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Abstract: Healthy and sufficient crop and food production are very much essential for everyone as
the population is increasing globally. The production of crops affects the economy of a country to a
great extent. In agriculture, observing the soil, weather, and water availability and, based on these
factors, selecting an appropriate crop, finding the availability of seeds, analysing crop demand in the
market, and having knowledge of crop cultivation are important. At present, many advancements
have been made in recent times, starting from crop selection to crop cutting. Mainly, the roles of the
Internet of Things, cloud computing, and machine learning tools help a farmer to analyse and make
better decisions in each stage of cultivation. Once suitable crop seeds are chosen, the farmer shall
proceed with seeding, monitoring crop growth, disease detection, finding the ripening stage of the
crop, and then crop cutting. The main objective is to provide a continuous support system to a farmer
so that he can obtain regular inputs about his field and crop. Additionally, he should be able to make
proper decisions at each stage of farming. Artificial intelligence, machine learning, the cloud, sensors,
and other automated devices shall be included in the decision support system so that it will provide
the right information within a short time span. By using the support system, a farmer will be able to
take decisive measures without fully depending on the local agriculture offices. We have proposed an
IoT-enabled soil nutrient classification and crop recommendation (IoTSNA-CR) model to recommend
crops. The model helps to minimise the use of fertilisers in soil so as to maximise productivity. The
proposed model consists of phases, such as data collection using IoT sensors from cultivation lands,
storing this real-time data into cloud memory services, accessing this cloud data using an Android
application, and then pre-processing and periodic analysis of it using different learning techniques.
A sensory system was prepared with optimised cost that contains different sensors, such as a soil
temperature sensor, a soil moisture sensor, a water level indicator, a pH sensor, a GPS sensor, and
a colour sensor, along with an Arduino UNO board. This sensory system allowed us to collect
moisture, temperature, water level, soil NPK colour values, date, time, longitude, and latitude. The
studies have revealed that the Agrinex NPK soil testing tablets should be applied to a soil sample,
and then the soil colour can be sensed using an LDR colour sensor to predict the phosphorus (P),
nitrogen (N), and potassium (K) values. These collected data together were stored in Firebase cloud
storage media. Then, an Android application was developed to fetch and analyse the data from the
Firebase cloud service from time to time by a farmer. In this study, a novel approach was identified
via the hybridisation of algorithms. We have developed an algorithm using a multi-class support
vector machine with a directed acyclic graph and optimised it using the fruit fly optimisation method
(MSVM-DAG-FFO). The highest accuracy rate of this algorithm is 0.973, compared to 0.932 for SVM,
0.922 for SVM kernel, and 0.914 for decision tree. It has been observed that the overall performance
of the proposed algorithm in terms of accuracy, recall, precision, and F-Score is high compared to
other methods. The IoTSNA-CR device allows the farmer to maintain his field soil information easily
in the cloud service using his own mobile with minimum knowledge. Additionally, it reduces the
expenditure to balance the soil minerals and increases productivity.

Computers 2023, 12, 61. https://doi.org/10.3390/computers12030061 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12030061
https://doi.org/10.3390/computers12030061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0001-7997-2336
https://doi.org/10.3390/computers12030061
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12030061?type=check_update&version=2


Computers 2023, 12, 61 2 of 34

Keywords: Internet of Things; sensors; soil nutrients; pH value; precision agriculture; crop
recommendation; machine learning

1. Introduction

The agricultural sector plays a significant role in the development of the whole econ-
omy of any country. The global rapid increase in population makes food and crop pro-
duction important. So, a lot of technological changes have been observed in this sector.
There are many ways that crop production and its storage are carried out. We see the
IoT, smart technologies, artificial intelligence, and automated devices as being available in
smart farming. Sometimes, implementing these technologies requires expertise and is also
costly. Precision agriculture is a significant part of agriculture, in which data transmission
technology is also vital. The soil minerals can be determined via soil testing, either in a lab
or by using sensors. The use of various sensors allows for the collection of real-time data.

We must find recommended crops for a particular field for better cropping. In order
to have better crop prediction and production, the factors influencing it are soil properties,
weather conditions, availability of water, soil temperature, sunlight, wind, pollution level,
etc. Therefore, by using sensors, area-wise soil properties are to be collected for phosphorus
(P), nitrogen (N), and potassium (K), pH value, temperature, moisture, water level, water
pollution, etc. These data allow for the recommendation of crops based on their ideal
requirements. However, for these sensors, we need much investment and expertise to
handle them, and periodic maintenance is also required.

In the present day, the proper integration of IoT sensors, mobile devices, and cloud and
data analysis is essential in the field of precision agriculture. Additionally, the technologies
must fit with the farmers’ knowledge and experience so as to contribute toward increasing
sustainability in agriculture. The soil’s characteristics and its mineral availability vary to
some extent many times. So, the real-time data will give better accuracy in predictions
for the specific fields compared to the offline dataset as per geographical locations. So, an
approach to making studies of real-time data much more important is required. Periodic
real-time data shall be maintained in the cloud in a systematic manner. The cloud service
is the best option for storing the collected data over time using the IoT device’s Wi-Fi
module. In the present day, smartphones are available to most people. The common mobile
operating system supports the development of an application through which accessing
cloud data is easier.

In this context, a timely decision is the prime goal, as it can save time and resources
and give us an accurate decision. So, a support system for pre-processing the cloud data
and then analysing it for predictions is required. The different classification and regression
tools are used for data analysis so that the prediction is more accurate.

The major contributions of this paper are:

• Proposing an IoTSNA-CR model.
• Sensors to collect data on soil properties.
• Proposing an MSVM-DAG-FFO algorithm.

This paper proposes an IoT-enabled soil nutrient analysis and crop recommendation
(IoTSNA-CR) model for precision agriculture.

