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Abstract: By using computer-aided arrhythmia diagnosis tools, electrocardiogram (ECG) signal
plays a vital role in lowering the fatality rate associated with cardiovascular diseases (CVDs) and
providing information about the patient’s cardiac health to the specialist. Current advancements in
deep-learning-based multivariate time series data analysis, such as ECG data classification include
LSTM, Bi-LSTM, CNN, with Bi-LSTM, and other sequential networks. However, these networks
often struggle to accurately determine the long-range dependencies among data instances, which can
result in problems such as vanishing or exploding gradients for longer data sequences. To address
these shortcomings of sequential models, a hybrid arrhythmia classification system using recurrence
along with a self-attention mechanism is developed. This system utilizes convolutional layers as
a part of representation learning, designed to capture the salient features of raw ECG data. Then,
the latent embedded layer is fed to a self-attention-assisted transformer encoder model. Because
the ECG data are highly influenced by absolute order, position, and proximity of time steps due to
interdependent relationships among immediate neighbors, a component of recurrence using Bi-LSTM
is added to the encoder model to address this characteristic of the data. The model performance
indices such as classification accuracy and F1-score were found to be 99.2%. This indicates that
the combination of recurrence along with self-attention-assisted architecture produces improved
classification of arrhythmia from raw ECG signal when compared with the state-of-the-art models.

Keywords: biomedical signal processing; classification; electrocardiogram; transformer; sequential
model

1. Introduction

Heart-related disorders remain the primary cause of death worldwide despite the
ongoing advancement of medical procedures. According to the statistics of World Health
Organization (WHO), around 17.9 million deaths worldwide were attributed to cardio-
vascular diseases (CVDs) [1]. Arrhythmias, a significant type of CVD, occur when the
electrical signals that control heartbeats are disrupted. Arrhythmias have the potential to
result in serious and even fatal symptoms and problems if they are extremely irregular or
are arise from a weak or damaged heart [2]. There are many different forms of arrhythmia,
such as atrial fibrillation, supraventricular errant beats, premature ventricular contraction,
tachycardia, and others. Heartbeat categorization is a crucial area of research in the field of
healthcare because it is one of the primary diagnostic techniques for arrhythmia.

An electrocardiogram (ECG), sometimes called an electrocardiogram or EKG, is a di-
agnostic test that measures and records the frequency and intensity of the electrical activity
in a patient’s heart. This data are plotted on a graph that shows the progression of the elec-
trical signal through the heart at each step. Measuring human heartbeat activity through
ECG signals has become a common and easy clinical task using modern instruments.
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The main challenge lies in classification of the arrhythmia from the ECG signal [3].
The extraction of features and feature assessment methods in classic models developed for
arrhythmia classification typically takes a long period of time. Numerous studies suggested
deep-learning-based solutions to address these issues, which could more efficiently and
automatically extract abstract information [4–6]. However, these methods fail to address
the long-range dependencies among data instances along with vanishing or exploding
gradients due to complex recursive structures, which can lead to inaccurate diagnosis due
to misclassification. For long sequences with several hundred-time steps such as ECG
data processing with classic recurrent neural networks (RNN), the gradient might become
negligible and parameter updates become insignificant which makes learning difficult with
inaccurate results.

Recently, the self-attention-based transformer models have emerged as a powerful
tool for processing time series data, and have been found to outperform convolutional
neural networks (CNN) and RNN [7–9]. As the ECG data are periodic time-series data that
are often continuous, the current time step and the present categorization or prediction
rely on the proximity of previous time steps [10]. Moreover, these data are highly sensitive
to fluctuations of closest time steps. For example a slightly longer PR interval is an
indication of first-degree heart block [11]. Therefore, the key purpose of this study is to
demonstrate that for problems involving temporal classification and prediction, depending
solely on self-attention or recurrence would be insufficient. As such, a novel approach is
proposed in this study that extracts the local features from small time intervals of ECG
data using CNN and combines embedding of long-term correlations in data by pairing
self-attention with recurrence. The advantages of transformer and Bi-LSTM networks are
utilized for this purpose to achieve the most reliable modeling. The major contributions of
the study include:

1. Developing a temporal transformer-based fusion framework to classify morphological
arrhythmia into several multiple classes for lowering the fatality rate associated
with CVDs.

