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Abstract: Buildings have now adopted a new dimension: the dimension of smartness. The rapid
arrival of connected devices, together with the smart features that they provide, has allowed for the
transition of existing buildings towards smart buildings. The assessment of the smartness of the large
number of existing buildings could exhaust resources, but some organisations are requesting this
regardless (such as the smart readiness indicator of the European Union). To tackle this issue, this
work describes a tool that was created to find connected devices to automatically evaluate smartness.
The tool, which was given the name SmartWatcher, uses a design-for-purpose natural language
processing algorithm that converts verbal information into numerical information. The method
was tested on real buildings in four different geographical locations. SmartWatcher is shown to
be powerful, as it was capable of obtaining numerical values from verbal descriptions of devices.
Additionally, a preliminary comparison of values obtained using the automatic engine and clipboard
assessments showed that although the results were still far from being perfect, some visual correlation
could be seen. This anticipates that, with the addition of appropriate techniques that refine this
algorithm, or with the addition of new ones (with other more advanced natural language processing
methods), the accuracy of this tool could be greatly increased.

Keywords: smart readiness indicator; IoT; natural language processing; smart building; machine
learning

1. Introduction

The European Union has committed to reducing greenhouse gas emissions by 80%
compared to 1990 levels, by 2050 [1]. Considering that buildings are responsible for
approximately 40% of the total energy consumption and account for 36% of the total CO2
emissions [2], one could define them as the largest energy consumer in Europe. Due to this,
the European Commission recognised that the energy efficiency of buildings can contribute
significantly to their emission reduction objective [3].

Smart technologies in buildings can help with the assessment of this issue, being an
effective means of creating healthier and more comfortable buildings with lower energy
use and carbon impact [4]. They also facilitate the integration of renewable energy sources
into future energy systems. For these reasons, one of the focal points of the last energy
performance of buildings directive (EPBD) [5] is to better exploit this potential of smart
technologies in the building sector. As part of this approach, the EPBD foresees the
establishment of the so-called smart readiness indicator (SRI). The SRI was created by the
EC as a tool to measure the smart readiness of buildings [6]. The indicator was designed
to serve as a tool to assess whether a building can adapt its operation to the needs of the
occupants and to the necessities to accomplish a secure electricity grid, as well as to improve
the overall energy performance of buildings. Thanks to the implementation of the SRI,
technological innovation in the building sector can be given visibility, since it represents
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an incentive for the integration of new smart technologies in buildings [7]. Some of the
consequences expected are a decrease in carbon emissions, the improvement of convenience
and comfort for the building occupants and more efficient energy management [8].

To assist the EU member states in defining the SRI, the European Commission’s
Directorate-General for Energy commissioned a technical study. The objective of the
study was the proposal of a methodological framework for the SRI and the smart services
on which the indicator is based. A conclusion from the study was that the developed
methodology followed the principles outlined in the 2018 EPBD, and was also practically
applicable. Although the member states are not bound to using this methodology, it
provides a template that is considered flexible enough to be adaptable to local framework
conditions [9].

The proposed SRI calculation methodology is based on a scoring system that ranks
buildings’ smart readiness. The scoring is based on seven impact criteria: energy savings
on site, maintenance and fault prediction, comfort, convenience, health and well-being,
information to occupants and flexibility for the grid and storage [6]. Each impact crite-
rion is expressed as a percentage of the maximum score that the assessed building can
achieve. Each impact criterion is the weighted average of the scores of nine domains:
heating, cooling, domestic hot water, ventilation, lighting, dynamic building envelope,
electricity, electric vehicle charging and monitoring and control. For each domain, several
functionality levels are defined, where higher functionality levels correspond to a smarter
implementation of the service [10].

As well as the SRI, there are other initiatives for the intelligent building assessment.
The Continental Automated Buildings Association (CABA) has developed a new version
of the building intelligence quotient [11] with the China Academy for Building Research
(CABR) in 2019, which is a tool that has more than 300 questions to rate the level of building
intelligence in different issues. In 2015, The Honeywell smart building score [12] was
implemented and applied globally for the evaluation of smart buildings. It measures
fifteen smart assets in a building and rates them across three criteria: greenness, safety and
productivity. Thus, the intelligent building assessment can be expected to proliferate in the
coming years with different tools and standards.

The scientific community has started to show interest in the new SRI, analysing the
method and its applicability to specific geographic conditions [13,14]. From the literature,
it is evident that the assessment requires the expertise of qualified personnel to check
and record the status of the devices available in the building. Moreover, a professional
should perform the scoring of different smart services, weigh them for each domain and
geographical context and obtain the final SRI score through a series of formulae. As one can
deduce, this process can imply a high human cost. Moreover, in some publications [15,16],
a problem was raised about the lacking objectivity of the method, explaining that each
assessor obtains a final score according to their personal comprehension. Additionally, one
of the major problems in performing the SRI assessment is the large number of existing
buildings, both commercial and residential. To this end, it is essential to use modern
technologies to assess these buildings in an efficient way.

