
Citation: Andalibi, M.;

Shourangizhaghighi, A.; Hajihosseini,

M.; Madani, S.S.; Ziebert, C.;

Boudjadar, J. Design and

Simulation-Based Optimization of an

Intelligent Autonomous Cruise

Control System. Computers 2023, 12,

84. https://doi.org/10.3390/

computers12040084

Academic Editor: Paolo Bellavista

Received: 28 February 2023

Revised: 17 April 2023

Accepted: 18 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Design and Simulation-Based Optimization of an Intelligent
Autonomous Cruise Control System
Milad Andalibi 1, Alireza Shourangizhaghighi 2, Mojtaba Hajihosseini 1, Seyed Saeed Madani 3 ,
Carlos Ziebert 3 and Jalil Boudjadar 4,*

1 Department of Control and Computer Engineering, University of Zagreb Croatia, 1000 Zagreb, Croatia
2 Department of Mechanical Engineering, Shiraz University of Technology, Shiraz 71557, Iran
3 Institute of Applied Materials-Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology,

Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
4 Department of Electrical and Computer Engineering, Aarhus University Denmark, 8200 Aarhus, Denmark
* Correspondence: jalil@ece.au.dk

Abstract: Significant progress has recently been made in transportation automation to alleviate
human faults in traffic flow. Recent breakthroughs in artificial intelligence have provided justification
for replacing human drivers with digital control systems. This paper proposes the design of a self-
adaptive real-time cruise control system to enable path-following control of autonomous ground
vehicles so that a self-driving car can drive along a road while following a lead vehicle. To achieve
the cooperative objectives, we use a multi-agent deep reinforcement learning (MADRL) technique,
including one agent to control the acceleration and another agent to operate the steering control.
Since the steering of an autonomous automobile could be adjusted by a stepper motor, a well-known
DQN agent is considered to provide the discrete angle values for the closed-loop lateral control.
We performed a simulation-based analysis to evaluate the efficacy of the proposed MADRL path
following control for autonomous vehicles (AVs). Moreover, we carried out a thorough comparison
with two state-of-the-art controllers to examine the accuracy and effectiveness of our proposed
control system.

Keywords: autonomous vehicles; cruise control; multi-agent deep reinforcement learning; path
following control; artificial intelligence

1. Introduction

With the rapid technological advances, autonomous vehicles have received extensive
attention in the past decade [1,2]. Increasing safety by computers has led to considerable
benefits, including omitting human errors in critical circumstances, improving occupants’
comfort, reducing traffic problems, and reducing environmental impacts, which are among
the main impetuses for the automation of driving. Any autonomous driving system consists
of several perception level tasks, which must be considered for the design of such a system.
Autonomous driving tasks are normally divided into three categories, namely navigation,
guidance, and stabilization [3]. Although autonomous vehicles have the potential to
revolutionize the transportation industry, there are significant risks associated with their
use that must be taken into account, such as cybersecurity concerns, technical failures, and
ethical implications. One of the major challenges in self-driving cars is the path following
control in which the vehicle keeps the cruise velocity and a safe distance while following
another vehicle simultaneously.

Different practical control methodologies have been studied to deliver the capability to
keep the cruise velocity and safe distance, such as active steering [3], differential braking [4],
integrated chassis control [5] and torque vectoring [6]. In particular, the driver-assist system,
which has been extended in [7], enables better lane-keeping and tracking control. In [8],
the authors presented a smooth route control for autonomous transport satisfying both

Computers 2023, 12, 84. https://doi.org/10.3390/computers12040084 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12040084
https://doi.org/10.3390/computers12040084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-3502-6529
https://orcid.org/0000-0003-3034-7550
https://orcid.org/0000-0003-1442-4907
https://doi.org/10.3390/computers12040084
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12040084?type=check_update&version=3


Computers 2023, 12, 84 2 of 14

the initial and final circumstances, where the restriction conditions are implemented as a
parameterized 6th-order polynomial model [9]. In such a study, the tracking control module
along with the model predictive control technique were used. In [10], a developed Kalman
filter and linear time-varying model predictive control scheme are applied to predict the
future trajectory of an autonomous vehicle (AV), determine the optimal path, and optimize
control [9]. A common denominating challenge for the use of machine learning in designing
autonomous control applications is the dependency of the decision making no training
data, where experiencing learning data that is completely different from training data may
lead to inconsistent decisions.

Designing control systems to regulate both throttle and brake is the key part of
adaptive cruise control since it ensures the vehicle will keep the speed response of the
antecedent vehicle, and consequently retaining a safe inter-vehicle distance under the
limitations of driving [11]. In [12], an adaptive cruise control structure considering a variety
of funnel controllers are introduced. In [13], the authors presented a least-violating control
in the application of cruise control to regulate the system with the properties of safety,
uniform reachability, and uniform attractivity. In [14], a varying prediction zone nonlinear
model predictive control (NMPC) using a continuation/generalized minimal residual
(C/GMRES) optimizer with a dead zone penalty function to guarantee the smoothness
and meet the inequalities is designed in the path-following control application. A sliding
mode control for speed control in AVs has been applied in [15]. Robust H-infinity control
methods are investigated in [16]. A super-twisting sliding mode is presented in [17] based
on Lyapunov stability proofed by the backstepping method in the application field of
AVs path-following control. These methods demonstrated acceptable outcomes based on
analytic control; they require not only complex design but also, are unable to consider
unknown uncertainties due to the intense dynamic structure of automobiles. Thus, focusing
on the complete mathematical model is impractical. To address this issue and reach high
accuracy, reinforcement learning techniques can be adopted to look for optimal controllers
for systems with undetermined or highly nonlinear and stochastic dynamics.

Deep reinforcement learning (DRL), which is well-known as an efficient learning
framework, is able to train an agent to impressively find the right control command signal
by interacting with the system in order to optimize the reward function [18]. Recent
significant advances in DRL have prompted the application of this technique in various
fields of engineering. DRL algorithms are divided into three categories: 1-continuous;
2-discrete; 3-continuous or discrete. Based on the environment (or system) type, the
appropriate algorithm needs to be selected. In the field of transportation, efforts have been
devoted to using RL in the AVs path-following control. Unmanned vehicle track control can
be divided into three environments: 1-land, 2-water and underwater, and 3-aerial. In [19],
a Deep Deterministic Policy Gradient (DDPG) agent was adopted to find a suitable vessel
steering policy in the presence of the ocean current. In [20], a neural network (NN)-based
RL algorithm was adopted to predict the unknown disturbances, parameter uncertainties,
and nonlinearities of autonomous underwater vehicles in trajectory tracking. To obtain
adaptive control in AUVs, the study in [21] relies on an actor-critic RL NN-based agent.
The authors of [22] presented a strategy for AUV route following by combining the benefits
of DRL with interactive RL, which receives a reward from both the environment and the
human operator at the same time.

In aerial field path-following, Rubi et al. [23] implemented Q-learning agent for an
airship to mitigate the curse of dimensionality problem. In [24], a DDPG agent for a
quadrotor was investigated, and its sustainability and performance in the path following
in the presence of wind turbulence and other disturbances were probed.

Gabriel et al. proposed a model-based RL (MBRL) for high-speed autonomous driving
path tracking [25]. They combined Failure Prediction and Intervention Module (FIM) with
MBRL to achieve high performance in a self-driving system. Charles et al. [26] proposed a
scheme in which they succeeded in obtaining high-performance longitudinal control by an



Computers 2023, 12, 84 3 of 14

NN-based policy gradient algorithm. Wang et al. [27] applied the reinforcement learning ap-
proach to learn the automated lane change behavior in an interactive driving environment.