2. The CNN structure is followed by a transformer encoder network for the interpretation
of ECG signals. The Transformer’s integration makes up for CNN’s inadequacies in
terms of its inability to function well with temporal features.

3. Additionally, recurrence is combined with the network through Bi-LSTM layers that
identify the invariant relationship among neighboring time steps.

4. A wide range of experiments including ablation, parameter selection, and other
evaluation methods have been performed which deduced the proposed model’s
superiority to produce cutting-edge results on the dataset.

This paper presents a new approach to arrhythmia classification using a temporal
transformer-based fusion framework which combines self-attention and recurrence. Rest of
the paper is structured as follows: The related works are presented in Section 2. The details
of the materials along with the methodology are demonstrated in Section 3. Section 4
discusses the experiment and evaluation findings of the adopted methodology. Finally,
Section 5 presents the conclusion.

2. Related Work

With the advent of computer-aided diagnosis (CAD) systems in medical science,
the workload of cardiologists has been gradually reduced and more effective diagnosis
methods have been developed. A number of such works based on arrhythmia classification
have been included in this section.

Jiang et al. [12] proposed a novel data augmentation technique using Borderline-
SMOTE and Context Feature Module (CTFM). Here, Two-Phase training (2PT) has been
applied before feature extraction and classification using CNN for 1D-ECG signal. The
overall accuracy obtained is 96.6%. With the aim of diagnosing CVDs more accurately,
Shoughi et al. [13] proposed a CNN-BiLSTM approach with DWT for denoising and
SMOTE for balancing the data. This method improved the accuracy to 98.71% compared
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to the other approaches. In another work, Fang et al. [14] used the focal loss function to
handle imbalance and extracted four pieces of RR interval from the ECG signal to avoid
information loss due to heartbeat segmentation. CNN is then applied for classification
which achieves an Accuracy of 92.6% and an F1-score of 65.9%.

Mittal et al. [15] proposed an arrhythmia classification model using encoded ECG
signals (ACES). A prototype was trained using the MIT-BIH dataset and tested using ECG
data from human subjects. The prototype encodes each ECG pulse with 13 features derived
from the QRS complex. A small wearable ECG patch along with Bluetooth connected host
device was used to detect arrhythmia in real time using Bi-LSTM achieving test AUC of
98.4%. A novel data augmentation technique using GANs has been proposed to restore the
balance of the dataset by Shaker et al. [16] with two deep learning CNN-based approaches,
a two-stage hierarchical approach and an end-to-end approach, for feature extraction
and classification. The experimentation with these techniques achieved Accuracy above
98.0%, precision above 90.0%, specificity above 97.4%, and recall above 97.7%. Bertsimas
et al. [17] employed the XGBoost Algorithm to classify seven types of ECG signals and
extract 110 features from three different datasets, namely, Chapman [18], Tianchi [19] and
Physionet [20]. The labels of different datasets were overlapped to further evaluate the
proposed method. The overall F1-score for different overlapped data was 93% to 99%.

Two multimodal fusion frameworks, Multimodal Image Fusion (MIF) and Multi-
modal Feature Fusion (MFF) were proposed by Ahmad et al. [21]. The input for these
converted raw ECG signals into three different images using Gramian Angular Field (GAF),
Recurrence Plot (RP), and Markov Transition Field (MTF). The MIF method showed 98.6%
and the MFF method showed 99.7% overall accuracy for the Massachusetts Institute of
Technology-Beth Israel Hospital (MIT-BIH) data. To classify heart disease, a Dual-Layer
Stacking Ensemble (DLSE) and a Deep Heterogeneous Ensemble (DHE) technique were
introduced by Prakash et al. [22]. For DLSE approach, the Enhanced Evolutionary Feature
Selection (EEFS) algorithm was used to select best training parameters which were then
subjected to K-fold cross validation. The result of base learners of layer-1, Naïve Bayes
(NB), Decision Tree (DT), and Support Vector Machine (SVM), were combined with the
original training set to provide as input to layer-2 consisting of Extremely Randomized
Trees (ERT), Ada Boost Classifier (ABC), and Random Forest (RF) classifiers. To produce
the final prediction, the predictions from the layer-2 were passed into the meta-classifier
Gradient Boosted Trees (GBT).