Therefore, in order to try to solve this problem, this work shows the implementation
of an engine that is able to provide a series of preliminary scores, automatising the SRI
assessment based on the resources available on quasismart buildings. To the best of the
authors’ knowledge, this is the first study in the literature that proposes the automation of
the new SRI assessment. The aim of this work is to demonstrate that it is possible to propose
an automatic approach to obtain the SRI, without any human intervention. To achieve
this aim, an information and communications technology (ICT) framework is developed
with the necessary components to execute the task of assessing the SRI in an automatic
manner. In addition, eight case studies are used corresponding to buildings of different
ages and types to evaluate the framework [17,18]. The buildings, located in different
countries, undertook interventions aiming to improve their smartness. The interventions
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involved the installation and/or the upgrade of equipment, sensors and actuators, creating
a network-integrated IoT platform.

Thus far, the SRI result was calculated manually using requirements documented in an
Excel format. This traditional way of evaluating the SRI is called a “clipboard assessment”,
as it requires a professional to physically inspect a building and take notes.

Meanwhile, natural language processing (NLP) is a branch of artificial intelligence
that focuses on enabling computers to understand, interpret and generate human language.
When it comes to buildings, NLP can help improve the efficiency and effectiveness of
technical documentation in the building industry, making it easier for professionals to access
and use the information they need to build and maintain safe and functional buildings. As
a result, this work creates an engine called “SmartWatcher”, which uses NLP techniques
based on TF-IDF algorithms to convert the SRI requirement documents into processable
data for automatic SRI scoring.

In addition, the SRI score of the eight buildings is evaluated automatically through
SmartWatcher, and the final results are compared with the scores obtained by clipboard
assessors. The purpose of this comparison is to demonstrate the feasibility of the tool that
we developed for use in real cases, which could serve as an indicator of the real SRI value.
It also highlights the great benefits that can be achieved through using this tool compared
to traditional methods. In the time it takes a professional to physically assess a building
(very accurately), SmartWatcher can assess thousands of buildings (in a less precise way),
therefore, the scale of performance is completely different.

The remainder of this paper is organised as follows: Section 2 presents the state of the
art of this work. The methodology is described in Section 3. Section 4 presents the results
and discussion. Lastly, the conclusions and future work are discussed in Section 5.

2. State of the Art
2.1. Natural Language Processing

Currently, text is one of the most widely used means of communication. Along with
the evolution of the internet, it has become an important and widely used data source
for extracting information or knowledge [19]. However, these data are very complex and
difficult to exploit with existing algorithms. Since text data are unstructured, they require
specific approaches and models to extract the values stored in them.

Natural language processing (NLP) is a discipline that focuses primarily on the under-
standing, handling and generation of natural language using machines [20]. NLP can be
considered the interface between computer science and linguistics, since it is based on the
ability of the machine to interact directly with humans.

Two aspects can be distinguished as essential for any NLP problem:

• The linguistic part, which consists of preprocessing and transforming the input infor-
mation into an exploitable dataset.

• The machine learning or data science part, which is based on the application of
machine learning or deep learning models to that dataset with the aim of obtaining
linguistic and domain expertise.

In the linguistic aspect used for this work, the main objective was to transform raw
text data into processable data, which consisted of the following steps:

• Data cleaning. This is the process that refers to the practice of detecting and address-
ing mistakes, disparities and inaccuracies in data prior to an analysis. It is a vital
component of data analysis, since the dependability and precision of the analysis are
contingent on the quality of the data. The process of data cleaning includes a variety
of responsibilities, such as eliminating duplicates, managing absent data, fixing errors,
addressing outliers (i.e., values that are significantly different from the other values in
a dataset) and resolving conflicts. One of the most common steps in data cleaning is to
remove irrelevant information., e.g., stopwords, URLs, emojis, etc.

• Data normalisation [21] can be performed through:
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1. Tokenisation, which is the segmentation of text into several parts called tokens,
which are words, numbers, symbols and punctuation marks.

2. Stemming, which usually refers to the process of attempting to obtain the root
of a word, i.e., its morphological root, by stripping it of the affixes that carry the
word’s grammatical or lexical information, since the same word can be found in
different forms depending on the person, gender, number, etc.

3. Lemmatization, which is similar to stemming, uses the vocabulary and mor-
phological analysis of the word and tries to eliminate inflectional endings, thus,
returning words to their canonical form.

4. Other operations in order to complete the data cleaning process, such as lower
casing or removal of numbers, punctuation, symbols, etc.

• Transformation of textual data into digital data. There are several ways of conducting
this; the TF-IDF (term frequency-inverse document frequency) algorithm is one of
the most widely used methods and the one that was used in this work. This method
consists of counting the number of occurrences of tokens in the corpus for each text,
which is then divided by the total number of occurrences of the same tokens in the
whole corpus [22].

2.2. NLP Applied to Buildings

NLP research began in the 1950s, and focuses on tasks such as machine translation,
information retrieval, text summarization, question answering, information extraction
and topic modelling. Early research focused on syntax due to its necessity and the idea
of syntax-driven processing. Recent research has also included topics such as personal
assistants and opinion mining (or sentiment analysis) [23]. Combined with other big data
techniques (e.g., data mining and classification/clustering models), NLP can also be used
in a wide range of applications for knowledge acquisition and retrieval in the construction
industry [24].

Hassan et al. [25] proposed an automated framework using NLP and machine learn-
ing techniques to identify contractual requirements. The framework used four different
machine learning algorithms (naive bayes, support vector machines, logistic regression and
feedforward neural network) to classify contractual text into requirement and nonrequire-
ment text. They used seven contract documents to train and test the models, extracting
1787 statements that were manually labelled as requirements or nonrequirements. The
support vector machine model was found to outperform the other models in terms of
accuracy, precision, recall and F1 score. The study also found that using unigrams yielded
better results than higher n-gram features. Moreover, an experimental study with human
participants showed that the developed model was efficient and effective in reducing
reading time and improving contract scope comprehension.