In the aforementioned literature, most of the studies consider a single control feature
of the autonomous driving system, for example, either steering control or speed control, or
only the issue of constant speed tracking has been addressed. In this paper, we propose a
DRL-based solution to control a constellation of driving system features simultaneously,
namely speed control, steering control, and safety. Following the acceleration and steering
control, in order to control the speed and distance while following the lead vehicle, two
DRL agents are considered. The first agent controls the steering wheel of the car, while
the second agent manages the acceleration according to speed and distance. Simulation-
based experiments are conducted to test the accuracy, efficiency, and response time of the
proposed DRL-based control solution. Although the algorithms we propose are formed
by the integration of three agents supervising the key features of conventional vehicles,
for the same level of complexity, each agent is considered a black box, where, for example,
the speed to be applied is computed but the details related to how much fuel to inject and
acceleration are omitted as these parameters are dependent on the actual state of the AV
and environment.

The rest of the paper Is organized as follows. The dynamic Model of the ground
autonomous vehicle is presented in Section 2. The design of the MADRL controller is
described in Section 3. Steering, acceleration, and a DQN agent are provided in Section 4,
Section 5, and Section 6, respectively. Simulation results are discussed in Section 7. Finally,
Section 8 concludes the paper.

2. Two Degree of Freedom Dynamic Model of Ground Autonomous Vehicles

It is important to have a brief overview of the mathematical model to pave the ground
for connecting the control agents later. Hence, a schematic representation of the proposed
model is depicted in Figure 1. Note that ψ is the yaw angle,

.
ψ shows the yaw rate, vx

and vy determines the velocity according to the vehicle coordination, vl f and vc f are the
longitudinal and lateral velocity of the lead vehicle wheel, v f is their result vector, δ is the
front wheel angle, and Fl and Fc are longitudinal and lateral wheel forces. Thus, based on
Newton’s second law of motion, dynamic equations governing the system are introduced
as in [28]:

m
.
vx = m

.
vy

.
ψ + 2Fx f + 2Fxr

m
.
vy = −m

.
vx

.
ψ + 2Fy f + 2Fyr

I
..
ψ = 2l f Fy f − 2lrFyr

(1)

where m and I are the mass and inertia, Fx is the lateral force, and Fy is the lateral force at
the center of gravity (CoG) of the vehicle. The yaw rate can be calculated as follows:

.
ψ =

vx

l f + lr
tan(δ) (2)

where lf and lr are the distances from the CoG. In addition, the position states can be
obtained as: .

X = vxcos(ψ)− vysin(ψ)
.

Y = vxsin(ψ) + vycos(ψ)
(3)



Computers 2023, 12, 84 4 of 14

Computers 2023, 12, x FOR PEER REVIEW 4 of 14 
 

the longitudinal 𝑭𝑭𝒍𝒍 and lateral, 𝑭𝑭𝒄𝒄 forces are shown as follows: 
𝐹𝐹𝑙𝑙 = 𝑓𝑓(𝛼𝛼, 𝜇𝜇, 𝑠𝑠,𝐹𝐹𝑧𝑧) 

𝐹𝐹𝑐𝑐 = 𝑓𝑓(𝛼𝛼, 𝜇𝜇, 𝑠𝑠,𝐹𝐹𝑧𝑧) 
(5) 

As shown in Figure 1, 𝜶𝜶 is the angle between the wheel velocity vector and the wheel 
direction, and 𝝁𝝁 is the road friction coefficient. The difference between ground point ve-
locity and the rotational velocity (slip ratio) is 𝒔𝒔, and 𝑭𝑭𝒛𝒛, which determines the vertical 
load action on the wheels. Under the assumption of having small 𝝁𝝁 values, the lateral tire 
forces can be obtained as: 

𝐹𝐹𝑙𝑙𝑙𝑙 = 𝐶𝐶𝑓𝑓𝛼𝛼𝑓𝑓 

𝐹𝐹𝑙𝑙𝑙𝑙 = 𝐶𝐶𝑟𝑟𝛼𝛼𝑟𝑟 
(6) 

where 𝑪𝑪𝒇𝒇 and 𝑪𝑪𝒓𝒓 are the tire stiffness parameters and 
𝛼𝛼𝑓𝑓 =  𝛿𝛿 − 𝜃𝜃𝑓𝑓 

𝛼𝛼𝑟𝑟 = −𝜃𝜃𝑟𝑟 
(7) 

where 𝜽𝜽𝒇𝒇 = 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 �𝒗𝒗𝒚𝒚+𝒍𝒍𝒇𝒇𝝍̇𝝍
𝒗𝒗𝒙𝒙

� and 𝜽𝜽𝒓𝒓 = 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 �𝒗𝒗𝒚𝒚+𝒍𝒍𝒓𝒓𝝍̇𝝍
𝒗𝒗𝒙𝒙

�. 
Assuming that the vehicle is traveling on flat ground, it is not affected by gravita-

tional force but by air drag, 𝑭𝑭𝒂𝒂 = 𝟏𝟏
𝟐𝟐
𝑪𝑪𝑫𝑫𝑨𝑨𝒂𝒂𝝆𝝆𝒂𝒂(𝒗𝒗 + 𝒗𝒗𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘)𝟐𝟐  and rolling resistance, 𝑭𝑭𝒓𝒓 =

𝑫𝑫𝒓𝒓𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎(𝜶𝜶). 𝑪𝑪𝑫𝑫 is the air drag coefficient, 𝑨𝑨𝒂𝒂 is the maximum cross-sectional area of 
the vehicle, 𝝆𝝆𝒂𝒂 is the air density, 𝒗𝒗𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 is wind velocity, 𝑫𝑫𝒓𝒓 is the roll resistance coeffi-
cient, 𝒎𝒎 the vehicle mass, and 𝒈𝒈 the gravitational acceleration. For convenience, 𝜶𝜶 can 
be ignored because 𝒗𝒗𝒘𝒘𝒊𝒊𝒏𝒏𝒏𝒏 is very small in comparison with the vehicle velocity. 

In conclusion, the equivalent dynamic state of the system can be expressed as follows: 
𝑋̇𝑋 = 𝑣𝑣𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓) − 𝑣𝑣𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓) 

𝑌̇𝑌 = 𝑣𝑣𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓) − 𝑣𝑣𝑦𝑦𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓) 

𝜓̇𝜓 =
𝑣𝑣𝑥𝑥

𝑙𝑙𝑓𝑓 + 𝑙𝑙𝑟𝑟
𝑡𝑡𝑡𝑡(𝛿𝛿) 

𝑚𝑚𝑣𝑣𝑥̇𝑥 = 𝐹𝐹𝑥𝑥 + 𝑚𝑚𝑣𝑣𝑦𝑦𝜓̇𝜓 − 2𝐹𝐹𝑐𝑐𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠(𝛿𝛿) − 𝐹𝐹𝑎𝑎 − 𝐹𝐹𝑟𝑟 

𝑚𝑚𝑣𝑣𝑦̇𝑦 = −𝑚𝑚𝑣𝑣𝑥𝑥𝜓̇𝜓 − 2(𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿) + 𝐹𝐹𝑐𝑐𝑐𝑐) 

𝐼𝐼𝜓̈𝜓 = 2(𝑙𝑙𝑓𝑓𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝛿𝛿) − 𝑙𝑙𝑟𝑟𝐹𝐹𝑐𝑐𝑐𝑐) 

(8) 

It should be noted that 𝜹𝜹 and 𝑭𝑭𝒙𝒙 are the control input of the vehicle. 

Y-
Ax

is

X-Axis

lrF
crF

lr

yV

lf

Ψ
•

lfF

cfF

lfV
fV

cfV δ
α

fθ

xV

rF

aF

 
Figure 1. A 2-DoF schematic representation of the vehicle. 

  

Figure 1. A 2-DoF schematic representation of the vehicle.