On the other hand, the DHE employed three deep learning models as its base-learners:
RNN, Artificial Neural Network (ANN), and CNN with Bidirectional Long Short-Term
Memory (CNN-BiLSTM). The level-1 meta-learners applied were the RF and ERT algo-
rithms. GBT was used as level-2 meta-learner. The results of the DLSE approach across
different datasets showed a maximum accuracy of 95.17% whereas the DHE approach was
evaluated for different datasets and achieved an accuracy of 99.50%, precision of 98.41%,
and recall of 98.27% across the MIT-BIH data. For precise premature ventricular contrac-
tion (PVC) detection, Ullah et al. [23] employed a transfer learning mechanism using the
pre-trained deep residual network, ResNet-18. Segmented ECG beats were converted to 2D
(two-dimensional) images before being fed into the network. Weighted random samples,
on-the-fly augmentation, the Adam optimizer, and the call back feature were used to opti-
mize the approach achieving a maximum accuracy of 99.93%. However, these sequential
models have limited utility in capturing long-range dependencies which is an important
factor when considering time series data such as ECG signals. The application of advanced
models such as transformer learning has been proposed to address the shortcomings of
conventional approaches for time series data. For instance, Guan et al. [24] proposed a
low-dimensional denoising embedding transformer with fewer parameters that achieves
an average recall of 98.39% and a precision of 98.41%, extracting wide features from the
ECG signal using Random Forest Model and deep features using a transformer network.
Natarajan et al. [25] proposed a wide and deep network for multi-label classification with
a validation score of 0.587. A CNN-based network with an embedded transformer layer
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has been proposed by Che et al. [26] which introduces a new link constraint to make the
embedding vector more accurate for classification with an F1-score of 78.6%.

These models contain complex convolution, either only recurrence or only self-attention,
to capture morphological features. Hence, to overcome such limitations, considering both
morphological and temporal characteristics of ECG signal, an end-to-end framework
adding recurrence with parallelized self-attention has been proposed in this study.

3. Materials and Methodology

The proposed framework is shown in Figure 1. Initially, the raw ECG signal is taken as
input. Thereafter, the signal is subjected to de-noising as part of the preprocessing pipeline
because of the presence of unwanted random disturbances in the channel. The de-noised
signal is then windowed and individual heartbeats are segmented from it through QRS
Complex Detection. Then, data augmentation has been performed through resampling,
and finally, the processed and augmented output is fed to the classifier architecture. The
entire process has been detailed in the following subsections.
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3.1. Database Description

The MIT-BIH arrhythmia database was used in this study, which was collected from
Physio Bank [27], for training and evaluating the proposed classification system. The
dataset consists of ECG sequences of 30 min length each, is extracted from a 24-h recording,
and uses 360 Hz sampling in channels lead V1 and lead II. Cardiologists have already
pre-annotated and labeled this data. The study uses the recording from both channels and
the edited version of recording 102, as the annotations in this version were modified. These
numerous annotations pertain to a range of normal and abnormal ECG signals that indicate
various arrhythmia types. The dataset contains ECG signals of many classes, but the five
classes utilized in this study are “N”, “S”, “F”, “V”, and “Q”, as per the Association for the
Advancement of Medical Instrumentation (AAMI) standards. A summary of the categories
of heartbeat is presented in Table 1.

Table 1. Heartbeat categories mapped to AAMI classes in the MIT-BIH arrhythmia database.