It primarily allows the IoT sensors to collect data related to soil moisture, temperature,
NPK, and pH value. In addition, the IoTSNA-CR technique involves the design of the
MSVM model for the appropriate classification of soil nutrients and crop recommendations.
Furthermore, the kernel function of the MSVM model must be optimally chosen using
the fruit fly optimisation (FFO) algorithm. The benchmark dataset was used for detailed
experimental validation of the IoTSNA-CR model. This crop recommendation system helps
the farmers to not only acquire data from the sensors but also to maintain them and analyse
them suitably using this hybrid approach. We have analysed the soil for classification
using linear SVM and kernel SVM, as well as decision tree. We have datasets based on
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different types of crops and their mineral needs. So, it is observed that the performance
of SVM is better suited for us in multiple classes. It increases the accuracy rate if we can
choose a suitable kernel function for it. The FFO algorithm can help us to select optimised
kernels. So, a hybridisation of MSVM and FFO was used to improve the accuracy rate
for classification.

The rest of this paper is organised as follows: Section 2 includes reviews on different
models proposed and algorithms applied in precision farming; Section 3 shows the pro-
posed model that contains data acquisition, data storage in the cloud, and data analysis
using a novel MSVM-DAG-FFO algorithm; Section 4 presents the proposed method’s exper-
imental results; and finally, Section 5 contains the overall conclusion and future extensions
of the paper.

2. Literature Review

It has been observed that the use of many kinds of automated devices, sensors, wire-
less connectivity, drones, and satellite images has increased in precision farming for the
optimum use of fertilisers, labour resources, and time.

The importance of machine learning and IoT is high in the field of smart farming.
However, the farmer faces several challenges while implementing them, of which crop
disease prediction is one. The most common disease for apple crop is apple scab. One
author proposed a framework consisting of IoT nodes with WSN scattered in the orchards
of apples to collect real-time data and early prediction of the disease. Additionally, he
discussed several challenges faced by farmers while handling the hardware units and
sensors as they were affected due to outside environmental factors [1]. The implementation
of precision farming consists of automated devices, IoT sensors, real-time data collection,
storage in cloud memory, and data analysis. One author proposed a framework that
provides smart control over irrigation systems and greenhouse facilities. It allows for the
storage, management, and analysis of data based on nutrition, climate, and irrigation [2].
The characteristics of the soil play an important role in maintaining its fertility; as year by
year the soil nutrition level will be decreased due to cultivation, this is a suitable method
to be followed for optimally increasing soil fertility so as to improve crop production [3].
The role of big data is increasing day by day along with the use of IoT sensors and smart
tools. One author focused on the large volume of data generated by sensors, the available
cloud storage medium, and the challenges with cloud storage, analysing real-time data,
and data visualisation [4]. Sensors are used in almost every phase of precision farming.
So, the author elaborated on different sensors for measuring humidity, water level, soil
moisture, pH value, and also on finding mineral deficiencies in the soil. So, to increase
the production level of agricultural products, we can implement sensor technology. It in
turn improves soil quality, food safety, and crop profitability. Here, one author suggests
an overall model that shows implementing sensors and machine learning in every stage,
such as water management, crop selection, nutrient management, crop health management,
yield management, and post-harvest management [5]. The smartphone applications are
recognised for their integration with the aggregation of data, the speed of the process,
and IoT ideals. These data can be shared with farmers for making decisions on weeding,
watering, seeding, and fertilising. This application gathers information from weather
stations and remote sensors and assists in an in-depth analysis of the data [6]. The financial
condition of India is mostly dependent on cultivation. So, the data related to it have
to be maintained in the cloud regularly which allows one to analyse them from time
to time for the benefit of the farmers. The machine learning algorithms can be used to
recommend suitable crops by performing soil tests. Depending on this, the farmer could
make decisions about their fields [7]. In soil testing, the soil nutrients, fertiliser requirement,
irrigation level, and soil type can be examined. Floods cause agricultural disasters; so,
the sensor technology helps to measure the water flow, water level, soil moisture, and
geographical locations of floods so that the farmer can take precautionary measures to
protect crops [8]. Different sensors are available, such as spectra-radiometers used to
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analyse soil content for nitrogen, carbon, and organic matter. The soil salinity can also
be measured using low-cost capacitance resistance. Here, one author discussed different
sensors and tools used in soil analysis and forests for taste and odour detection, soil water
content, soil density, pest control, and seedlings [9]. A crop recommendation scheme
that employs ensemble techniques of the machine learning method is proposed. The
ensemble techniques were applied for building a system that integrates the prediction of
several machine learning methods to suggest the right crop according to the soil types
and features with higher performance. The ensemble models include random forest, naive
Bayes, and Lagrangian SVM [10]. The machine learning techniques were used for finding
the relationship between N-K, N-P, and P-K. It has been identified that the N value in soil
affects the p value significantly. The p value also affects the K value, whereas the N value
does not have a strong relation with K. One author suggested a model for checking the
inter-dependency of primary nutrients, i.e., nitrogen (N), phosphorus (P), and potassium
(K), called the most important nutrients of the soil, as well as for estimating the effect of
N contents on another main soil nutrient [11]. The soil test report value was employed
for classifying many important soil characteristics of available potassium (K), available
phosphorus (P), boron (B), parameter soil reaction (pH), and organic carbon (OC). The
prediction and classification of soil parameters help in decreasing waste expenditures on
fertiliser, saving the time of experts for chemical soil analyses, and improving environmental
quality. These classification issues are resolved via the extreme learning machine using
distinct activation functions [12]. The data of Taiwan’s enterprises related to financial
distress were collected, and during the implementation of the general regression neural
network, the FFO was implemented to optimise and improve its classification [13]. The
usage of a kernel-based C-mean clustering algorithm was employed to classify the data in
which the FFO is applied for optimisation, and it has been observed that this improves the
performance of clustering [14]. The prediction of scour characteristics in ski jump spillways
is important for hydraulic researchers. One author proposed a hybrid model in which the
support vector regression along with the FFO are implemented, and it was observed that its
performance is better than other methods [15]. A system has been proposed that consists of
sensors and an Arduino board connected to an Amazon Web Service. A mobile application
can be developed to interact with the cloud for data analysis and visualisation. This system
allows for the measurement of soil mineral availability and the recommendation of fertiliser
needs based on it [16]. A study on Brazilian fields for the prediction of soybean yield
has been conducted. Based on the market demand, a focus has been given to the early
prediction of the crop by using satellite images and weather data. The author suggested a
novel model by implementing the algorithms long–short-term memory neural network,
random forest, and multi variate ordinary least squares linear regression, and compared
their performance. It has been found that the long–short-term memory neural network
method has better performance in prediction [17]. Wheat is an essential crop in Indian
foods. Some authors used a time series dataset on weather parameters from the Gujurat
area of years 1990–1991 and 2016–2017 for analysis. The author applied many activation
functions of the neural network such as sigmoid, ReLU, Softmax, Cloglog, Sech, Wave,
Rootsig, RadialBasis, etc. For improving the accuracy in wheat yield prediction, the
author proposed the multi perception neural network technique along with new activation
functions DharaSig, DharaSigm, and SHBSig [18].