Fx and Fy which are the acting forces on the CoG, can be calculated by:

Fx = Flcos(δ)− Fcsin(δ)
Fy = Flsin(δ)− Fccos

(4)

the longitudinal Fl and lateral, Fc forces are shown as follows :

Fl = f (α, µ, s, Fz)
Fc = f (α, µ, s, Fz)

(5)

As shown in Figure 1, α is the angle between the wheel velocity vector and the wheel
direction, and µ is the road friction coefficient. The difference between ground point
velocity and the rotational velocity (slip ratio) is s, and Fz, which determines the vertical
load action on the wheels. Under the assumption of having small µ values, the lateral tire
forces can be obtained as:

Fl f = C f α f
Flr = Crαr

(6)

where Cf and Cr are the tire stiffness parameters and

α f = δ− θ f
αr = −θr

(7)

where θf = arctan
[

vy+l f
.
ψ

vx

]
and θr = arctan

[
vy+lr

.
ψ

vx

]
.

Assuming that the vehicle is traveling on flat ground, it is not affected by gravitational
force but by air drag, Fa = 1

2 CDAaρa(v + vwind)
2 and rolling resistance, Fr = Drmgcos(α).

CD is the air drag coefficient, Aa is the maximum cross-sectional area of the vehicle, ρa
is the air density, vwind is wind velocity, Dr is the roll resistance coefficient, m the vehicle
mass, and g the gravitational acceleration. For convenience, α can be ignored because vwind
is very small in comparison with the vehicle velocity.

In conclusion, the equivalent dynamic state of the system can be expressed as follows:

.
X = vxcos(ψ)− vysin(ψ)
.

Y = vxsin(ψ)− vycos(ψ)
.
ψ = vx

l f +lr
tg(δ)

m
.

vx = Fx + mvy
.
ψ− 2Fc f sin(δ)− Fa − Fr

m
.

vy = −mvx
.
ψ− 2(Fc f cos(δ) + Fcr)

I
..
ψ = 2

(
l f Fc f cos(δ)− lrFcr

)
(8)



Computers 2023, 12, 84 5 of 14

It should be noted that δ and Fx are the control input of the vehicle.

3. Design of MADRL Controller

To control the AV following a lead car, velocity and distance stabilization in tracking
performance of conventional methodologies like Fuzzy Logic, PID, and model predictive
controller (MPC) are restricted from the following regulatory aspects:

1. Since the time intervals in the simulation of vehicles are in microseconds, the compu-
tational time for designing the model-based schemes is very definitive in real-time.

2. Due to the destabilization properties and high nonlinear characteristics of AVs, achiev-
ing cruise velocity and tracking control simultaneously is one of the main objectives in
this field. Thus, further efforts should be considered to not only mitigate the nonlinear-
ities effects on optimal performance control, but also ensure the stability requirements.

As it can be seen in Figure 2, the main control approach is to keep a safe distance and
a set velocity while tracking the lead vehicle. In this case, the ego car that is tracking the
lead car must follow the following rules: 1-When the distance between the ego car and the
lead car is greater than a safe distance, the ego car must speed up to track the set velocity;
2-Otherwise, the acceleration must be reduced to maintain the safe distance.

Computers 2023, 12, x FOR PEER REVIEW 5 of 14 
 

3. Design of MADRL Controller 
To control the AV following a lead car, velocity and distance stabilization in tracking 

performance of conventional methodologies like Fuzzy Logic, PID, and model predictive 
controller (MPC) are restricted from the following regulatory aspects: 
1. Since the time intervals in the simulation of vehicles are in microseconds, the compu-

tational time for designing the model-based schemes is very definitive in real-time. 
2. Due to the destabilization properties and high nonlinear characteristics of AVs, 

achieving cruise velocity and tracking control simultaneously is one of the main ob-
jectives in this field. Thus, further efforts should be considered to not only mitigate 
the nonlinearities effects on optimal performance control, but also ensure the stability 
requirements. 
As it can be seen in Figure 2, the main control approach is to keep a safe distance and 

a set velocity while tracking the lead vehicle. In this case, the ego car that is tracking the 
lead car must follow the following rules: 1-When the distance between the ego car and the 
lead car is greater than a safe distance, the ego car must speed up to track the set velocity; 
2-Otherwise, the acceleration must be reduced to maintain the safe distance. 

Due to the deficiency in the existing control methodologies, a MADRL-based scheme 
is proposed in this work in order to find a promising solution for the aforementioned 
challenges. Moreover, in the Multi Agent RL (MARL) algorithms, agents learn their own 
distinctive duties, which provides a helpful perspective on control. First, the nonlinear 
model of the system is employed so that sensors can be considered to identify system 
states and implement the suitable algorithm. Then, according to the system control inputs, 
the continuous agent is used for acceleration, while the discrete agent is considered for 
steering angle. As the acceleration force of the cars is continuous, an actor-critic model-
free policy-based agent called Twin Delayed DDPG is used and compared to a DQN agent 
using a discrete view of acceleration. Yaw angle is set by a stepper motor, which has to be 
looked at completely in discrete values, and a DQN is utilized for this process. 

X-Axis

X-Axis

Safe Distance

Safe Distance

Relative Distance

Relative Distance

Ego Vehicle

Ego Vehicle

Lead Vehicle

Lead Vehicle

 
Figure 2. Path tracking from cruise control point of view. 

3.1. Markov Decision Process 
In the RL structure, a task can be determined by a Markov Decision Process (MDP) 

specified by a quintuple {𝑆𝑆,𝐴𝐴, 𝑟𝑟, 𝑝𝑝, 𝛾𝛾} , where 𝑆𝑆 𝜖𝜖 ℝ𝑛𝑛  indicates the state space, 𝐴𝐴 𝜖𝜖 ℝ𝑚𝑚 
shows the action space, 𝑟𝑟: 𝑆𝑆 ×  𝐴𝐴 →  ℝ indicates the reward function, 𝑝𝑝: 𝑆𝑆 ×  𝐴𝐴 ×  𝑆𝑆 →
 [0,1] is the transition function, which represents the probability of transiting to a new 
state 𝑠𝑠𝑡𝑡+1 , emitting a reward 𝑟𝑟  under the execution of action 𝑎𝑎𝑡𝑡  on the state 𝑠𝑠𝑡𝑡 , and 
𝛾𝛾 𝜖𝜖 [0 1] indicates the discount factor. With an initial state 𝑠𝑠𝑡𝑡, the RL is aimed to maximize 
the obtained rewards 𝔼𝔼[∑ 𝛾𝛾𝑡𝑡𝑟𝑟𝑡𝑡∞

𝑡𝑡=0  ]. 

3.2. The Twin Delayed DDPG (TD3) 
A twin-delayed deep deterministic policy gradient agent is an actor-critic RL agent 

that calculates an optimal policy so that it optimizes the long-term reward and acts on the 
environment continuously. Note that the TD3 algorithm is off-policy, model-free, and an 
online RL technique. 

Figure 2. Path tracking from cruise control point of view.

Due to the deficiency in the existing control methodologies, a MADRL-based scheme
is proposed in this work in order to find a promising solution for the aforementioned
challenges. Moreover, in the Multi Agent RL (MARL) algorithms, agents learn their own
distinctive duties, which provides a helpful perspective on control. First, the nonlinear
model of the system is employed so that sensors can be considered to identify system
states and implement the suitable algorithm. Then, according to the system control inputs,
the continuous agent is used for acceleration, while the discrete agent is considered for
steering angle. As the acceleration force of the cars is continuous, an actor-critic model-free
policy-based agent called Twin Delayed DDPG is used and compared to a DQN agent
using a discrete view of acceleration. Yaw angle is set by a stepper motor, which has to be
looked at completely in discrete values, and a DQN is utilized for this process.

3.1. Markov Decision Process

In the RL structure, a task can be determined by a Markov Decision Process (MDP)
specified by a quintuple {S, A, r, p, γ}, where S ε Rn indicates the state space, A ε Rm shows
the action space, r : S× A → R indicates the reward function, p : S× A× S → [0, 1] is
the transition function, which represents the probability of transiting to a new state st+1,
emitting a reward r under the execution of action at on the state st, and γ ε [0 1] indicates the
discount factor. With an initial state st, the RL is aimed to maximize the obtained rewards
E
[
∑∞

t=0 γtrt
]
.