Zhang et al. [26] presented an automated information extraction (IE) approach for
construction regulatory documents using a semantic, rule-based NLP technique. The
approach employed a set of pattern-matching-based IE rules and conflict resolution rules
using a variety of syntactic (syntax/grammar related) and semantic (meaning/context
related) text features. The study also introduced phrase structure grammar (PSG)-based
phrasal tags and the separation and sequencing of semantic information elements to reduce
the number of patterns required. An ontology was also used to support the recognition
of semantic text features. The proposed IE extraction algorithms were tested on the 2009
International Building Code, achieving high precision (0.969) and recall (0.944) rates.

Regarding smart homes, Baby et al. [27] used NLP to develop a web application
allowing for electronic devices to be controlled over the internet. The implemented appli-
cation contained a Chatbot algorithm into which a user can enter text information that is
then processed using NLP techniques to identify keywords and actions on the electronic
appliances. Additionally, any device connected to the local area network of the house
can control the devices and other appliances in the house. A security feature was also
included that restricted access to the application to authorized users only. In this way, they
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successfully implemented a simple and secure, but easy to modify and scalable, home
automation system.

2.3. Smart Readiness Indicator of Buildings

The potential of the new indicator captured the attention of the scientific community
within the last five years.

Vigna et al. [8] analysed the connection between the new indicator and the energy
flexibility of a building, since improving the energy flexibility is one of the three key
functionalities of the SRI. Their scope was to detect groups of buildings interconnected to
the same energy infrastructure through clustering techniques. Regarding energy flexibility,
another important contribution was given by Märzinger and Österreicher [9], who proposed
a method to quantify the interaction with the grid through the assessment of the load-
shifting potential and energy storage capacity. Through their model, they presented a
simplified classification into buildings that did not interact with the grid, buildings that
could shift the demand in a one-way mode (take energy from the grid) and buildings that
could shift their demands in a two-way mode (either taking or giving back energy to the
grid). The same authors expanded the methodology developed in a successive piece of
work [28] in order to include the district assessment. They successfully applied the method
to a theoretical case, concluding that it allowed for an objective and easier assessment of
the load shifting potential in districts.

Horák and Kabele [29] assessed the calculation for four different buildings in the Czech
Republic. They highlighted some shortcomings in the calculation, such as the difficulty
to reach the maximum SRI score (100%), since it would neither be user-friendly nor easily
affordable in terms of investment. Dorizas et al. [30] analysed the effects that the SRI would
have on indoor environmental quality (IEQ). They underlined that the main positive aspect
of the new introduction was the thrust towards the spread of smarter buildings. They
supported the implementation of the SRI score as a means to provide a better indoor living
space for occupants.

Regarding applicability related to climate conditions, Ramezani et al. [14] tested the
SRI method on the Mediterranean climate through two case studies located in Portugal.
They concluded that the SRI assessment managed to correctly describe the characteristics of
the buildings, despite some issues being found in predicting their energy consumption. On
the other hand, Janhunen et al. [13] analysed the applicability of the method to cold climates
by proposing three case studies located in the Helsinki metropolitan region in Finland.
From a technological point of view, it appeared that modifications in the SRI list of services
are needed to be fully applicable to cold climate countries. For instance, the presence of
district heating, considered in the scientific literature as one of the main enablers for energy
transition, was found to have less impact on the SRI score compared to other heating
systems. They also detected a limitation in using the triage process (a process to filter the
list of smart services applicable to a building), since results from different buildings are
hardly comparable. On the latter point, Vigna et al. [15] applied the SRI method to a nearly
zero-energy building in Italy, agreeing on the impossibility of comparing buildings with
different catalogue lists, i.e., with a different number of applicable smart services. Moreover,
they had two different panels of experts to evaluate the SRI score of the same building,
obtaining different results that raised concerns about the influence of subjective decisions
on the assessment. The element of subjectivity in the SRI method was also detected by
Fokaides et al. [16], who related the evaluation of the building to the understanding of the
designer in charge of the assessment.

Markoska et al. [31] wrote the first publication about the need for an automatic
estimation of the SRI, without human intervention. In a previous work [32], they developed
a framework called performance testing (PTing) to test smart buildings using a metadata
model. The main issue they found was that the functionality levels’ description pertained
in some cases to hardware enhancements, and to others to software installations, making it
insufficient for software metadata. As a consequence, they chose to add a service abstraction
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layer as an additional metadata scheme. The main limitation of their work was that the
method proposed could only be applied to buildings with an SRI score greater than 23%.

From the state of the art, they could deduce some main issues. On the one hand,
considering that the SRI would become mandatory in several European countries, there is
the need for a large number of specifically trained experts, resulting in consequent expenses
in terms of time and cost for training. On the other hand, the current methodology for the
SRI assessment involves a physical inspection of the building and all its installations, an
evaluation of all the services and the transcription of the data gathered on the spreadsheet
provided by the SRI support team. For complex buildings, the amount of time required for
the mentioned step can increase greatly, leading also to a higher cost for those who have to
pay the technician. It could also be underlined that the manual transcription of the data to
the spreadsheet can easily lead to human errors, undermining the reliability of the final
result. Finally, one of the most important issues that one can deduce from the state of the
art is the lack of objectivity of the current method. Since the allocation of the score to each
service is arbitrary and depends entirely on the technician’s assessment, the final SRI score
is subjective, as highlighted by [15,16].