We have conducted a brief study on the research conducted and on the tools and
technologies used in precision farming. We have identified different pros and cons in using
these tools.

For precision agriculture and monitoring irrigation, a decision support system along
with WSN and IoT was proposed. It has been observed that fully sensor-based agriculture
will have certain limitations, such as the cost of installation and maintenance and common
farmers’ lack of knowledge. So, undated information was provided to farmers so that
an appropriate decision could be made [19]. One author focused on predicting a suitable
crop for a particular field by analysing its soil sample. The author used an Arduino board,
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ESP 8266 WiFi module, and other sensors for collecting soil temperature, moisture, and
mineral values and then storing them in the cloud. The algorithms naive Bayes, logistic,
and C 4.5 were used on the rainfall dataset, and it was observed that C 4.5 had the highest
accuracy of 85.07% [20]. In precision farming, the role of big data applications is discussed.
The different devices and software used are discussed here. One author suggested a model
for precision agriculture that includes data acquisition, data analysis, decision marking,
and data storage. He proposed a decision support system to maintain the data on weather,
crop yield, consumers, the supply chain, food processing industries, and pesticides [21].
The author proposed a framework that suggests crops based on temperature using machine
learning techniques. He analysed the data for rice, cotton, wheat, and sugar cane. He
analysed the production of crops based on temperature and found that the maximum
cotton production was in the range of 250 ◦C–350 ◦C, the maximum wheat production was
in the range from 120 ◦C to 220 ◦C, the maximum sugar cane production was in the range
from 200 ◦C to 320 ◦C, and the maximum rice production was in the range from 300 ◦C
to 450 ◦C [22]. An IoT- and machine-learning-enabled soil testing system was proposed
to maintain soil and crop health. A model has been proposed by an author for feature
extraction using naive Bayes, random forest, SVM, decision tree, logistic regression, and
XGBoost. It has been seen that naive Bayes, random forest, and XGBoost have the highest
accuracy of 99% in prediction [23]. The author suggested an IoT- and machine-learning-
based agriculture system to assist farmers using meteorological data. The system aims
to collect the sensors’ data for a period of 6 months. He proposed a flow of events to be
conducted using them. A database was used to collect the sensor data and physical lab test
data. These data were analysed using machine learning algorithms, which generate output
in a front-end application. Based on the output obtained again, the IoT sensors can be
controlled [24]. The crop recommendation is suggested by the author based on geographical
location and climatic conditions obtained from agriculture portals. The author proposed a
model that hybridised both naive Bayes and J48 with association rules. The performance of
both algorithms was measured, and it was stated that the accuracy of J48 is 95.9% [25]. The
crop prediction was based not only on parameters such as soil, weather, and water but also
on crop price, import and export plans, and the cost of crop losses. The author suggested
using the linear discriminant analysis algorithm for feature extraction. Furthermore, he
applied the particle swarm optimisation-support vector machine (PSO-SVM), random
forest (RF), and KNN algorithms for classification, and out of which PSO-SVM had better
accuracy in prediction [26]. The author proposed a smart paddy rice farming system that
consisted of big data, machine learning, and IoT technologies. The framework can be used
for capturing data, analysing them, estimating the rice yield, and monitoring growth, the
quality of rice, rice classes, and diseases [27]. The prediction for estimating the organic
potato crops based on the soil properties was performed using ANN and multiple linear
regression. The performance of ANN was found to be better and its correlation coefficient
value was 0.975 [28]. In the farm lands of Batangas City of the Philippines, the author
gathered bitter melon plant images and analysed them for their fruit-bearing capabilities
using the CNN method. It has been found that the CNN method is able to predict the
crop effectively [29]. The soil parameters classifications are obtained by using different
machine learning algorithms which help to recommend fertiliser needs and the preferable
crop. They allow one to save the time that would be wasted by conducting chemical
analyses of the soil. The Weka tool was used for the analysis and classification [30]. The
crop yield was predicted by implementing a deep neural network based on genotype data,
soil data, and weather data. Here, it has been observed that DNN outperformed the other
methods such as the shallow neural network, lasso, and regression tree [31]. In Brazil, soil
nutrient management is studied for balancing the fertiliser needs for a garlic yield. The
need for NPK values in the field is analysed using random forest, Adaboost, KNN, and
linear regression. Out of these methods, prediction using random forest is more accurate
with R2 = 0.882 [32].
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Furthermore, we have observed that many researchers have suggested different deci-
sion support systems to provide support to the farmer in making the right decision at the
right time. The researcher implemented different machine and deep learning algorithms
for improving the accuracy in implementing classification and regression.