3.2. The Twin Delayed DDPG (TD3)

A twin-delayed deep deterministic policy gradient agent is an actor-critic RL agent
that calculates an optimal policy so that it optimizes the long-term reward and acts on the
environment continuously. Note that the TD3 algorithm is off-policy, model-free, and an
online RL technique.



Computers 2023, 12, 84 6 of 14

The TD3 algorithm, which is an extension of the DDPG algorithm, addresses DDPG
function overestimation via learning two Q-values at a time, and during policy updating,
it benefits from the minimum value function. Besides, it adds noise to target actions to
explore the environment more effectively. To obtain the estimation of the policy and value
functions, TD3 uses the following function approximators: (1) The actor µ(S) observes
the system states (or observations) and S correspondingly acts on the environment in a
way that maximizes the long-term reward. (2) To increase the stability of the optimization
process, the agent µ′(S) regularly updates the target actor parameters using the received
values. (3) State set S and action set A input to the critics, then they give the related
expectation of the long-term reward. (4) The previous procedure is periodically done at a
determined time to update the target critics. The critics should follow the same structures,
but their corresponding targets have to be the same. For better understanding, Figure 3
demonstrates the TD3 algorithm in detail.

Computers 2023, 12, x FOR PEER REVIEW 6 of 14 
 

The TD3 algorithm, which is an extension of the DDPG algorithm, addresses DDPG 
function overestimation via learning two Q-values at a time, and during policy updating, 
it benefits from the minimum value function. Besides, it adds noise to target actions to 
explore the environment more effectively. To obtain the estimation of the policy and value 
functions, TD3 uses the following function approximators: (1) The actor 𝜇𝜇(𝑆𝑆) observes 
the system states (or observations) and 𝑆𝑆 correspondingly acts on the environment in a 
way that maximizes the long-term reward. (2) To increase the stability of the optimization 
process, the agent 𝜇𝜇′(𝑆𝑆) regularly updates the target actor parameters using the received 
values. (3) State set 𝑆𝑆 and action set 𝐴𝐴 input to the critics, then they give the related ex-
pectation of the long-term reward. (4) The previous procedure is periodically done at a 
determined time to update the target critics. The critics should follow the same structures, 
but their corresponding targets have to be the same. For better understanding, Figure 3 
demonstrates the TD3 algorithm in detail. 

Elavuation Network 
Argument:

Target-evaluation 
Network

Argument: 

Q
1θ

  

 
 

µθ

'µθ

 

 

 
   

  

   

 
Q

1θ
Q

1θ

iy1

 

 
µθ

µθ

µµ θθ ←'
 

  

)( isa µ=

)('' 1−= isa µ

)( tsµ

 ),,,( 1+tttt sras

 ),,,( 1+
∗

tttt srasN

  

 

 

Q
2θ

 
Q

2θ
Q

2θ

iy2

 

 
iy

QQ
1

'
1 θθ ←QQ

2
'

2 θθ ←

 
Figure 3. Flowchart of the TD3 algorithm with actor-critic architecture. 

4. MADRL AV TD3 Agent for Acceleration Control 
Based on the knowledge of the AVs sensors outputs, the exact observations and re-

ward function could be defined. Figure 4 shows that the observation and reward function 
consist of four parameters: (1) Relative distance (the difference between the lead and ego 
vehicles positions); (2) Lead vehicle velocity; (3) Ego vehicle velocity; and (4) Last exerted 
acceleration. It is important to explicitly address a series of calculations before dealing 
with observations. To do so, the safe distance between the lead car and the ego car, 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 
is defined as: 

𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 (9) 

where 𝐷𝐷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the pause default distance in meters, 𝑇𝑇𝑔𝑔𝑔𝑔𝑔𝑔 shows the time gap between 
the vehicles in seconds, and 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒  defines the ego vehicle velocity. The error distance is 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐷𝐷𝑟𝑟𝑒𝑒𝑙𝑙 (10) 

One should bear in mind that the velocity error is another significant issue, which can be 
calculated as follows: 

Verror = {
min{𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠}− 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒    𝑖𝑖𝑖𝑖    min {𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠}
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 −   𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒                                      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (11) 

Figure 3. Flowchart of the TD3 algorithm with actor-critic architecture.

4. MADRL AV TD3 Agent for Acceleration Control

Based on the knowledge of the AVs sensors outputs, the exact observations and
reward function could be defined. Figure 4 shows that the observation and reward function
consist of four parameters: (1) Relative distance (the difference between the lead and ego
vehicles positions); (2) Lead vehicle velocity; (3) Ego vehicle velocity; and (4) Last exerted
acceleration. It is important to explicitly address a series of calculations before dealing with
observations. To do so, the safe distance between the lead car and the ego car, Dsa f e, is
defined as:

Dsa f e = Dde f ault + TgapVego (9)

where Dde f ault is the pause default distance in meters, Tgap shows the time gap between
the vehicles in seconds, and Vego defines the ego vehicle velocity. The error distance is

Derror = Dsa f e − Drel (10)



Computers 2023, 12, 84 7 of 14

One should bear in mind that the velocity error is another significant issue, which can be
calculated as follows:

Verror =

{
min{Vlead, Vset} −Vego i f min{Vlead, Vset}

Vset − Vego otherwise
(11)

where Vlead is the lead vehicle’s velocity, and Vset is the velocity at which the ego vehicle is
set to drive. Therefore, the observation would be defined as

{
Verror,

∫
Verror, Vlead

}
.

Computers 2023, 12, x FOR PEER REVIEW 7 of 14 
 

where 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  is the lead vehicle’s velocity, and 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠  is the velocity at which the ego vehicle 
is set to drive. Therefore, the observation would be defined as {𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,∫𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙}. 

To compose the reward function, the first step is to calculate the cost function. The 
cost function consists of the consumed energy, the control action, and the error in velocity 
with different weights. The cost function is defined as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓1 =  �𝑤𝑤1𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒2 + 𝑤𝑤2𝐹𝐹𝑥𝑥2  (12) 

where 𝒘𝒘𝟏𝟏 and 𝒘𝒘𝟐𝟐 are the weights of the considered values, and 𝑭𝑭𝒙𝒙 (or 𝒂𝒂) is the acceler-
ation. The reward function, which is expected to be maximized in the training process, is 
defined as the minus of the cost function. Throughout this study, the actor-critic TD3 con-
sists of two fully connected hidden layers (HLs) with 50 neurons for both the actor and 
critic structures. The “rectified linear unit (ReLU)” activation function is applied to all HLs 
in the network. Readers are directed toward Figure 5 for a schematic configuration repre-
sentation of the MADRL AV. Additionally, the parameters for the implemented algorithm 
are given in Table 1. 

Elavuation Network 
Argument:

Target-evaluation 
Network

Argument: 

Optimizer

Qθ

QQ θθ ←'

 

 

 
   

  

 
Qθ

Qθ

iy
 

)( isµ

 

 

),,,( 1+iiii sras

),,,( 1+
∗

iiii srasN

 
Figure 4. Flowchart of the DQN algorithm. 

Table 1. Parameters of the TD3 agent. 

Parameter Value Parameter Value 
TD3 Training Episode Length 500 ts Critic2 Learning Rate 1 × 10−3 

Minimum Batch Size 1024 Number of MC cycle 200 
Actor Learning Rate 1 × 10−4 Discount Factor 0.99 

Crtitic1 Learning Rate 1 × 10−3   

Figure 4. Flowchart of the DQN algorithm.

To compose the reward function, the first step is to calculate the cost function. The
cost function consists of the consumed energy, the control action, and the error in velocity
with different weights. The cost function is defined as:

Cost f unction1 = ∑ w1V2
error + w2F2

x (12)

where w1 and w2 are the weights of the considered values, and Fx (or a) is the acceleration.
The reward function, which is expected to be maximized in the training process, is defined
as the minus of the cost function. Throughout this study, the actor-critic TD3 consists of two
fully connected hidden layers (HLs) with 50 neurons for both the actor and critic structures.
The “rectified linear unit (ReLU)” activation function is applied to all HLs in the network.
Readers are directed toward Figure 5 for a schematic configuration representation of the
MADRL AV. Additionally, the parameters for the implemented algorithm are given in
Table 1.