AAMI
Category ID Heartbeat Type

N 0 Normal beats (N), Right bundle branch block (R), Left bundle branch block
(L), Nodal escape beat (j), Atrial escape beat (e)

S 1 Supraventricular premature beat (S), Atrial premature contraction (A),
Aberrated atrial premature beat (a)

F 2 Fusion of normal and ventricular beat (F)
V 3 Ventricular ectopic beats and ventricular premature contraction (V)
Q 4 Unclassifiable beats(Q), fusion of paced and normal beat (f), paced beat (/)

3.2. Signal Preprocessing

Prior to being fed into the proposed transformer-based fusion model, Signal Pre-
processing is performed which includes data denoising and segmentation of the raw
ECG signal.

3.2.1. Denoising

Monitoring an ECG can be affected by various circumstances, such as patient move-
ment or powerline interference from the equipment’s electric element, which may impact
the signal’s accuracy. In order to eliminate the noise from the data, processing the original
recording is a prerequisite. The proposed framework eliminates noise by utilizing discrete
wavelet transform (DWT) with Daubechies orthogonal mother wavelet ‘db10’ because of
its complexity and similarity to ECG data. The threshold for filtering is set at 0.03 and
sampling frequency 360 Hz is applied. The primary advantage of DWT is the extent of its
adjustable frame, which is broad in low frequency and compact in high frequency, resulting
in the precision of time frequency in all spectral domains. A wavelet coefficient, γ, is
calculated from a signal x(t) of length 2N having mother wavelet, ψ(t) as follows:

γjk =
∫ ∞

−∞
x(t)

1√
2j

ψ

(
t− k2j)

2j dt (1)

Here j is fixed so that γjk is a function of k only. The result, x̂(t) is a convolution of x(t)
with reflected, dilated, and normalized versions of the mother wavelet [28]. The signal is
then normalized using z-score normalization. Each heartbeat is segmented from the signal
after de-noising and normalizing.

3.2.2. Heartbeat Segmentation through QRS Complex Detection

After the raw ECG signal is filtered, the annotation files provided with the original
dataset are used to detect the R-peaks of the waveform, x̂(t). Peaks that are more than
600 points before or after another peak are discarded as these contain abnormal RR intervals.
The window size is selected as 180 before and after each R peak. Therefore, each heartbeat
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sequence consists of 360 time steps. The output of segmentation, X(t), is then resampled for
data augmentation. The visualization of different types of beats after the noise removal
and segmentation process is given in Figure 2.
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3.2.3. Data Resampling

After performing signal processing, the resampling process is carried out to increase
the number of data samples. Originally, high imbalance in the dataset can be observed from
Figure 3a where almost 90% of the training data consists of class “N” samples whereas the
number of samples for “F” class is almost negligible. The total number of instances for
class “N” is 155,352 and this greatly exceeds the combined value of all other class instances
which might lead the model to be inclined towards the majority class. Hence, to avoid a
biased result, data augmentation is conducted in the training data by using “resample”
package from Scikit-learn 1.0.2 where upsampling (minority class) and downsampling
(majority class) the signal is performed. This package utilizes one step of the bootstrapping
procedure for resampling [29]. The mean value of training samples considering all the
classes is 34,457 which is taken as the number of observations to generate a bootstrap
sample. Accordingly, upsampling is performed for the minority classes “S”, “F”, “V”, and
“Q” where a random sample is taken from the original data each time throughout the
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number of observations with replacement to generate one bootstrap sample. On the other
hand, the majority class “N” is downsampled where random samples are taken from the
original data without replacement to generate the bootstrap sample. Consequently, each
class consists of 34,457 samples which can be noted in Figure 3b. Subsequently, the ECG
data, X(t), is fed to the transformer-based fusion architecture.
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3.3. Transformer-Based Fusion Framework

The entire fusion framework consists of three major modules: (a) a one-dimensional
convolution layer-based embedded network to extract raw information from segmented
ECG wave (b) a transformer encoder stack using multi-head self-attention (c) a component
of recurrence using Bi-LSTM network. The modeling approach details have been described
as follows:

(a) CNN Network

The first stage, is to map X(t) at each location into the numeric space. CNNs can
extract extremely informative embeddings that are independent of time and are highly
resistant to noise. Hence, the heartbeats are processed using three 1D convolutional layers
in order to provide an embedding for each point in a latent space. Through representation
learning, the feature or latent vector X’ = [x1, x2, . . . .,xn] is generated where xi ∈ Remb. The
latent vector is then input to a Transformer encoder architecture. This work used three
one-dimensional convolution layers with optimum parameters as listed in Table 2. The first
convolutional layer is configured with a kernel size of 14, whereas the second and third
layers utilize a size of 10. The size of input and output layers remain unchanged as filters
of sizes 64, 32, and 16 are applied for feature learning.
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Table 2. Selected parameters for CNN Network.