The excessive use of chemical fertilisers imbalances the availability of soil nutrients,
which are collected, classified, and can be analysed using an extreme machine learning
decision system. Hence, we should avoid a deficiency in NPK fertiliser in plants, as it
might lead to bad results. An excess usage of fertiliser imbalances ecosystems. Precision
agriculture assists with the appropriate usage of NPK fertiliser through IoT, WSN, and
machine learning techniques [33]. An IoT-based system which is made up of a soil moisture
sensor, pH sensor, NPK probe, and temperature and humidity sensors with cloud stor-
age and WiFi allows one to measure the exact soil characteristics and to utilise resources
precisely. The sensors calculate the equivalent features and transfer the time-stamped
live data to the cloud servers. For the recommendation scheme, the decision tree and
SVM algorithm were presented to predict appropriate crops as per the soil data [34]. The
soil fertility levels were forecasted by exploring the Virudhunagar District’s soil informa-
tion. Crop recommendations were provided to aid with the crop selection and sowing
through the C5.0: ADT classifier model. With this approach, an Android mobile application
called Design of Smart Information System was introduced [35]. The author suggested
an ontology-based knowledge base be made to store the details of soil compositions with
distinct minerals. For the quality growth of crops, the proper composition of minerals is
important, which can be known by experienced farmers. This knowledge was designed to
help new farmers in their decision making. The ontology-based model provides structured
and formalised knowledge for better soil and crop recommendations [36]. An ANN-based
model was suggested to classify and recognise nutrient deficiency in tomatoes by exploring
the characteristics of leaves. This would assist farmers in adapting the nutrients supplied
to the plants. When the soil lacks certain nutrients, it shows in the physical features of a
leaf. The shape and colour of leaves are the two main characteristics employed to identify
nutrient deficiency [37]. The FFO algorithm can be used for solving complex analyses
via images. So, it can be applied for soil image analysis to find the nutrient values along
with IoT sensors. This algorithm can be used for analysing image segmentation [38]. The
SVM and naive Bayes are mostly used for soil crop classification. The author implemented
ensemble methods such as AdaBoost + SVM and AdaBoost + naive Bayes on time series
data and found that they give better accuracy compared to independent methods [39].
The agriculture data were collected from Talab, Tillo, and Jammu to find the suitability
of mustard crops in these areas using machine learning techniques, ANN, random forest,
multinomial logistic regression, naive Bayes, and K-nearest neighbour [40]. The soil’s
fertility was predicted using random forest based on inputs such as soil nutrient electric
conductivity, pH value, and organic carbon. Here, it has been observed that RF has better
accuracy of 72.74% compared to SVM and Gaussian naive Bayes methods [41]. An analysis
on monitoring and predicting crops using the ANN, CNN, DNN, and RNN hybrid network
has been conducted. It has been found that the reinforcement neural network and the
hybrid network offer 90% accuracy in predicting crop yield [42]. Rice crop nutrient analysis
was performed by the author by capturing rice canopy RGB images and by applying
regression analysis on them. The regression analysis methods, simple non-linear regression,
backpropagation neural network, and random forest were applied to the images and it was
observed that RF had the highest accuracy in prediction [43]. For wheat yield prediction, a
collection of physicochemical soil parameters was obtained using a spectroscopy sensor.
The satellite images were also used along with these data and then unsupervised learning
methods were applied to them such as counter-propagation ANN, XY-fused networks, and
supervised Kohonen networks. It was observed by the author that supervised Kohonen
networks had the highest accuracy of 81.65% for prediction [44]. The degradation of the
soil was found to be due to the poor crop management and improper use of fertilisers. The
author applied machine learning algorithms, SVM, multi-layer perceptron, and decision
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tree to soil data collected from local village fields for predicting the soil mineral needs of
crops. It was found that the multi-layer perceptron algorithm had the highest accuracy of
94% compared to other algorithms [45]. The deficiencies of nitrogen, phosphorous, and
potassium of a paddy crop were predicted by analysing the crop image dataset using the
k-mean clustering algorithm. Here, the harvest was estimated via image processing and
statistical analysis [46]. The deep learning algorithms multi-layer perceptron, random
forest, and CNN were applied to satellite images to classify land cover and crop type. The
predictions of crop wheat, sunflower, soybean, maize, and sugar beet were made using
an ensemble of CNN with more than 85% accuracy [47]. The rainfall, temperature, and
geographical location, along with soil characteristics, were used for analysis. The author
suggested a model for analysing these data using machine learning algorithms such as
decision tree, naive Bayes, KNN, SVM, and the linear regression model to predict the best
crop and its profit analysis. It was found that the accuracy of the neural network was the
highest at 89.88% compared to the other methods [48]. Maize crop yield prediction has
been conducted in the south and eastern regions of Africa using the linear discriminant
algorithm, logistic regression, KNN, SVM, and NB. It was observed by the author that the
LDA was the best tool in prediction compared to the others [49].

The crop productivity rate is greatly influenced by the rate of photosynthesis in crops.
It allows for increased chemical energy in crops and allows for improved growth. The
author discussed the oxygen sensors used on plants to measure the oxygen consumption
of plant cells [50], and measured the photosynthesis of plants and its impact on plant
development. The author discussed the different techniques used for it, such as the
electrochemical sensor method, the gas exchange method, the photosynthesis measuring
method, and estimation methods. It was observed that photosynthesis is very important
for governing all life [51]. The author discussed the importance of nitrogen for crops. The
deficiency in nitrogen in the soil decreases plant growth, and the leaves turn lemony yellow.
Additionally, nitrogen fertilisers lead to environmental pollution and health issues [52]. The
author identified the improper use of irrigation techniques and the non-use of arable land as
being the main causes of low crop production. So, an intelligent irrigation support system
using IoT sensors was suggested by the author to improve the rate of crop production.
The proposed system monitors the water needs and allows for on/off operation of the
water motors [53]. The author suggested an intelligent data collection system consisting
of sensors, supporting hardware, and Wi-Fi to store the data in the ThinkSpeak cloud. He
suggested that the available soil data in the cloud be used for monitoring the field to reduce
human effort [54].