Computers 2023, 12, 84 8 of 14Computers 2023, 12, x FOR PEER REVIEW 8 of 14 
 

Input 
layer

Hidden Layer 
(ReLU)

Output 
layer

 

 

Input 
layer

Hidden Layer 
(ReLU)

Output 
layer 

 
 

 

 

  

 

 

 

 

 

 

 

Actor Network

Critic Network 1

Input 
layer

Hidden Layer 
(ReLU)

Output 
layer

 

 

 

 

 

 

 

 

Critic Network

Eg
o 

V
eh

ic
le

 V
el

oc
ity

Le
ad

 V
eh

ic
le

 V
el

oc
ity

R
el

at
iv

e 
D

ist
an

ce

Acceleration

Y
aw

 E
rr

or

La
te

ra
l E

rr
or

Y
aw

 E
rr

or
 D

er
iv

at
iv

e

La
te

ra
l E

rr
or

 D
er

iv
at

iv
e

Steering Angel

Input 
layer

Hidden Layer 
(ReLU)

Output 
layer

 

 

 

 

 

 

Critic Network 2

 
Figure 5. Structure of the implemented MADRL AV. 

5. Deep-Q-Network (DQN) 
A DQN agent is an off-policy, value-based RL agent that acts on the environment 

discretely. Moreover, the DQN algorithm is a model-free, online RL technique. It is chal-
lenging in complex state-action spaces to learn from the evaluation of the 𝑄𝑄 value of both 
state and action separately. In DRL, several agents’ parts, such as policy Π(s, a)or values 
𝑞𝑞(𝑠𝑠, 𝑎𝑎) are given with deep NNs. These NNs parameters are trained to minimize some 
loss functions through the gradient descent method. In DQN, deep networks and RL es-
timate values from NNs and the given states St. In each step, based on the current state, 
the agent chooses an action based on the action values  𝜖𝜖 − 𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and the data 
(𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡 ,𝑅𝑅𝑡𝑡+1, 𝛾𝛾𝑡𝑡+1, 𝑆𝑆𝑡𝑡+1) which have all the preceding data in time 𝑡𝑡. NNs parameters are 
then trained using random gradient descent to minimize the following loss function: 

�𝑅𝑅𝑡𝑡+1 + 𝛾𝛾𝑡𝑡+1𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′
𝑞𝑞
𝜃𝜃
̄ (𝑆𝑆𝑡𝑡+1, 𝑎𝑎′) − 𝑞𝑞𝜃𝜃(𝑆𝑆𝑡𝑡 ,𝐴𝐴𝑡𝑡)�

2

 (13) 

where 𝑡𝑡 is the time step. The cost function gradient for updating 𝜃𝜃 is done via the back-
propagation method. 𝜃𝜃  defines the target network’s parameters and is a copy of the 
online network over a given time period. Optimization is performed using RMSprop on 
small, sampled batches from replay memory. The structure of the DQN algorithm is 
shown in Figure 4. 

6. The MADRL AV DQN Agent for Steering Angle Control 
Similarly, as defined in the observations and reward function for TD3, for the pur-

pose of having control over the steering angle, some calculations should be done for the 
DQN agent. As shown in Figure 5, the agent receives some inputs from the environment, 
including: 1-𝐿̇𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(Lateral error derivative); 2-𝑌̇𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (Yaw error derivative); 3-𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (Lat-
eral error); 4-, 𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (Yaw error); and 5- 𝜃𝜃 (Steering angle). Next, the observation set can 
be calculated as �𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  , 𝐿̇𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 ,∫ 𝐿𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , 𝑌̇𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,∫𝑌𝑌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒�. To obtain the correspond-
ing reward function, first the cost function should be calculated as follows: 

Figure 5. Structure of the implemented MADRL AV.

Table 1. Parameters of the TD3 agent.

Parameter Value Parameter Value

TD3 Training Episode Length 500 ts Critic2 Learning Rate 1 × 10−3

Minimum Batch Size 1024 Number of MC cycle 200
Actor Learning Rate 1 × 10−4 Discount Factor 0.99

Crtitic1 Learning Rate 1 × 10−3

5. Deep-Q-Network (DQN)

A DQN agent is an off-policy, value-based RL agent that acts on the environment
discretely. Moreover, the DQN algorithm is a model-free, online RL technique. It is
challenging in complex state-action spaces to learn from the evaluation of the Q value of
both state and action separately. In DRL, several agents’ parts, such as policy Π(s, a) or
values q(s, a) are given with deep NNs. These NNs parameters are trained to minimize
some loss functions through the gradient descent method. In DQN, deep networks and
RL estimate values from NNs and the given states St. In each step, based on the current
state, the agent chooses an action based on the action values ε− greedily and the data
(St, At, Rt+1, γt+1, St+1) which have all the preceding data in time t. NNs parameters are
then trained using random gradient descent to minimize the following loss function:(

Rt+1 + γt+1max
a′

qθ

(
St+1, a′

)
− qθ(St, At)

)2
(13)

where t is the time step. The cost function gradient for updating θ is done via the back-
propagation method. θ defines the target network’s parameters and is a copy of the online
network over a given time period. Optimization is performed using RMSprop on small,
sampled batches from replay memory. The structure of the DQN algorithm is shown in
Figure 4.



Computers 2023, 12, 84 9 of 14

6. The MADRL AV DQN Agent for Steering Angle Control

Similarly, as defined in the observations and reward function for TD3, for the purpose
of having control over the steering angle, some calculations should be done for the DQN
agent. As shown in Figure 5, the agent receives some inputs from the environment,
including: 1-

.
Lerror(Lateral error derivative); 2-

.
Yerror (Yaw error derivative); 3-Lerror (Lateral

error); 4-, Yerror (Yaw error); and 5- θ (Steering angle). Next, the observation set can be
calculated as

{
Lerror ,

.
Lerror,

∫
Lerror, Yerror,

.
Yerror,

∫
Yerror

}
. To obtain the corresponding

reward function, first the cost function should be calculated as follows:

Cost f unction2 = ∑ w′1L2
error + w′2θ2 (14)

where w′1 and w′2 are weights of the considered values, and θ is the steering angle. The
reward function, which is expected to be maximized in the training process, is defined as
the minus of the cost function.

In this work, similar to TD3 in part C, DQN consists of two fully connected HLs with
50 neurons. For all HLs in the network, the ReLU activation function is used. The configu-
ration is specified in the lower agent of Figure 5, and the parameters for the implemented
algorithm are provided in Table 2.

Table 2. Parameters of the DQN agent.

Parameter Value Parameter Value

DQN Training
Episode Length 500 ts Number of MC Cycle 500

Minimum Batch Size 1024 Discount Factor 0.99
Learning Rate 1 × 10−3

7. Results and Discussion

In this section, we evaluate the effectiveness of our proposed multi-agent DRL-based
control technique and compare it to two of the state-of-the-art control alternatives, namely
Holistic Adaptive Multi-Model Predictive Control (HMPC) and Hierarchical Predictive
Control (HPC). HMPC [29] has a linear structure, which makes it perform well in real-time.
It also has a weight-adaptive mechanism to improve its handling ability and a multi-model
adaptive law to account for tire cornering stiffness uncertainties. HMPC benefits from a
weight-adaptive structure to control the system in uncertain situation. HPC [30] provides
a structure to switch between multiple model predictive controllers in order to decrease
the response time. HPC switches between the models at runtime based on a metric called
uncontrollable divergence, which reveals the divergence between predicted and true states
caused by return time and model mismatch. The relevant parameters of the AV are given in
Table 3. In this application, to investigate the reliability and effectiveness of the proposed
MADRL controller, the errors of yaw angle, lateral distance error, distance, velocities, and
control efforts are investigated. The iterations in which the agents are trained are studied
too. Figure 6a plots the training reward against the number of completed epochs. As seen,
the training reward improves with every epoch, indicating the algorithm’s gradual learning
and performance enhancement.