Conv Layer Number of Filters Kernel Size

1 64 14

2 32 10

3 16 10

Here the stride and padding are kept as ‘same’ and the number of kernels applied is
gradually reduced as 2k where k = {6,5,4}. This exponential reduction in kernels is found to
be more effective in extracting useful information from the experimentally acquired signal.
The activation function is set to a rectified linear unit (ReLU) to provide non-linearity to
the network.

(b) Transformer Network

Only the transformer encoder has been applied here to capture long-range dependen-
cies and interactions among time instances. The encoder uses an attention mechanism for
this purpose. The output of convolution from the embedding layer is a latent or embedded
vector, here represented as X’, which is typically subjected to positional encoding before
the attention mechanism is applied.

However, in our case, positional encoding is not applied because it does not con-
tribute any pertinent information to the ECG signal. Here the length of signal found after
windowing is a representation of time steps, where a signal measurement appears as a
scalar real number or a vector. The same real number might show up once or multiple
times in a row, thus, the feature to be learned does not have much impact on prediction
performance. In fact, additional positional encoding might deteriorate performance for
time-series data [30]. The above reasoning is the basis for not applying the positional
encoding in this architecture.

The multi-head self-attention used by the encoder architecture has been detailed
as follows:

i. Self-Attention Module: The scaled-dot product attention or self-attention function’s
inputs, Q, K, and V, stand for the respective concepts of query, key, and value. The
attention weight is determined by how similar the query key is. The attention con-
text is determined based on the attention weight. The scaled dot-product attention
used by the model can be calculated as follows:

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (2)

Here Q, K, and V represent the query, key, and value embedding matrices. Queries
Q Є RN×dk , keys K Є RM×dk , values V Є RM×dv . Here, N and M represent the
length of queries and keys (or values). dk and dv represent the dimensions of keys
(or queries) and values respectively. The input consists of queries and keys of
dimension dk and values of dimension dv. The dot products of the query with all
the keys are calculated using QKT which is scaled by a factor of 1√

dk
. The softmax

of this is then multiplied by the values in V.
ii. Multi-Head Self Attention: The attention technique employed in this work is called

scaled dot-product attention, which is a type of self-attention that implies self-
learning. The query and key-value pairs are from the same source as evident in
the data. Despite the usage of attention mechanisms, it might not be possible
to fully explain all the dependencies with only a single attention function. Var-
ious self-attention functions are combined. Each function is called a ‘head’ and
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their combination facilitates simultaneous attention to information from multiple
representation subspaces. The formula is expressed as follows:

MultiHead(Q, K, V) = concat(head1, head2, . . . , headn) (3)

The multi-head attention mechanism integrates the results of the several atten-
tions by projecting Q, K, and V through n linear transformations. Here several
self-attention heads such as head1, head2 run in parallel and each of the smaller
dimension vectors is concatenated and projected to a higher dimension. This
parallelization computation capability improves the network’s performance in inte-
grating multiple features. The parameters for the transformer encoder stack have
been included in Table 3. Here the embedded Q, K, and V vectors have a size of 256
and are processed using four transformer encoder blocks having eight heads each.
The ratio of dropout is set at 0.15 for regularization.

Table 3. Selected Parameters for Transformer Network.

Parameters Meaning Values

encoder Number of transformer encoder stacks 4

dmodel Embedding output size and dimension of Q, K, and V vectors 256

num_heads Number of attention heads 8

ffn_units Number of units of feed-forward layer 1012

ff_dim Filters for convolution layers of feed-forward part 4

mlp_dropout Dropout value of feed-forward part 0

dropout Dropout value 0.15

iii. Feed Forward Network: The last stage of the encoder architecture is a straightfor-
ward feed-forward network with 1012 multilayer perceptron units, as illustrated
in Table 3. Two one-dimensional convolution layers with activation as ReLU and
kernel size 1 are used in between as projection layers to reduce dimensionality in
this part of the network.