Food production, food storage, and better supply chain management are important
factors today. As the population is increasing, to increase crop production, the latest
technologies such as artificial intelligence and machine learning are used. The author
discussed the implementation of machine learning in various stages such as crop selection,
irrigation, crop disease detection, and weather data analysis [55]. The image analysis of crop
leaves, stems, and fruits will allow us to quickly analyse and predict the disease. Regular
monitoring of plant health is important for better crop production. The author discussed
finding grape leaf diseases by using image analysis via the support vector machine [56].
The IoT is used globally in many sectors to improve efficiency, such as farming, fitness
centres, homes, government offices, medical facilities, vehicles, etc. IoT sensors, drones,
and automated devices play an important role in various situations of farming, from crop
seeding to crop cutting and delivery. The author mainly focused on security and privacy
issues in agriculture when IoT devices were used [57].

We have identified different models proposed for supporting the farmer in improving
crop production. Mostly, the suggested models focused on classifying the soil and finding
out the crop’s nutrient needs. Table 1 is representative of this.
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Table 1. Literature review on soil analyses based on different proposed models.

Ref. No Author Model/Framework Discussion

[1] Akhter et al. (2021) [1] Model for predicting apple
scab disease

Data collected from Kasmir Valley apple
crop soil using sensors. Here, the
challenges faced were while
incorporating wireless NW and
MC learning.

[2] Zamora-Izquierdo et al.
(2019) [2] Experimental greenhouse Use of different sensors in greenhouse for

implementing water cycle and irrigation.

[3] Ahmed et al.
(2021) [3]

A designed framework for
information and communication
technology (ICT)

Optimal nutrition recommendation to
increase yield.

[4] Ahmed et al.
(2017) [4]

An IoT environment is the prime
requirement for managing big data
and enabling analytics.

Real-time data collection with IoT,
regular storage in cloud, their
maintenance, and challenges.

[5] Sivakumar, R et al. (2021) [5] Smart-sensor-based approaches
Usage of different sensors, advantages
and challenges faced, and machine
learning tools used for analysis.

[6] Dagar et al.
(2018) [6]

Simple architecture of IoT sensors
using WiFi

Latest technologies in farming such as
polyhouse, Wi-Fi network, IoT,
and smartphone.

[7] Priya et al.
(2018) [7] A model for crop prediction Recommending crops based on

field condition.

[8] Hu et al.
(2014) [8]

A discovery system by integrating
query methods for space sensors and
ground-based sensors

Collaborative earth observation using
ground-based sensors and
space-based sensors.

[9] Pajares et al.
(2013) [9]

REVIEW sensors in agriculture
and forestry

Soil analysis, classification of crops, fruits,
taste, and odour detection.

[10] Kulkarni et al.
(2018) [10]

Extensible crop yield
prediction framework

Crop selection using ensemble of
different techniques.

[11] Kaur et al. (2021) [11]
Chapter 43

Regression model for analysing
relation between NP, NK, and PK

Using regression models and estimating
the relationship between N, P, and K.

[12] Ding et al.
(2019) [12]

Hybrid adaptive cooperative
learning strategy FFO algorithm in crop image analysis.

[13] Pan et al. (2012) [13] Fruit fly optimisation Searching optimal route using
FFO method.

[14] Wang et al.
(2017) [14]

Kernel-based fuzzy c-means
clustering algorithm based on
FFO algorithm

Overcomes the defects of this fuzzy
c-means approach and
improves clustering.

[15] Sun et al.
(2021) [15]

For forecasting power load, a hybrid
model is suggested using generalised
regression neural networks.

In comparison with simple SVM, the
SVM with FFO has an improvement of
8% in precision level observed in scour
depth prediction.

[16] Madhumathi, R. et al.
(2020) [16]

A model with sensors, Arduino
board, and AWS server

Use of sensors will give real-time data,
but they will also increase the cost and
need maintenance.

[17] Schwalbert, R. A et al.
(2020) [17]

A model for implementing machine
learning algorithms in weather and
satellite images for furcating
crop yield

CNN and ANN cloud are used along
with different kernel functions for
verifying the improvement in accuracy.

[18] Bhojani, S. H. et al.
(2020) [18]

Implementing MLP algorithm along
with many kernel functions for
forecasting the crop yield

Three year-long (1990–1991, 2015–2016,
and 2016–2017) datasets are used for
analysis. The use of more datasets shall
give better accuracy in prediction.
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Table 1. Cont.

Ref. No Author Model/Framework Discussion

[33] Suchithra, M. S. et al.
(2020) [33]

Workflow for soil parameter
classification and prediction

In Kerala state, a study on village-wise
soil classification was conducted based
on the available soil nutrients so that the
fertiliser expenditure could be controlled.
Here, the extreme machine learning
algorithm with different activation
functions was used for classification.

[34] R. Reshma et al.
(2020) [34]

Soil behaviour analysis and crop
recommendation

The IoT sensors and cloud storage for
collecting soil characteristics and then
implementing the SVM and decision tree
for finding the suitable crops
are discussed.

[35] Rajeswari et al.
(2019) [35]

Prediction of soil fertility level and a
smart information system app
using Android

A block-level fertiliser estimation was
conducted in the Virudhunagar District
of Tamil Nadu. The C5.0 ADT classifier
was used along with a mobile application
for classification.

[36] Elumalai et al.
(2021) [36]

onto_mine framework for
soil classification

A design model for maintaining
knowledge of soil minerals was
represented so that it would give
consistent support to novice farmers
in cultivation.

[37] Jose et al.
(2021) [37]

ANN-based classification model on
crop leaves for detecting
mineral deficiency

A study on tomato leaves’ examination
based on their colour and shape to know
the nutrient deficiency in the crop
was performed.

[38] Dash et al.
(2021) [38]

An Android architecture with IoT in
smart agriculture

Research on three crops’ (rice, wheat, and
sugar cane) suitability was conducted
based on the soil micronutrients and
weather parameters.