Computers 2023, 12, 84 10 of 14

Table 3. Parameters used in the vehicle model.

Parameter Abbreviation Value

Vehicle mass m 1500 kg
Inertia around z-axis I 1300 mNs2

Cornering stiffness front wheels C f 13, 000 N/rad
Cornering stiffness rear wheels Cr 12, 500 N/rad

Distance from front wheels to CoG l f m
Distance from rear wheels to CoG lr m

Cross sectional area Aa 10.25 m2

Roll resistance coefficient Dr 1.5 × 10−3

Air drag coefficient CD 0.6
Air density ρA 1.3 kg/m3

default spacing between lead and ego cars Dde f ault m
time gap for distance maintaining tgap 1.5 s

set velocity for ego car Vset 30 m/s

Computers 2023, 12, x FOR PEER REVIEW 11 of 14 
 

 

 

(a) 

 
(b) 

Figure 6. Suggested algorithm training rewards. (a) TD3; (b) DQN. 

 
Figure 7. Control effort on acceleration of the ego vehicles with a comparative perspective between 
the MADRL, HPC, and HMPC algorithms. 

 
Figure 8. Different ego vehicle velocities in the scenario for the proposed MADRL algorithm and a 
comparison with HPC and HMPC. 

Episode Reward
Average Reward

0 200 400 600 800 1000 1200

Time [s]

15

20

25

30

V
el

oc
ity

 [m
/s

]

MADRL HPC HMPC Vset

80 100 120 140
28

29

30

31

700 750 800 850
26

28

30

Figure 6. Suggested algorithm training rewards. (a) TD3; (b) DQN.

To visualize the trend better, Figure 6b also shows the same training progress with
an added trendline, which displays a clear improvement in the training reward over time,
affirming the algorithm’s successful learning and performance enhancement.

As shown in Figure 6a,b, our MADRL based controller outperforms in stabilizing
the system under favorable conditions of tracking the lead vehicle at a set velocity and
avoiding crossing the safety distance. The progress depicted in Figure 6a,b resulted from
the execution of our proposed algorithm on the training data, which was done through
multiple epochs. Every epoch entailed iterating through the data set and adjusting the
algorithm based on the feedback from the training reward.

The training reward is a metric that reflects the algorithm’s performance during
training, which is determined by a specific objective function. This function aims to
minimize the error between the algorithm’s predicted and actual outputs, and it gauges the
degree to which the algorithm is learning and enhancing its performance.

To achieve this, as presented in Figure 7, in the early stages of driving to maintain a
safe distance, the accelerations fluctuate sharply, and the range of acceleration decreases
over time. In the MADRL algorithm, to achieve the set speed, the controller starts moving at



Computers 2023, 12, 84 11 of 14

a relatively high acceleration and reduces its acceleration smoothly over time, but in the two
HPC and HMPC algorithms, the vehicle accelerates after about 7 s. In the velocity diagram,
the MADRL method clearly proves its superiority over the two HPC and HMPC algorithms.
It can be seen in Figure 8 that the two alternative algorithms can track a velocity of 30 m/s
with overshoots along with some fluctuations. However, the trained neural network with
MADRL controls the velocity in the way that it benefits both smooth tracking behavior
and fast settling time. This optimized behavior of the system with MADRL in steering
angle changes is also shown in Figure 9, while HPC and HMPC methods show oscillating
behavior that is not practical and not useful as they definitely cause destructive damages to
passengers. In all three compared algorithms, the need to maintain the distances between
the two vehicles is another significant issue that should be investigated. Figure 10a–c
represents the relative and safe distances of the ego and lead vehicles when MADRL is
applied. By adjusting the speed with acceleration, the ego vehicle keeps its distance from
the lead vehicle in a way not to cross the safe distance, while sustaining a relative distance
to be able to follow it properly. The HPC and HMPC algorithms are shown in Figure 10b,c
and they follow the same principle formulated in their constraints in the optimal control
problem. As it is obvious in Figure 10a, compared to Figure 10b,c, the safe distance diagram
benefits from a smooth behavior, while the HPC and HMPC algorithms experience some
oscillating behaviors, for example, at times of 750 and 1080 s for HPC and at times of 420,
760, and 1080 s for HMPC. It can be perceived that with path following and cruise control,
all the controllers work in the right way to keep a safe distance and track the trajectory of
the leading vehicle. Moreover, the root mean square error (RMSE) is also studied for three
algorithms for steering and lateral distance, as depicted in Figure 11. It is evident that the
lowest RMSE is obtained using our MADRL controller. As a result, it can be readily seen
that the MADRL outperforms the two state-of-the-art algorithms considered earlier.

Computers 2023, 12, x FOR PEER REVIEW 11 of 14 
 

 

 

(a) 

 
(b) 

Figure 6. Suggested algorithm training rewards. (a) TD3; (b) DQN. 

 
Figure 7. Control effort on acceleration of the ego vehicles with a comparative perspective between 
the MADRL, HPC, and HMPC algorithms. 

 
Figure 8. Different ego vehicle velocities in the scenario for the proposed MADRL algorithm and a 
comparison with HPC and HMPC. 

Episode Reward
Average Reward

0 200 400 600 800 1000 1200

Time [s]

15

20

25

30

V
el

oc
ity

 [m
/s

]

MADRL HPC HMPC Vset

80 100 120 140
28

29

30

31

700 750 800 850
26

28

30

Figure 7. Control effort on acceleration of the ego vehicles with a comparative perspective between
the MADRL, HPC, and HMPC algorithms.

Computers 2023, 12, x FOR PEER REVIEW 11 of 14 
 

 

 

(a) 

 
(b) 

Figure 6. Suggested algorithm training rewards. (a) TD3; (b) DQN. 

 
Figure 7. Control effort on acceleration of the ego vehicles with a comparative perspective between 
the MADRL, HPC, and HMPC algorithms. 

 
Figure 8. Different ego vehicle velocities in the scenario for the proposed MADRL algorithm and a 
comparison with HPC and HMPC. 

Episode Reward
Average Reward

0 200 400 600 800 1000 1200

Time [s]

15

20

25

30

V
el

oc
ity

 [m
/s

]

MADRL HPC HMPC Vset

80 100 120 140
28

29

30

31

700 750 800 850
26

28

30

Figure 8. Different ego vehicle velocities in the scenario for the proposed MADRL algorithm and a
comparison with HPC and HMPC.



Computers 2023, 12, 84 12 of 14
Computers 2023, 12, x FOR PEER REVIEW 12 of 14 
 

 
Figure 9. Control effort on steering angle of the ego vehicles with a comparative perspective between 
the MADRL, HPC, and HMPC algorithms. 

  
(a) (b) 

 
(c) 

Figure 10. Relative and safe distances between the ego and lead vehicles for MADRL, HPC, and 
HMPC, respectively, shown in (a), (b), and (c). 

 
Figure 11. Bar chart comparison of different algorithms RMSE indices. 

8. Conclusions 
This paper proposes a multi-agent deep reinforcement learning-based method to 

control both speed and steering (cruise control) of unmanned vehicles using DLR agents, 
in which the agents learn to select the optimum actions to control steering and accelera-
tion. The proposed method has the potential to enhance the safety and efficiency of au-
tonomous vehicles, particularly in challenging environments due to its reduced computa-
tion requirements distributed among agents. The study’s findings reveal that the sug-
gested approach surpasses existing state-of-the-art techniques, demonstrating its poten-
tial to be applied in real-world situations. To overcome the real-time learning mission, 

0 200 400 600 800 1000 1200

Time [s]

40

60

80

100

120

D
is

ta
nc

e 
[m

]

Safe Distance

Relative Distance

0 200 400 600 800 1000 1200

Time [s]

50

100

D
is

ta
nc

e 
[m

]

Safe Distance

Relative Distance

0 500 1000

Time [s]

40

60

80

100

120

D
is

ta
nc

e 
[m

]

Safe Distance

Relative Distance

0

1

2

MADRL HPC HMPC

0.32
1.09

0.64
0.17

0.8
0.28

Yaw RMSE

Lateral RMSE

Figure 9. Control effort on steering angle of the ego vehicles with a comparative perspective between
the MADRL, HPC, and HMPC algorithms.

