pp. 13–18.

45. Arp, D.; Quiring, E.; Pendlebury, F.; Warnecke, A.; Pierazzi, F.; Wressnegger, C.; Cavallaro, L.; Rieck, K. Dos and Don’ts of
Machine Learning in Computer Security. In Proceedings of the 31st USENIX Security Symposium (USENIX Security 22), Boston,
MA, USA, 10–12 August 2022; pp. 3971–3988.

46. Garc´ıa, S.; Zunino, A.; Campo, M. Survey on network-based botnet detection methods. Secur. Commun. Netw. 2014, 7, 878–903.
[CrossRef]

47. Ge, M.; Syed, N.F.; Fu, X.; Baig, Z.; Robles-Kelly, A. Towards a deep learning-driven intrusion detection approach for Internet of
Things. Comput. Netw. 2021, 186, 107784. [CrossRef]

48. Małowidzki, M.; Berezinski, P.; Mazur, M. Network intrusion detection: Half a kingdom for a good dataset. In Proceedings of the
NATO STO SAS-139 Workshop, Lisbon, Portugal, 23 April 2015.

49. Ring, M.; Wunderlich, S.; Scheuring, D.; Landes, D.; Hotho, A. A survey of network-based intrusion detection data sets. Comput.
Secur. 2019, 86, 147–167. [CrossRef]

50. Gharib, A.; Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. An evaluation framework for intrusion detection dataset. In
Proceedings of the 2016 International Conference on Information Science and Security (ICISS), Pattaya, Thailand, 19–22 December
2016; IEEE: Pattaya, Thailand, 2016; pp. 1–6. [CrossRef]
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