[39] Balakrishnan et al.
(2016) [39]

Ensemble models (AdaBoost + SVM
and AdaBoost + naive)

Historical crop production data of
different regions collected from
faostat3.fao.org were used for analysis
and classification. The SVM, naive Bayes,
and ensemble methods were applied
to them.

[40] Pandith, V et al.
(2020) [40]

A model for analysing the soil
nutrient dataset and predicting
mustard crop yield

The soil data were collected from the
Agriculture Departments of Jammu,
Talab, and Tillo. The prediction of
mustard crop was performed using KNN,
ANN, naive Bayes, RF, and multinomial
logistic regression via soil analysis.

[41] Keerthan Kumar, T. G. et al.
(2019) [41]

Model for soil grading and crop
recommendation using random forest

The dataset on soil properties was
preprocessed, and regression was applied
by identifying the rank of the soil and
recommending crops.

[42] Dharani, M. K. et al.
(2021) [42]

Prediction of crop yield using deep
learning techniques

A brief study was conducted on crop
prediction using deep learning
algorithms ANN, DNN, and RNN.

[43] Shi, P. et al.
(2021) [43] Estimating nitrogen for rice crop

Rice canopy RGB images were collected
for 2 years. These datasets were analysed
using regression algorithms SNR, BPNN,
and RF to predict the nutrient deficiency
in crops.
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Table 1. Cont.

Ref. No Author Model/Framework Discussion

[44] Pantazi, X. E. (2016) [44] Predicting wheat yield based on
satellite image and sensor data

The online multi-layer soil characteristics
and satellite images from the wheat fields
of Bedfordshire, UK, were collected and
analysed for predicting crop growth.

[45] Reshma, S. J. et al. (2022) [45] Model for classifying soil and crops
using SVM, DT, and MLP

The research work was conducted on the
soil parameters collected from three
districts: Kanyakumari, Tirunelvelli, and
Thoothiukudi of Tamil Nadu. Crop fields
of rice, maize, and ragi were taken into
consideration for analysing NPK values.

[46] Shidnal, S. et al.
(2021) [46]

Multi-tier machine learning
architecture based on quantitative
and qualitative analysis

Paddy crop images were taken to predict
the nutrient deficiency. The CNN and
K-mean clustering were used
for prediction.

[47] Kussul, N. et al.
(2017) [47]

Four-level hierarchical DL model for
classification of satellite land image

Satellite images were collected from
multiple sources in Ukraine and
analysed, classifying the areas based on
crops using neural network algorithms.

[48] Priyadharshini, A et al.
(2021) [48]

Crop recommendation system using
classification and regression

Rain fall, temperature, and geolocation
were used to predict suitable crops using
machine learning algorithms.

[49] Mupangwa, W et al.
(2020) [49]

Model for predicting maize yield
using machine learning tools

Maize yield field data were collected
belonging to different countries and the
machine learning method was applied to
predict the yield in eastern and
southern Africa.

Many research observations found that implementing different regression, classifica-
tion, and ensemble methods in different sectors helped with better crop production. The
implementation of different algorithms such as linear regression, the extreme learning ma-
chine with different activation functions, edge and cloud computing planes, an improved
genetic algorithm, Map-Reduce functionality, SVM, RF, naive Bayes, ANN, FFO, advanced
decision tree (ADT) classifier, Ada, and AdaBoost has been observed, as shown in Table 2.

Table 2. Literature review on different algorithms applied in precision farming.

Ref. No
Methods

(Classification
/Regression)

Algorithms Used Input Data
Parameters

Output
Prediction Type

[1] Regression Linear regression Real-time data collected Apple scab prediction

[2] Regression Edge and cloud computing
using IoT sensors

Sensors used for analysing
water cycle and irrigation Soil and water data collection

[3] Regression

Exploration and
exploitation method and
improved genetic
algorithm

Soil nutrient data Optimal nutrition
recommendation

[7] Classification
Map-Reduce functionality
and NB classifier model for
crop prediction

Satellite images, sensor
data, irrigation report, and
crop and weather data

Recommending crops

[9] Classification
Artificial neural network
and principal
component analysis

Soil analysis Classification of crops, fruits,
taste, and odour detection
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Table 2. Cont.

Ref. No
Methods

(Classification
/Regression)

Algorithms Used Input Data
Parameters

Output
Prediction Type

[10] Classification Random forest, linear SVM,
and naive Bayes

Soil, rainfall, and surface
temperature parameters Crop selection

[33] Classification

Extreme learning machine
(ELM) along with different
activation functions such
as radial basis, Gaussian
sine-squared, triangular
basis, hyperbolic tangent,
and hard limit

Soil nutrients Soil fertility and pH value in
rating of high/low/medium

[34] Classification SVM and decision
tree methods Soil type, water level Recommended crop

[35] Classification C 4.5 decision tree Feature of soil dataset Recommend Crop

[36] Classification Rule-based classifier Soil nutrients Soil composition suitable
for crop

[37] Classification

Artificial neural network,
fuzzy c-means method,
and
support vector machine

The colour and
shape of a tomato leaf are
the two major features

Nutrient deficiency

[38] Classification SVM, SVM with kernel,
and decision tree

Micronutrients and the
weather parameters Suitable crop

[39] Classification AdaBoost + SVM, and
AdaBoost + naive

Historical crop production
and the environmental
climate data

Suitable crop out of rice,
sugar cane, ground nut,
cotton, and black gram

[40] Classification

KNN, naive Bayes,
multinomial logistic
regression, ANN, and
random forest

Soil nutrient pH value,
electrical conductivity,
organic carbon, P, N, K,
sulphur, copper, iron,
zinc, manganese

Mustard yield

[41] Linear regression
and RMSE

Random forest, Gaussian
naive Bayes and support
vector machine

Soil sample Soil grade, predicted crops

[42]

Regression,
classification,
two-layered
approach

Recurrent
neural network, ANN, and
deep neural network

Crop images Crop prediction

[43] Regression

Simple non-linear
regression, random forest,
backpropagation neural
network, and
regression

Crop images Nitrogen needs

[44] Classification

CP-ANNs, XY-fused
networks (XY-Fs), and
supervised Kohonen
networks (SKNs)

Satellite imagery and
multi-layer soil data Wheat yield prediction

[45] Classification
Support vector machine,
decision tree, multi-layer
perception (MLP)

Soil parameters N,P,K Soil and crop nutrient

[46] Clustering k mean
clustering algorithm Crop images NPK values and deficiency

identification

[47] Unsupervised
neural network CNN and MLP Satellite images

Predict crop type (wheat,
maize, sunflower, soybeans,
and sugar beet)
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Table 2. Cont.