Computers 2023, 12, x FOR PEER REVIEW 12 of 14 
 

 
Figure 9. Control effort on steering angle of the ego vehicles with a comparative perspective between 
the MADRL, HPC, and HMPC algorithms. 

  
(a) (b) 

 
(c) 

Figure 10. Relative and safe distances between the ego and lead vehicles for MADRL, HPC, and 
HMPC, respectively, shown in (a), (b), and (c). 

 
Figure 11. Bar chart comparison of different algorithms RMSE indices. 

8. Conclusions 
This paper proposes a multi-agent deep reinforcement learning-based method to 

control both speed and steering (cruise control) of unmanned vehicles using DLR agents, 
in which the agents learn to select the optimum actions to control steering and accelera-
tion. The proposed method has the potential to enhance the safety and efficiency of au-
tonomous vehicles, particularly in challenging environments due to its reduced computa-
tion requirements distributed among agents. The study’s findings reveal that the sug-
gested approach surpasses existing state-of-the-art techniques, demonstrating its poten-
tial to be applied in real-world situations. To overcome the real-time learning mission, 

0 200 400 600 800 1000 1200

Time [s]

40

60

80

100

120

D
is

ta
nc

e 
[m

]

Safe Distance

Relative Distance

0 200 400 600 800 1000 1200

Time [s]

50

100

D
is

ta
nc

e 
[m

]

Safe Distance

Relative Distance

0 500 1000

Time [s]

40

60

80

100

120

D
is

ta
nc

e 
[m

]

Safe Distance

Relative Distance

0

1

2

MADRL HPC HMPC

0.32
1.09

0.64
0.17

0.8
0.28

Yaw RMSE

Lateral RMSE

Figure 10. Relative and safe distances between the ego and lead vehicles for MADRL, HPC, and
HMPC, respectively, shown in (a–c).

Computers 2023, 12, x FOR PEER REVIEW 12 of 14 
 

 
Figure 9. Control effort on steering angle of the ego vehicles with a comparative perspective between 
the MADRL, HPC, and HMPC algorithms. 

  
(a) (b) 

 
(c) 

Figure 10. Relative and safe distances between the ego and lead vehicles for MADRL, HPC, and 
HMPC, respectively, shown in (a), (b), and (c). 

 
Figure 11. Bar chart comparison of different algorithms RMSE indices. 

8. Conclusions 
This paper proposes a multi-agent deep reinforcement learning-based method to 

control both speed and steering (cruise control) of unmanned vehicles using DLR agents, 
in which the agents learn to select the optimum actions to control steering and accelera-
tion. The proposed method has the potential to enhance the safety and efficiency of au-
tonomous vehicles, particularly in challenging environments due to its reduced computa-
tion requirements distributed among agents. The study’s findings reveal that the sug-
gested approach surpasses existing state-of-the-art techniques, demonstrating its poten-
tial to be applied in real-world situations. To overcome the real-time learning mission, 

0 200 400 600 800 1000 1200

Time [s]

40

60

80

100

120

D
is

ta
nc

e 
[m

]

Safe Distance

Relative Distance

0 200 400 600 800 1000 1200

Time [s]

50

100

D
is

ta
nc

e 
[m

]

Safe Distance

Relative Distance

0 500 1000

Time [s]

40

60

80

100

120

D
is

ta
nc

e 
[m

]

Safe Distance

Relative Distance

0

1

2

MADRL HPC HMPC

0.32
1.09

0.64
0.17

0.8
0.28

Yaw RMSE

Lateral RMSE

Figure 11. Bar chart comparison of different algorithms RMSE indices.

8. Conclusions

This paper proposes a multi-agent deep reinforcement learning-based method to con-
trol both speed and steering (cruise control) of unmanned vehicles using DLR agents, in
which the agents learn to select the optimum actions to control steering and acceleration.
The proposed method has the potential to enhance the safety and efficiency of autonomous
vehicles, particularly in challenging environments due to its reduced computation require-
ments distributed among agents. The study’s findings reveal that the suggested approach
surpasses existing state-of-the-art techniques, demonstrating its potential to be applied
in real-world situations. To overcome the real-time learning mission, both the DQN and
TD3 for the actor and critic sections follow the structure of two hidden layers made up
of 50 neurons, with the RELU acting as the activation function. To meet the control re-
quirements, the MADRL technique was used, where one agent is in charge of acceleration



Computers 2023, 12, 84 13 of 14

and the other is considered to be steering angle. As a result, the following outcomes were
obtained: 1-yaw and lateral errors reached approximately zero in less than 4 s, 2-the ego’s
velocity reached set point velocity in less than 10 s, while it is intelligent not to pass the
safe distance simultaneously, 3-acceleration and steering act in such a way that the smallest
amount of energy was acquired. Lastly, the performance of the proposed control method
was tested and compared to two state-of-the-art techniques, HPC and HMPC, with the
clear outcome that our proposal outperforms the state-of-the-art techniques. A future work
would be to consider other challenges and risks related to delays, data loss, and control
compromise of AV and propose new mitigation agents to maintain safety.

Author Contributions: Conceptualization, M.A., A.S and M.H.; methodology, M.A., S.S.M. and
C.Z and J.B.; software, M.A. and A.S.; validation, A.S., S.S.M., C.Z. and J.B.; formal analysis, M.A.,
A.S., S.S.M. and C.Z.; investigation, M.A., A.S and C.Z.; resources, all.; data curation, M.A. and
M.H.; writing—original draft preparation, all.; writing—review and editing, J.B., S.S.M. and C.Z.;
visualization, M.A., J.B.; supervision, C.Z. and J.B.; funding acquisition, J.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lv, M.; Peng, Z.; Wang, D.; Han, Q.-L. Event-Triggered Cooperative Path Following of Autonomous Surface Vehicles Over

Wireless Network with Experiment Results. IEEE Trans. Ind. Electron. 2021, 69, 11479–11489. [CrossRef]
2. Jain, R.P.; Aguiar, A.P.; de Sousa, J.B. Cooperative Path Following of Robotic Vehicles Using an Event-Based Control and

Communication Strategy. IEEE Robot. Autom. Lett. 2018, 3, 1941–1948. [CrossRef]
3. Li, W.; Xie, Z.; Wong, P.K.; Mei, X.; Zhao, J. Adaptive-Event-Trigger-Based Fuzzy Nonlinear Lateral Dynamic Control for

Autonomous Electric Vehicles Under Insecure Communication Networks. IEEE Trans. Ind. Electron. 2020, 68, 2447–2459.
[CrossRef]

4. Chen, J.; Shuai, Z.; Zhang, H.; Zhao, W. Path Following Control of Autonomous Four-Wheel-Independent-Drive Electric Vehicles
via Second-Order Sliding Mode and Nonlinear Disturbance Observer Techniques. IEEE Trans. Ind. Electron. 2020, 68, 2460–2469.
[CrossRef]

5. Zhang, L.; Ding, H.; Guo, K.; Zhang, J.; Pan, W.; Jiang, Z. Cooperative chassis control system of electric vehicles for agility and
stability improvements. IET Intell. Transp. Syst. 2018, 13, 134–140. [CrossRef]

6. Lucchini, A.; Formentin, S.; Corno, M.; Piga, D.; Savaresi, S.M. Torque Vectoring for High-Performance Electric Vehicles:
An Efficient MPC Calibration. IEEE Control Syst. Lett. 2020, 4, 725–730. [CrossRef]

7. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A Survey of Autonomous Driving: Common Practices and Emerging
Technologies. IEEE Access 2020, 8, 58443–58469. [CrossRef]

8. Kanchwala, H.; Viana, I.B.; Ceccoti, M.; Aouf, N. Model predictive tracking controller for a high fidelity vehicle dynamics model.
In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October
2019. [CrossRef]

9. Mazzilli, V.; De Pinto, S.; Pascali, L.; Contrino, M.; Bottiglione, F.; Mantriota, G.; Gruber, P.; Sorniotti, A. Integrated chassis control:
Classification, analysis and future trends. Annu. Rev. Control. 2021, 54, 172–205. [CrossRef]

10. Xiang, S.; Gao, H.; Liu, Z.; Gosselin, C. Dynamic transition trajectory planning of three-DOF cable-suspended parallel robots via
linear time-varying MPC. Mech. Mach. Theory 2020, 146, 103715. [CrossRef]

11. Zhang, J.; Feng, T.; Yan, F.; Qiao, S.; Wang, X. Analysis and design on intervehicle distance control of autonomous vehicle platoons.
ISA Trans. 2019, 100, 446–453. [CrossRef] [PubMed]

12. Berger, T.; Rauert, A.-L. Funnel cruise control. Automatica 2020, 119, 109061. [CrossRef]
13. Girard, A.; Eqtami, A. Least-violating symbolic controller synthesis for safety, reachability and attractivity specifications.

Automatica 2021, 127, 109543. [CrossRef]
14. Guo, N.; Zhang, X.; Zou, Y.; Lenzo, B.; Zhang, T. A Computationally Efficient Path-Following Control Strategy of Auton-omous

Electric Vehicles with Yaw Motion Stabilization. IEEE Trans. Transp. Electrif. 2020, 6, 728–739. [CrossRef]
15. Liang, Z.; Zhao, J.; Liu, B.; Wang, Y.; Ding, Z. Velocity-based path following control for autonomous vehicles to avoid ex-ceeding

road friction limits using sliding mode method. IEEE Trans. Intell. Transp. Syst. 2020, 23, 1947–1958. [CrossRef]
16. Ni, J.; Hu, J.; Xiang, C. Robust Path Following Control at Driving/Handling Limits of an Autonomous Electric Racecar. IEEE

Trans. Veh. Technol. 2019, 68, 5518–5526. [CrossRef]

https://doi.org/10.1109/TIE.2021.3120442
https://doi.org/10.1109/LRA.2018.2808363
https://doi.org/10.1109/TIE.2020.2970680
https://doi.org/10.1109/TIE.2020.2973879
https://doi.org/10.1049/iet-its.2018.5079
https://doi.org/10.1109/LCSYS.2020.2981895
https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1109/itsc.2019.8917528
https://doi.org/10.1016/j.arcontrol.2021.01.005
https://doi.org/10.1016/j.mechmachtheory.2019.103715
https://doi.org/10.1016/j.isatra.2019.12.007
https://www.ncbi.nlm.nih.gov/pubmed/31883686
https://doi.org/10.1016/j.automatica.2020.109061
https://doi.org/10.1016/j.automatica.2021.109543
https://doi.org/10.1109/TTE.2020.2993862
https://doi.org/10.1109/TITS.2020.3030087
https://doi.org/10.1109/TVT.2019.2911862


Computers 2023, 12, 84 14 of 14

17. Ao, D.; Huang, W.; Wong, P.K.; Li, J. Robust Backstepping Super-Twisting Sliding Mode Control for Autonomous Vehicle Path
Following. IEEE Access 2021, 9, 123165–123177. [CrossRef]

18. Wu, Y.; Liao, S.; Liu, X.; Li, Z.; Lu, R. Deep Reinforcement Learning on Autonomous Driving Policy with Auxiliary Critic Network.
IEEE Trans. Neural Networks Learn. Syst. 2021, 10, 1–11. [CrossRef]

19. Martinsen, B.; Lekkas, A.M. Curved path following with deep reinforcement learning: Results from three vessel models. In
Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018.

20. Cui, R.; Yang, C.; Li, Y.; Sharma, S. Adaptive Neural Network Control of AUVs With Control Input Nonlinearities Using
Reinforcement Learning. IEEE Trans. Syst. Man, Cybern. Syst. 2017, 47, 1019–1029. [CrossRef]

21. Carlucho, I.; De Paula, M.; Wang, S.; Petillot, Y.; Acosta, G.G. Adaptive low-level control of autonomous underwater vehicles
using deep reinforcement learning. Robot. Auton. Syst. 2018, 107, 71–86. [CrossRef]

22. Zhang, Q.; Lin, J.; Sha, Q.; He, B.; Li, G. Deep Interactive Reinforcement Learning for Path Following of Autonomous Underwater
Vehicle. IEEE Access 2020, 8, 24258–24268. [CrossRef]

23. Hung, S.-M.; Givigi, S.N. A Q-Learning Approach to Flocking with UAVs in a Stochastic Environment. IEEE Trans. Cybern. 2016,
47, 186–197. [CrossRef] [PubMed]

24. Rubi, B.; Morcego, B.; Perez, R. A Deep Reinforcement Learning Approach for Path Following on a Quadrotor. In Proceedings of
the 2020 European Control Conference (ECC), St. Petersburg, Russia, 12–15 May 2020. [CrossRef]

25. Hartmann, G.; Shiller, Z.; Azaria, A. Model-Based Reinforcement Learning for Time-Optimal Velocity Control. IEEE Robot. Autom.
Lett. 2020, 5, 6185–6192. [CrossRef]

26. Desjardins, C.; Chaib-Draa, B. Cooperative Adaptive Cruise Control: A Reinforcement Learning Approach. IEEE Trans. Intell.
Transp. Syst. 2011, 12, 1248–1260. [CrossRef]

27. Wang, P.; Chan, C.-Y.; De La Fortelle, A. A Reinforcement Learning Based Approach for Automated Lane Change Maneuvers. In
Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China, 26 June 26–1 July 2018; pp. 1379–1384.

28. Artunedo, A.; Villagra, J.; Godoy, J. Jerk-Limited Time-Optimal Speed Planning for Arbitrary Paths. IEEE Trans. Intell. Transp.
Syst. 2021, 23, 8194–8208. [CrossRef]

29. Liang, Y.; Li, Y.N.; Khajepour, A.; Zheng, L. Holistic Adaptive Multi-Model Predictive Control for the Path Following of 4WID
Autonomous Vehicles. IEEE Trans. Veh. Technol. 2020, 70, 69–81. [CrossRef]

30. Zhang, K.; Sprinkle, J.; Sanfelice, R.G. Computationally aware control of autonomous vehicles: A hybrid model predictive control
approach. Auton. Robot. 2015, 39, 503–517. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2021.3110435
https://doi.org/10.1109/TNNLS.2021.3116063
https://doi.org/10.1109/TSMC.2016.2645699
https://doi.org/10.1016/j.robot.2018.05.016
https://doi.org/10.1109/ACCESS.2020.2970433
https://doi.org/10.1109/TCYB.2015.2509646
https://www.ncbi.nlm.nih.gov/pubmed/26742155
https://doi.org/10.23919/ecc51009.2020.9143591
https://doi.org/10.1109/LRA.2020.3012128
https://doi.org/10.1109/TITS.2011.2157145
https://doi.org/10.1109/TITS.2021.3076813
https://doi.org/10.1109/TVT.2020.3046052
https://doi.org/10.1007/s10514-015-9469-5

	Introduction 
	Two Degree of Freedom Dynamic Model of Ground Autonomous Vehicles 
	Design of MADRL Controller 
	Markov Decision Process 
	The Twin Delayed DDPG (TD3) 

	MADRL AV TD3 Agent for Acceleration Control 
	Deep-Q-Network (DQN) 
	The MADRL AV DQN Agent for Steering Angle Control 
	Results and Discussion 
	Conclusions 
	References