All these reasons considered, the implementation of SmartWatcher could lead to
several benefits in the field of SRI by increasing the objectivity and the reliability of the
assessment and by entailing great improvements in terms of time and cost reduction.

3. Methodology

This paper described the development of SmartWatcher as a fully autonomous engine
that aims to be an autonomous counterpart of the European SRI calculation tool. The SRI
scoring system, the last version having been released by the European Commission, is
an Excel file listing (e.g., heating) the corresponding smart services for each domain (e.g.,
heat emission control). To each smart service, the assessor assigns a functionality level
from 0 to 4, where level 0 corresponds to a nonsmart functionality and level 4 corresponds
to a more intelligent preparation. Note that some smart services have less than four
functionality levels.

3.1. Problem Definition

Despite the expected benefits from the introduction of the new indicator, some main
issues were raised. These concerns were highlighted by both the scientific community and
the experimental working groups that participated in the SRI test phase [33].

The main point was the importance of finding a way to make the SRI score objective.
As said in the previous paragraph, an assessor has to assign the functionality level to each
smart service. As a consequence, the final score inevitably depends on the professional who
is in charge of the assessment. According to the third plenary SRI platform meeting [34],
the element of subjectivity in the evaluation is related also to the need to improve the
clearness of the services’ definition. It was found that different professionals understand
and interpret the definition of smart services in a nonunivocal way, leading to a subjective
assignment of scores.

Moreover, it is important to define who the assessor should be. The role of the assessor
is not trivial, since their tasks include both the assignment of a score as well as the provision
of guidance to improve it cost-effectively. With the SRI being a novelty in the field, the
matter of training the assessors was one of the key points of the SRI test phase. Experiments
to train several assessors through workshops and webinars were conducted, directed
at professionals in the building field and/or assessors of other similar scores, such as
the energy performance certificate. In the probable case of making the SRI assignment
mandatory, a considerable number of assessors would be needed, implying high costs for
both the countries in charge of the training and the users who would need the services of
trained professionals to obtain the SRI score for their buildings.

Summing up, the problem could be expressed through the following issues:

• Human intervention leads to a subjective SRI score assignment;
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• The cost to train a sufficient amount of professionals must be considerable;
• The cost faced by users to obtain the SRI certificate for their building would be higher.

Automatising the SRI assessment would lead to both an increase in the objectivity of
the assignment process and a reduction in costs for all stakeholders.

3.2. Case Study Definition

The case studies analysed in this work included eight pilot buildings that formed part
of the PHOENIX project [17]. The buildings were located in different locations (Ireland,
Greece, Sweden and Spain), and were characterised by different building features, as well
as the installation of different smart devices and services. The SRI score for each pilot
building was assessed throughout the project with the calculation tool provided by the
European Commission (scored on a clipboard assessment manner by professionals using
SRI forms). The final scores corresponding to each pilot building are reported in Table 1.

Table 1. Main characteristics and SRI scores of the pilot buildings.

Case Study

Pilot A Pilot B Pilot C Pilot D Pilot E
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Location Dublin, Ireland
West Europe

Thessaloniki,
Greece
South

Europe

Skellefteå,
Sweden
North

Europe

Region of Murcia, Spain
South Europe

Murcia,
Spain
South

Europe

Building
name Pilot A.1 Pilot A.2 Pilot A.3 Pilot B.1 Pilot C.1 Pilot D.1 Pilot D.2 Pilot E.1

Building
typology Nonresidential Residential Residential Residential Residential Nonresidential Residential Nonresidential

SRI score
(clipboard) 29% 37% 12% 34% 15% 32% 15% 40%

Moreover, the main characteristics of the building in terms of typology and location
were also reported, since, based on these features, the tool applied specific weighting factors
to take into account the inherent differences. From Table 1, it could also be deduced that the
buildings belonged to five different partners of the project, corresponding to five different
assessors that worked synergically to obtain comparable results.

3.3. Smart Building ICT Platforms

Smart buildings need to deal with a great deal of volume of data. It is for this reason
that aspects as data modelling in semantics is crucial. The organisation of these data is
normally performed in the form of data platforms, commonly based on IoT. The use of
semantics significantly enhances interoperability between intelligent platforms, allowing
for information to be shared between different systems and to be correctly interpreted by
all parties. Initiatives such as FIWARE [35], promoted by the European Union, provide
a reference framework for the development of intelligent platforms and different com-
ponents that form an ecosystem, leading to a standardisation and common model that
is already used in numerous intelligent solutions, such as the one proposed in a smart
building platform.

FIWARE promotes the use of semantically linked data to achieve a vocabulary that can
be understood by any machine or human being, thus, facilitating interoperability and the
homogenisation of information between different systems by achieving a common semantic
context. To this end, it proposes a context information model called NGSI-LD [36], which,
in addition to allowing for the management of context information, is used to facilitate
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the exchange of information based on linked data. This model has been standardised by
the ETSI (European Telecommunications Standardization Institute), and has become a
reference model for context information management in intelligent buildings.

Due to commitment towards the use of a common data model and semantically linked
data in smart buildings, this automated SRI assessment method takes advantage of these
features to achieve a reusable, flexible and interoperable solution that can be integrated
into any smart building platform.