Ref. No
Methods

(Classification
/Regression)

Algorithms Used Input Data
Parameters

Output
Prediction Type

[48] Classification

Decision tree, KNN,
linear regression, KNN
with cross validation, naive
Bayes,
neural network, and SVM

Soil, season, geographical
location Crop selection

[49] Regression

Linear algorithms:
linear discriminant
analysis (LDA), logistic
regression (LR), and
predicted maize yield were
closer to the observed
yields compared with
non-linear tools (KNN, NB,
CART, and SVM)

Conventional and
CA-based cropping
systems

Maize yield prediction

It has been observed in smart farming that the soil analysis of different parameters,
such as nutrients, pH value, and water availability, plays a vital role in crop recommenda-
tion and cultivation. Based on a brief study of the literature review it has been observed
that a simple, low-cost, and optimised approach is required for improving crop production.

3. Research Questions

3.1. RQ1: How Can We Collect Real-Time Data on Soil Temperature, Minerals, Moisture, and
Water Level Availability in Different Crop Fields via an Optimised Use of Sensors?

3.2. RQ2: How Can We Store Real-Time Data from Sensors into Cloud Memory and How Can the
Farmers Visualise the Data?

3.3. RQ3: Can We Analyse and Predict Crops with Higher Accuracy by Applying Machizne
Learning Algorithms to the Available Soil Mineral Cloud Dataset?

4. Proposed Work

In this paper, we propose a new IoT-enabled soil nutrient classification and crop
recommendation (IoTSNA-CR) model to classify soil nutrients and recommend crops for
precision agriculture. The IoTSNA-CR model involves different processes, namely data
acquisition using sensors, storage in the cloud, MSVM-based classification with FFO-based
parameter optimisation, and crop recommendation. Figure 1 presents the block diagram of
the IoTSNA-CR model. The detailed working process is given in the succeeding sections.

4.1. Solution for RQ1

PHASE-I: Data Acquisition Using IoT Sensory System

The model was employed with a device consisting of different sensors, such as a
moisture sensor, a temperature sensor, a GPS sensor, an LDR soil colour sensor, and a pH
sensor. We used this device for data acquisition from fields. Sensor nodes were linked by
the (Edge Services Platform) ESP8266 Wi-Fi module and Arduino micro-controller. The
node MCU (micro controller unit) was linked with the Rx pins and Arduino via Tx pins for
receiving and transmitting sensor information. The Amazon Web Services IoT provided a
device software development kit to transmit the sensor information. The wireless sensor
network included an embedded device that was linked for empowering several facilities to
take measurements with minimised effort and low power. The soil moisture sensor (FC28)
was used to evaluate the volumetric water contents in the soil. The soil properties such
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as dielectric constant/electrical resistance were defined according to the calculated soil
moisture. The soil moisture sensors contained two probes. The moisture value was attained
by implanting the probes into the soil. The data attained from the sensors acted as a support
scheme to the farmer for handling the irrigation scheme efficiently. A soil temperature
sensor (DS18B20) was used to calculate the temperature of the soil. The voltage reading
through the diode displayed the functioning base of the sensors. The sensor transmitted an
electric signal that was transformed into different units of measurement such as Fahrenheit,
Celsius, and Kelvin. The voltage difference was amplified, and analogue signals were
produced using the device that were directly proportionate to the temperature. The soil
pH sensor was used for finding the pH values in the soil that define whether the soil
is basic/acidic. The pH values of soil influence the accessibility of microorganisms and
nutrients. The pH values are in the range of 0–14, in which 7 represents neutral. pH values
less than 5.5 indicate stronger acidity, pH values less than 6.5 indicate moderate acidity,
pH values in the range of 6.5–7.5 indicate neutral, above 7.5 pH values indicate alkalinity,
and above 8.5 pH values indicate stronger alkalinity. The LDR soil colour sensor (TCS3200
TCS230) was used to detect the RGB colour values. Here, we applied an easy way to find
the NPK values of soil. We used Agrinex Soil NPK and pH testing capsules to test soil
samples and then using LDR sensors we read the RGB values of the samples. These RGB
values were used to find the NPK and pH values of soil in comparison with the available
NPK and pH colour chart. This was an alternative way of finding the NPK values without
using the NPK sensor. It is used to reduce the investment cost of the NPK sensor. The
GPS sensor (NEO-6M) was connected with Arduino and was used to detect the longitude
and latitude of the present location. With this sensor, we were able to collect the soil data
along with the present location information from time to time for storage. The ESP8266
Wi-Fi module was connected with Arduino to enable the internet connectivity by using the
transmission control protocol (TCP) and the user datagram protocol (UDP). This enables
the Wi-Fi connectivity for Arduino. The Arduino micro-controller (Arduino UNO R3)
board was connected with different sensors and then by executing the required programs
in its IDE we collected the sensor data.

The sensory model was built, and we conducted experiments for collecting data from
different crop fields in RAYAGADA districts per the geographical information. We took the
guidance of the local agriculture office to identify the crop-wise geographical locations and
of a soil science expert to validate the crop fields and to validate the collected data from the
crop fields using sensors.