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

Here, FFN(x) is the linear transformations in the network with weight matrices W1,
W2 and biases b1, b2 which is then followed by layer normalization. Finally, the
transformer network output Oemb: {o1, o2, . . . ,on} is obtained which is a learned
vector of each feature.

(c) Bi-LSTM Network

The Bi-LSTM structure enables the network to access both forward and backward
information about the sequence at each time step. ECG data are highly dependent on
the proximity of time steps and strict sequential ordering, and the strongest relationships
among time steps can be evident within the connection between immediate neighbors.
In order to capture this ordered flow of information, recurrence has been included as an
element here through two bidirectional LSTM layers having a sequence length of 128. The
generated output O1 is fed to a multilayer perceptron network of hidden units 352, 100,
and 32 for each layer respectively. The dimension of the final linear layer output, Oblstm, is
32 and each layer has an activation ReLU.
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(d) Final Classification

The outputs Oemb and Oblstm are concatenated before passing through the fully con-
nected network for final classification. Then the fully connected network with the softmax
function classifies the probabilities into the arrhythmia categories.

Kclasses = So f tmax(concat(Oemb , Oblstm)) (5)

4. Experiments and Result Analysis

The experiment is performed on the Google Colaboratory platform with Python
version 3.8.16 for both training and testing the model. NumPy 1.21.6 and Scikit-learn
1.0.2 packages are used for dataset preparation and model evaluation. In addition, Keras
and Tensorflow 2.9.0 framework is employed for model implementation. To ensure superior
classification, a 10-fold cross-validation process is utilized to divide the data samples
randomly 10 times using about 80% of ECG segments as training data and the remaining
20% as testing data. Consequently, subsamples taken per fold for validation are not
repeated. The training data consisted of 172,285 samples, while the number of samples
for testing data is 43,072. The original dataset contains highly imbalanced data, hence the
resampling technique is applied to the training data. On top of that, the model is tuned
using KerasTuner [31] to obtain more efficient hyper-parameter settings. Table 4 indicates
the global hyper-parameter settings for the proposed model. The ‘Adam’ optimizer with
a learning rate of 0.001 is chosen for compiling the model. Moreover, the Categorical
Cross-Entropy loss function is used to compute the classification loss for 10 epochs.

Table 4. Selected Global Hyper-parameters.

Hyperparameter Value

Loss function Categorical Cross-Entropy

Optimizer Adam

Batch size 64

Learning rate 0.001

Epoch 10

Number of folds 10

4.1. Quantitative Analysis

The frequently used metrics, Accuracy, Precision, Recall, Specificity, and F1-score,
have been used to quantitatively assess the proposed classification framework. Where true
positives and true negatives have been represented as TP and TN. False positives and false
negatives have been represented as FP and FN.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (6)

Precision =
TP

TP + FP
× 100 (7)

Recall =
TP

TP + FN
× 100 (8)

F1− score = 2× Precision× Recall
Precision + Recall

× 100 (9)

Speci f icity =
TN

TN + FP
× 100 (10)

AUC =
1
2
×
(

TP
TP + FN

+
TN

TN + FP

)
(11)
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Table 5 presents the class-wise performance of the proposed classification model.
The analysis shows that the model performs quite well for classes S, V, and Q, but some
incorrect predictions have been observed for classes N and F. This error might be due to
the fact that the original dataset had highly imbalanced data. Therefore, data augmentation
is performed and the experiment conducted again. As a result, the model demonstrates
unbiased performance by correctly predicting more than 97% of the ECG data.

Table 5. Quantitative assessment of proposed methodology.