This method was tested in a smart building platform, which proposes a multilayered
architecture to develop, integrate and deploy a secure interoperable smart platform to
provide energy efficiency in smart buildings and interactions with nontechnical end-users
and stakeholders.

A smart building platform normally integrates information and devices from different
sources, formats or manufacturers into a common data format based on semantic data
models. The platform context information is managed by the NGSI-LD model, implemented
in the Orion-LD component. In addition, smart building platforms could integrate the
Fuseki triple store component with semantically enriched context information to facilitate
complex semantic queries. The triple store, in combination with the NGSI-LD context
broker, constitutes the knowledge graph solution. Therefore, context information, such as
buildings, zones, devices and service-generated data, is available in the knowledge graph.

Figure 1 shows the above components and their connections in an example of a smart
building platform architecture.
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Therefore, an overview of the use of the platform can be seen in Figure 2. The context
broker (within a smart building platform) stores information about the smart devices,
which would then be used by SmartWatcher to produce results/ratings. Eventually, these
results can be made available to different stakeholders, such as municipalities or policy
makers for use.
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3.4. Automatic Building Smartness’ Assessment Framework

This subsection aimed to define the methodology used for the automatic SRI assess-
ment by applying the NPL.

In the Python environment, the SRI file was converted into a dataframe through the
Pandas library [37]. The dataframe contained the textual description of all the functionality
levels (Figure 3), which was the base to which the NLP was applied.

To transform the dataframe in an array, all the functionality levels of the same do-
main were united and concatenated in the same sentence, so that an array of nine strings,
i.e., one for each domain, was obtained. This step was needed to apply the transforma-
tion of textual data into digital data through the TF-IDF algorithm, as mentioned in the
Introduction Section.

An important step before applying the NLP algorithm was the preprocessing of the
text. For this, the removal of stopwords was carried out using the corpus of the NLTK
library [38]. Moreover, the punctuation marks were removed, since they were considered
irrelevant information, as well as the terms that appeared in more than six domains, which
were very common words such as “control” or “information” and did not provide much
information about a particular domain. These operations would then be applied together
with the TF-IDF algorithm using the Scikit-Learn library [39]. The implementation of the
algorithm in Scikit-Learn was performed using TfidfVectorizer [40]. The method returned
a matrix indicating the TF-IDF value, i.e., the weight of each term, which was an indicator
of the presence of the terms in each domain.



Computers 2023, 12, 76 10 of 17

Computers 2023, 12, x FOR PEER REVIEW 10 of 18 
 

3.4. Automatic Building Smartness’ Assessment Framework 
This subsection aimed to define the methodology used for the automatic SRI 

assessment by applying the NPL. 
In the Python environment, the SRI file was converted into a dataframe through the 

Pandas library [37]. The dataframe contained the textual description of all the 
functionality levels (Figure 3), which was the base to which the NLP was applied. 

 
Figure 3. Dataframe containing the textual description of the smart services and the functionality 
levels of the SRI calculation tool. 

To transform the dataframe in an array, all the functionality levels of the same 
domain were united and concatenated in the same sentence, so that an array of nine 
strings, i.e., one for each domain, was obtained. This step was needed to apply the 
transformation of textual data into digital data through the TF-IDF algorithm, as 
mentioned in the Introduction Section. 

An important step before applying the NLP algorithm was the preprocessing of the 
text. For this, the removal of stopwords was carried out using the corpus of the NLTK 
library [38]. Moreover, the punctuation marks were removed, since they were considered 
irrelevant information, as well as the terms that appeared in more than six domains, which 
were very common words such as “control” or “information” and did not provide much 
information about a particular domain. These operations would then be applied together 
with the TF-IDF algorithm using the Scikit-Learn library [39]. The implementation of the 
algorithm in Scikit-Learn was performed using TfidfVectorizer [40]. The method returned 
a matrix indicating the TF-IDF value, i.e., the weight of each term, which was an indicator 
of the presence of the terms in each domain. 

As explained in the Introduction, the data from the network of sensors and 
equipment of all the pilot buildings were stored in a database called the Fuseki triple store. 
SmartWatcher would query the triple store to find the devices that had some description 
containing the terms that appeared in the different domains. Triple store queries were 
performed through the SPARQL language, and SmartWatcher would then use the Python 
version of this language with the SPARQLWrapper library [41]. Specifically, given a 
building and a term, SmartWatcher searches for all the devices of the building whose 
description includes the term. The output is the number of devices found. In this way, by 
knowing the importance of a term (the TF-IDF value) and the number of devices related 
to that term, it is possible to give a partial score by multiplying the two values. By adding 
up the partial scores, the rate for each domain could be obtained. To these scores, 
weighting factors obtained from the SRI assessment tool were applied, according to the 
case. The weighting factors used in this work are reported in Table 2. 

Figure 3. Dataframe containing the textual description of the smart services and the functionality
levels of the SRI calculation tool.

As explained in the Introduction, the data from the network of sensors and equip-
ment of all the pilot buildings were stored in a database called the Fuseki triple store.
SmartWatcher would query the triple store to find the devices that had some description
containing the terms that appeared in the different domains. Triple store queries were
performed through the SPARQL language, and SmartWatcher would then use the Python
version of this language with the SPARQLWrapper library [41]. Specifically, given a build-
ing and a term, SmartWatcher searches for all the devices of the building whose description
includes the term. The output is the number of devices found. In this way, by knowing
the importance of a term (the TF-IDF value) and the number of devices related to that
term, it is possible to give a partial score by multiplying the two values. By adding up
the partial scores, the rate for each domain could be obtained. To these scores, weighting
factors obtained from the SRI assessment tool were applied, according to the case. The
weighting factors used in this work are reported in Table 2.

Table 2. Weighting factors used in this paper to address the differences among pilot buildings broken
down by domain.

Domain Pilot
E.1

Pilot
A.2

Pilot
A.3

Pilot
A.1

Pilot
B.1

Pilot
D.2

Pilot
D.1

Pilot
C.1

Heating 0.240 0.245 0.245372 0.224 0.230 0.230 0.240 0.230

Domestic hot water 0.090 0.067 0.067258 0.074 0.080 0.080 0.09 0.077

Cooling 0.140 0.097 0.096654 0.148 0.110 0.110 0.140 0.082

Controlled ventilation 0.110 0.133 0.133454 0.126 0.110 0.110 0.110 0.137

Lighting 0.050 0.039 0.039236 0.052 0.040 0.040 0.050 0.042

Dynamic building envelope 0.040 0.084 0.083944 0.041 0.100 0.100 0.040 0.097

Electricity 0.100 0.096 0.096327 0.096 0.100 0.100 0.100 0.097

Electric vehicle 0.040 0.038 0.037755 0.038 0.040 0.040 0.040 0.038

Monitoring and control 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200

Once the scores for each building were calculated using SmartWatcher, the result
of the SRI was compared with the scores obtained in a smart building platform. To
better understand the performance of SmartWatcher, an analysis of the outcomes could be
performed by domains, highlighting the characteristics of each case using the coefficient of
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determination or R-squared, assessed through Pearson’s method. The final step consisted
of the application of a correction factor. Since the SRI assessment in the smart building
platform project was expressed through a percentage, while SmartWatcher summed up
points, a correction factor was needed to adjust for the difference in the scoring system. For
the correction factor, a linear regression was used, using the mean slope, which predicted
the SRI score as a percentage using the values calculated through SmartWatcher.

4. Results and Discussion
4.1. Applying SmartWatcher to the Case Study

As mentioned above, one of the main reasons for the implementation of SmartWatcher
was to have an efficient method for the assessment of existing buildings; therefore, execution
time was a key issue to be considered.

Table 3 shows the execution time of SmartWatcher for the case studies, broken down
according to the domains. The tool was capable of evaluating any domain in less than 20 s,
and more than half of the domains were evaluable in less than 10 s. It was seen that the
variability of the execution time between buildings was much smaller than the variability
between domains. This implied that the most determining factor for the execution time
was the domain itself, and one could expect that the tool would have very little variation of
computational time from one building to another.

Table 3. Execution time (in second) of SmartWatcher per pilot and divided by domain.

EX. Time (Second) Pilot
E.1

Pilot
A.2

Pilot
A.3

Pilot
A.1

Pilot
B.1

Pilot
D.2

Pilot
D.1

Pilot
C.1

Mean EX.
Time

Heating 16.17 15.38 15.39 15.57 16.10 15.56 16.20 15.59 15.75

Domestic hot water 11.41 10.71 10.72 11.05 11.28 10.80 11.36 10.80 11.02

Cooling 15.78 15.18 14.90 15.16 15.81 15.13 15.93 15.01 15.36

Controlled ventilation 8.31 7.93 7.97 7.99 8.27 7.92 8.43 7.97 8.10

Lighting 2.74 2.63 2.63 2.65 2.72 2.66 2.81 2.63 2.69

Dynamic building
envelope 6.76 6.44 6.43 6.53 6.76 6.39 6.71 6.50 6.57

Electricity 11.14 10.57 10.51 10.70 10.93 10.64 11.15 10.61 10.78

Electric vehicle 8.05 7.66 7.67 7.80 8.04 7.96 8.22 7.82 7.90

Monitoring and control 9.46 9.01 9.00 9.24 9.37 9.03 9.61 9.17 9.24

Total time (minute) 1.497 1.425 1.420 1.445 1.488 1.435 1.507 1.435 1.456

In fact, the main factor that had an impact on the execution time was the number of
terms to be queried in the context broker, as shown in Table 4. It is clear that heating was
the domain with the most terms and, therefore, took the longest time to evaluate, while
lighting was the domain with the fewest terms and, therefore, the domain with the shortest
execution time. Furthermore, one could observe that the more terms a domain had, the
more time variability it had to perform the evaluation, even though the standard variation
was generally very small.

Table 4. Number of terms in SmartWatcher’s corpus and the standard deviation of execution divided
by domain.

Domain Heating DHW Cooling CV Lighting DBE Electricity EV MC

Number of terms 70 49 68 36 12 29 48 35 41

Standard
deviation 0.35 0.30 0.41 0.20 0.07 0.16 0.26 0.20 0.23
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The preliminary values obtained after the evaluation (before applying the weighting
factors) are shown in the box plot in Figure 4. In this first comparison, it could be seen
that the range of values from the clipboard was generally wider and more dispersed, while
most of the SmartWatcher values were grouped between zero and ten.