Class Accuracy (%) Precision (%) Recall (%) F1-Score (%) Specificity (%) AUC

Non-ectopic beat (N) 98.9 99 97.5 98.2 98.2 0.99

Supraventricular ectopic beat (S) 99.9 99.9 99.9 99.9 99.9 1.0

Fusion beat (F) 97.4 97.4 99.9 98.7 99.1 0.98

Ventricular ectopic
beat (V) 99.08 99.1 97.7 98.4 98.3 0.99

Undetermined beat (Q) 99.9 100 100 99.9 99.9 1.0

The weighted average calculated by taking the number of instances of a class present as
weight with its Precision, Recall, and F1-score result in 99.2% Precision, Recall, and F1-score
for the model. The Accuracy obtained is 99.2% and Specificity is 99.1%. Additionally, the
AUC (Area under the ROC curve) metric provides an overall measure of performance across
all potential classification criteria. The AUC obtained here is near perfect for all classes
except class F since false negative (FN) is observed to be high for this class comparatively,
consisting of 28 FN samples. The Loss and Accuracy graph of the model across each epoch
during the training and validation stage is plotted in Figure 4. The curve in Figure 4a shows
that after 3 epochs, the variation in Loss gradually reduces in training data although some
fluctuation in loss of validation data is observed at epochs 5 and 7. The exponential increase
in Accuracy is observed in Figure 4b where after 6 epochs, the training data reaches 98%
Accuracy and validation Accuracy fluctuates from around 96.5% to 98.5%.
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4.2. Qualitative Analysis

Table 6 demonstrates a qualitative study of the proposed framework to differentiate
the actual class and predicted class respectively. It also reveals that the proposed model
performs well in the prediction of a substantial number of classes included in the “S”, “V”,
“Q”, and “N” categories. However, a random sample from class “F” is predicted as “S”,
suggesting that the model shows some discrepancies for this class, as mentioned in the
quantitative analysis. This might be due to the smaller number of samples in this class.
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Table 6. Qualitative assessment of proposed methodology for different classes.

Sample Models Actual Class Predicted Class
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4.3. Ablation Study

Table 7 represents the ablation study on the proposed framework as well as different
variations of the proposed model considering F1-score and Accuracy as performance
metrics. From Table 7, it can be observed that adding one convolutional layer having
64 filters and kernel size 14 presents more efficient embedding with a 98.4% F1-score, which
outperforms having two or no layers at all. Furthermore, if four or five layers are added
for convolution having an exponentially decreasing filter number and kernel size 10, the
F1-score decreases to 98.1% from 98.6%. So, superior performance of CNN for extraction of
local features from small shifts in time is obtained with 3-layer architecture. The variation
in the Bi-LSTM model on the other hand demonstrates that adding additional neurons or
increasing the number of hidden units in the fully connected layers does not necessarily
provide a more accurate analysis of data. On the contrary, when the number of hidden
units is increased to 2078, the Accuracy and F1-score drop by 0.5%. A reason behind this
might be the increase in the number of parameters which makes the training time for the
model higher than required. From the variations of the number of heads of the transformer
network, it could be deduced that increasing the number of heads does not necessarily
improve overall performance since applying 10 heads does not show much different than
applying 6 heads. Instead, varying the hidden units of the multilayer perceptron network
along with embedding vector size showed improved results. The three convolution layers
for latent vector representation with a transformer encoder stack having eight heads are
applied for self-attention architecture. Additionally, 352 neurons are observed to be the
optimum value for the first layer in the multilayer perceptron network of the recurrence
structure comprising the Bi-LSTM network. These optimal values across the proposed
Transformer-based fusion network presented the highest F1-score of 99.2%.

Table 7. Ablation Study across the proposed methodology. The ‘-’ sign indicates keeping the constant
or unchanged original parameters of the framework.