Computers 2023, 12, x FOR PEER REVIEW 12 of 18 
 

Domestic 
hot water 11.41 10.71 10.72 11.05 11.28 10.80 11.36 10.80 11.02 

Cooling 15.78 15.18 14.90 15.16 15.81 15.13 15.93 15.01 15.36 
Controlled 
ventilation 8.31 7.93 7.97 7.99 8.27 7.92 8.43 7.97 8.10 

Lighting 2.74 2.63 2.63 2.65 2.72 2.66 2.81 2.63 2.69 
Dynamic 
building 
envelope 

6.76 6.44 6.43 6.53 6.76 6.39 6.71 6.50 6.57 

Electricity 11.14 10.57 10.51 10.70 10.93 10.64 11.15 10.61 10.78 
Electric 
vehicle 

8.05 7.66 7.67 7.80 8.04 7.96 8.22 7.82 7.90 

Monitoring 
and control 

9.46 9.01 9.00 9.24 9.37 9.03 9.61 9.17 9.24 

Total time 
(minute) 

1.497 1.425 1.420 1.445 1.488 1.435 1.507 1.435 1.456 

Table 4. Number of terms in SmartWatcher’s corpus and the standard deviation of execution 
divided by domain. 

Domain Heating DHW Cooling CV Lighting DBE Electricity EV MC 
Number of 

terms 
70 49 68 36 12 29 48 35 41 

Standard 
deviation 

0.35 0.30 0.41 0.20 0.07 0.16 0.26 0.20 0.23 

The preliminary values obtained after the evaluation (before applying the weighting 
factors) are shown in the box plot in Figure 4. In this first comparison, it could be seen that 
the range of values from the clipboard was generally wider and more dispersed, while 
most of the SmartWatcher values were grouped between zero and ten. 

 
Figure 4. Boxplot of domain values obtained using SmartWatcher and real SRI values with 
clipboard. 

The result of SmartWatcher for the eight buildings, after the application of the 
weighting factors of Table 2, are reported in Table 5. 

Figure 4. Boxplot of domain values obtained using SmartWatcher and real SRI values with clipboard.

The result of SmartWatcher for the eight buildings, after the application of the weight-
ing factors of Table 2, are reported in Table 5.

Table 5. Dataframe of SmartWatcher’s results once the weighting factors for each case were applied,
divided by domain.

Domain Pilot
E.1

Pilot
A.2

Pilot
A.3

Pilot
A.1

Pilot
B.1

Pilot
D.2

Pilot
D.1

Pilot
C.1

Heating 5.9528 0.0000 0.0000 2.7561 8.5492 0.2111 2.0858 9.1779

Domestic hot water 1.9146 0.0187 0.0187 0.7847 1.6312 0.2034 1.5577 1.4959

Cooling 2.0329 0.0000 0.0000 0.0000 0.4806 0.0000 0.0000 0.6505

Controlled ventilation 1.2328 0.0000 0.0000 0.1875 0.6849 0.1307 0.4902 0.6961

Lighting 0.0376 0.0000 0.0000 0.0000 0.0601 0.0000 0.0000 0.0000

Dynamic building
envelope 2.0447 0.0634 0.0634 1.0449 4.4199 0.6629 1.8407 4.0509

Electricity 0.4658 0.0000 0.0000 0.0000 0.5627 0.1658 1.2083 0.0324

Electric vehicle charging 1.1047 0.0545 0.0546 0.0485 0.3147 0.0000 1.0790 0.1029

Monitoring and control 4.8149 0.3321 0.3321 3.6870 6.3702 0.8244 4.6030 3.6155

It should be noted that one of the main objectives of this work was to create a tool
capable of obtaining numerical values that reflected the level of intelligence of a building
through the textual requirements of a given smart evaluation methodology and the verbal
information contained in the repository of devices, i.e., transforming the descriptive values
into quantifiable values. A success case could, therefore, be considered when a nonzero
value was obtained through applying SmartWatcher to a building domain.

Table 6 shows the different SmartWatcher cases in relation to the clipboard evaluation,
in addition to the success cases: hit refers to the number of domains where both had a
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value greater than zero; a miss case is when SmartWatcher gave a value of zero, but not in
clipboard; and both zero was when both gave a value of zero.

Table 6. Success, hit, miss and zero rate for SmartWatcher.

Success Hit Miss Both Zero

53 39 10 9

As the total number of domains was 72 (eight pilots with 9 domains), the success rate
was 53/72, 73.61%, and the hit rate was (39 + 9)/72, 66.67%.

As can be seen, due to the fact that this was a very new method and approaches for
the first time, the results were moderate and could still be improved.

4.2. Analysis of Results and Improvements

In order to see the poor correlation between SmartWatcher’s scores and the real scores,
a scatterplot (Figure 5) is shown. The scatterplot, obtained through the Ploty [42] and
Plotnine [43] libraries, presents the rates calculated using SmartWatcher on the horizontal
axis and the points of the real SRI on the vertical axis. The domains were represented by
different colours, while the buildings were differentiated through shapes. If the points in
the graph were grouped diagonally, this meant that there was a correlation between both
scores, i.e., SmartWatcher’s results were very close to the real SRI’s.

Computers 2023, 12, x FOR PEER REVIEW 14 of 18 
 

 
Figure 5. Scatterplot of the SRI scores and of the SRI rates obtained with SmartWatcher for each 
domain and pilot buildings. The domains were differentiated by colours and the buildings by 
shapes. 

In the case of Figure 5, if the points were widely dispersed, this meant that the 
estimation of the SmartWatcher score with respect to the actual SRI did not show a high 
correlation. The correlation was then analysed for each domain, in order to understand 
these first results. It was seen that some domains, namely, the dynamic envelope, 
controlled ventilation, cooling and lighting, presented many outliers and noise compared 
to the others; hence, the points were more dispersed. It could be deduced from this first 
result that some words in the vocabulary were common among several domains (for 
example, the word “sensor”), leading to an incorrect rate attribution in certain domains. 
As a consequence, these domains were eliminated from the assessment, and the 
performance of SmartWatcher was evaluated on the remaining domains. The adjusted R-
squared and scatterplot obtained after this change are reported in Table 7 and Figure 6. 

Table 7. R-squared obtained through the comparison of the SRI scores and the results from 
SmartWatcher after the adjustment of the domains. 

Building Slope R2 
Pilot E.1 1.762037 0.428398 
Pilot A.2 29.343110 0.838263 
Pilot A.3 22.481704 0.359750 
Pilot A.1 3.091685 0.568483 
Pilot B.1 1.199217 0.545561 
Pilot D.2 4.800807 0.172023 
Pilot D.1 0.617941 0.238251 
Pilot C.1 0.815796 0.823083 

Figure 5. Scatterplot of the SRI scores and of the SRI rates obtained with SmartWatcher for each
domain and pilot buildings. The domains were differentiated by colours and the buildings by shapes.

In the case of Figure 5, if the points were widely dispersed, this meant that the
estimation of the SmartWatcher score with respect to the actual SRI did not show a high
correlation. The correlation was then analysed for each domain, in order to understand
these first results. It was seen that some domains, namely, the dynamic envelope, controlled
ventilation, cooling and lighting, presented many outliers and noise compared to the others;
hence, the points were more dispersed. It could be deduced from this first result that some
words in the vocabulary were common among several domains (for example, the word
“sensor”), leading to an incorrect rate attribution in certain domains. As a consequence,
these domains were eliminated from the assessment, and the performance of SmartWatcher
was evaluated on the remaining domains. The adjusted R-squared and scatterplot obtained
after this change are reported in Table 7 and Figure 6.
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Table 7. R-squared obtained through the comparison of the SRI scores and the results from Smart-
Watcher after the adjustment of the domains.

Building Slope R2

Pilot E.1 1.762037 0.428398

Pilot A.2 29.343110 0.838263

Pilot A.3 22.481704 0.359750

Pilot A.1 3.091685 0.568483

Pilot B.1 1.199217 0.545561

Pilot D.2 4.800807 0.172023

Pilot D.1 0.617941 0.238251

Pilot C.1 0.815796 0.823083
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In this case, the mean slope was 8.014. This value was used as the correction factor
needed for the comparison of the two different scoring systems. The final rates obtained
with SmartWatcher and their comparison to the SRI scores are shown in Figure 7.

Considering the results of Figure 7 and Table 7, one can see that the results for some
buildings, namely, Pilot A.2 and Pilot A.3, presented a bigger difference to the real SRI
compared to the others. The authors believe that these differences were related to a
discrepancy between the real status of the buildings and the data stored in the triple store.
In fact, the assessment of the SRI score within the smart building platform was based on
real devices installed in the buildings, while the assessment with SmartWatcher was based
only on the devices that were registered in the triple store. If the devices of a pilot were
not updated in the triple store, SmartWatcher could not include them in the assessment.
Hence, the two buildings were removed from the calculation, and the performance of
SmartWatcher was calculated for the remaining six pilot buildings.

The final output is depicted in Figure 8, and the main reason why similarities or
dissimilarities existed was because, as we discussed before, the corpus terms for querying
have not yet been refined for each domain. Some domains require more domain-specific
technical terms (in order to find related devices) and others need to reduce some general
terms (to eliminate repeated or unrelated devices).
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5. Conclusions

In this work, SmartWatcher was developed as an engine capable of automatising the
assessment of the SRI score using natural language processing. It was tested on eight pilot
buildings of a European smart building platform.

The results showed that the method could be improved, although the first step per-
formed toward the automation of the SRI calculation was more than encouraging, with a
73.61% success rate and 66.57% hit rate. It is also worth noting that this assessment method
took less than two minutes to complete and could be carried out remotely.

The main issues found were related to the vocabulary extracted from the Excel file
released by the European Commission for the assessment of the score. In particular, many
terms were repeated in several smart services belonging to different domains, which caused
the incorrect attribution of services in some cases. Hence, an important factor would be to
refine the corpus of terms to be queried, in addition to modifying the words according to the
domain that was found. For this aim, stemming techniques could be used to extract the root
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part of the terms, thus, eliminating repeated queries for terms that came from the same root.
Another insight for future works could be the application of machine learning techniques
that can optimise the results and lead to the obtainment of a better score approximation,
e.g., Word2Vec models could be used to find terms that are similar (synonyms) to important
terms in the corpus, thus, extending the search range of devices in different domains.

Despite more work being needed to obtain an optimised approximation to the real
SRI score, the authors believe that this contribution is a valuable step forward in this new
chapter of European legislation. The automation of the new SRI score proposed in this work
would have uncountable benefits to the introduction of the new indicator, in particular
with respect to the actual lack of qualified assessors and the inevitable subjectivity of the
technique, which are reported in the literature as the main issues of the new method.
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