Model Conv Layer Hidden
Units

Attention
Heads Accuracy (%) F1-Score (%)

Bi-LSTM+
Transformer

None

- -

97.1 97.1

1 98.4 98.4

2 97.7 97.3

4 98.6 98.6

5 98.3 98.1

CNN+
Transformer

-

100

-

98 98.0

612 98.2 98.1

976 98.2 98.2

2078 97.7 97.7

CNN+Bi-LSTM - -

2 97.9 97.7

4 98.3 98.2

6 98.4 98.4

10 98.3 98.3

CNN+
Transformer+

Bi-LSTM
3 352 8 99.2 99.2

5. Discussion

To observe the generalization of the proposed framework, an experiment was con-
ducted with another publicly available dataset called PTB Diagnostic ECG Database [32].
This dataset consists of two classes which contain different arrhythmia cases and healthy
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cases, respectively. The proposed framework shows promising results for both MIT-BIH
and Arrhythmia and PTB Diagnostic ECG datasets as observed in Table 8. The F1-score
obtained for the PTB dataset is 98.8% for arrhythmia cases and 98.7% for healthy cases. In
addition, above 98% of the data are classified correctly. The weighted average for the PTB
dataset results in an Accuracy of 98.7% and an F1-score of 98.8% which are comparable to
the results obtained using the MIT-BIH dataset. Hence, the proposed framework produces
noteworthy results.

Table 8. Results of performance metrics on MIT-BIH and PTB ECG Diagnostic Datasets.

Dataset Class Accuracy (%) F1-Score (%) AUC

MIT-BIH
Arrhythmia

Non-ectopic beat (N) 98.9 98.2 0.99

Supraventricular ectopic beat (S) 99.9 99.9 1.0

Fusion beat (F) 97.4 98.7 0.98

Ventricular ectopic beat (V) 99.08 98.4 0.99

Undetermined beat (Q) 99.9 99.9 1.0

PTB Diagnostic
ECG

Arrhythmia 98.6 98.8 0.98

Healthy 98.8 98.7 0.98

A comparative study of various state-of-the-art methods with the proposed methodol-
ogy on the MIT-BIH database has been done in Table 9, which establishes that the proposed
methodology performs better for multi-class classification. It outperforms CNN, Bi-LSTM,
and self-attention-based network architectures, by achieving improved Accuracy of 1% to
6% and an F1-score of more than 8%. Hence, the proposed method exceeds the established
only recurrence or only self-attention-based network architectures.

Table 9. Comparison of the proposed methodology with state-of-the-art methods.

Reference Approach Performance

Jiang et al. [12] CNN Accuracy: 96.6%, MAUC: 97.8%

Shoughi et al. [13] CNN-BiLSTM Accuracy: 98.71%

Fang et al. [17] CNN Accuracy: 92.6%, F1-score: 65.9%

Mittal et al. [18] BiLSTM AUC: 98.64%

Shaker et al. [19] GANs and CNN Accuracy: 98%, Recall: 97.7%

Bertsimas et al. [20] XGBoost Algorithm Accuracy: 94% to 96%

Guan et al. [22] Transformer Recall: 98.39% and Precision: 98.41%

Che et al. [24] CNN-Transformer F1-score: 78.6%

Proposed CNN+Transformer+
Bi-LSTM Accuracy: 99.2%, F1-score: 99.2%

Notwithstanding the great performance of the proposed architecture, some constraints
had to be taken into account when assessing the results. The resampling strategy has helped
to deal with the data imbalance, but the generalization of the model is still somewhat
affected by the data imbalance which can be observed due to some misclassification of class
“F” instances. Moreover, addition of recurrence with the self-attention assisted transformer
network leads to increased complexity and training time for large datasets.

6. Conclusions

This study presents a hybrid transformer-based fusion method for managing the
classification of arrhythmia heartbeats. The proposed study makes use of both morpho-
logical and temporal information by using Bi-LSTM along with a transformer encoder
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stack. Additionally, convolution layers are used to extract useful spatiotemporal features.
In the original dataset, the model has attained cutting-edge Accuracy and F1-score which
has been further established by analyzing performance metrics across other model vari-
ations. Through conducting numerous comparison trials, it has been demonstrated that
the proposed framework can offer improved performance in F1-score by more than 8%
and achieves greater Accuracy by 1% to 6%. As a part of future work, the goal would be
to utilize different data augmentation approaches to improve predictions for some classes
such as class “F” which particularly contains lower data samples. Also to implement a time
series classification with less complicated models.
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