The data collection process was carried out in different crop fields of the Rayagada
district in consultation with agriculture experts and experienced farmers. Additionally, we
took as a reference the geographical map of the district to identify the water availability. By
considering these parameters, the data collection was performed and stored in the cloud
Firebase. Table 3 below presents the data collection conducted from different GPA locations
and crop fields:

The pictures in Figure 2 present the sample pictures during the data collection from
fields of cotton, maize, ground nuts, and rice grains, along with their longitude and
latitude from different geographical locations. We collected the soil moisture values, soil
temperature, water level availability, pH value, longitude, latitude, and NPK value using
the Arduino Serial Monitor. Then, by processing soil with soil testing capsules, we collected
the soil colours using the LDR colour sensor. These soil colour values were used for
finding the values of phosphorous, potassium, and nitrogen. The real-time data were
collected multiple times in different time intervals from the crop areas of Rayagada district,
and so this will be useful for further analysis. These data were further stored into low-
cost cloud storage in terms of CSV files. We developed an Android application that is
connected to this low-cost cloud storage to fetch the real-time dataset and it was used for
processing (https://github.com/muraliksenapaty/Soil-Nutrient-Data-Collection, access
date: 10 November 2022).

https://github.com/muraliksenapaty/Soil-Nutrient-Data-Collection
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Table 3. The data collection from different GPS locations.

Sl. No. Crop Field Longitude Latitude

1 Rice 19.01979438317244 83.83367378452479

2 Cotton 19.120267916735354 83.79737929760799

3 Rice 19.131993231927446 83.82571241313724

4 Rice 19.153893005673186 83.82711736101244

5 Rice 19.034090509160446 83.81985812937597

6 Cotton 19.14318090988537 83.77053423826487

7 Cotton 19.19957968976411 83.81315098959948

8 Rice 19.311689976321137 83.79038888001347

9 Cotton 19.20391036130566, 83.83906791114363

10 Cotton 19.243039905554685, 83.67781726274391

11 Ground Nut 19.183372074271134, 83.67778906665868

12 Ground Nut 19.12229596117156, 83.40884453177296

13 Cotton 19.19129593761809, 83.6998360113169

14 Ground Nut 19.201211003276704, 83.763592486272

15 Maize 19.130544274204112, 83.8304902190576

16 Ground Nut 19.014452114119926, 83.77777140899494

17 Maize 19.07788826595366, 83.76562479599976

18 Maize 19.09682829341866, 83.8591537106543

19 Maize 19.23175510046014, 83.49582454063922

20 Maize 19.329410878579964, 83.61866194709863
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4.2. Solution for RQ2

PHASE-II: Cloud Service

A cloud memory service gives users location independence and resource availability,
and it can be shared by multiple users. So, we connected our sensory device to cloud
memory. An ESP8266 Wi-Fi module was connected to the Arduino board. The Arduino
code communicated with the Wi-Fi module, and then the data were stored in the Firebase
cloud service. We created an Android application, and we interacted with cloud data using
this application. We used the data streamer feature of Excel to collect the live data and store
them in CSV format.

We used the Firebase cloud service, which is a NoSQL database that allowed us to
store and synchronise real-time data. It has an easy integration approach for Android.
Figure 3 represents the data storage area in the Firebase service and the Android application
configured within it. It is a Google-backed web application development environment
in which we could easily store the data along with images, video, etc. The public cloud
can also be used because it is cost-effective. Additionally, we can share our cloud data
with other farmers for reading and analysis purposes for their benefit. The analysed
output data can be stored back into the cloud. Challenges may arise related to storage
when more real-time data collection is performed for various cultivation lands and their
crops. A challenge may also arise for prediction for a particular crop if sufficient real-time
data are not available. Additionally, data cleaning is necessary and should be conducted
periodically. Authentic access shall be there for updating the real-time data in the cloud.
For data analysis, we executed machine learning models using an Android application. For
this, at first we picked the machine learning model using Flask API, produced the output
in JSON universal format, and using the Java Android application we converted this JSON
format into Android format.
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4.3. Solution for RQ3

PHASE-III: Data Pre-processing and Analysis for Crop Recommendation

4.3.1. Data Pre-Processing

We conducted data pre-processing, which helped to increase the efficiency of the
machine learning model. We collected the data with variables such as longitude, latitude,
date, time, temperature, moisture, water level, pH value, and nitrogen, phosphorous, and
potassium values using a sensory device. These data are stored in a Firebase cloud service.
We pre-processed these collected data. During the data pre-processing, we performed data
cleaning and the transforming and normalising of the data to prepare them for analysis.

This step included dropping the missing values, removing null values, outlier detec-
tion, and normalising the data to put the values on a common scale. The statistical measure
using the mean function was applied to normalisation here. Then, the feature selection was
performed before choosing a machine learning model for training. The dataset was taken
for training and testing with a ratio of 80% and 20%. We trained the MSVM-DAG-FFO
classifier model on the dataset. Then, the classifier was trained to recognise patterns in
the soil data and to categorise the data into different classes. Then, we implemented a
real-time monitoring system to continuously collect and analyse soil nutrient data from the
IoT sensors and update the predictions based on the latest data.

4.3.2. Multi-Class Support-Vector-Machine-Based Classification Model

The MSVM classifiers depend on VC dimensions of structural risk minimisation and
statistical learning concepts. The primary goal was to map the pre-processed, non-linear,
inseparable agricultural data to a linear high dimension manifold θ with the help of trans-
formation ∅ : RN → θ, to later obtain an optimum hyperplane Ψ : ψ(x) = (ω·φ(x) + b)
by resolving the succeeding optimisation convex problems (the soft margin problems):

min(ω, ξ) =
1
2

ω2 + β
n

∑
i=1

ξi (1)

subjected to
yi(ω·φ(x) + b) ≥ 1− ξi, f or all 1 ≤ i ≤ n (2)

where ω represents a coefficient vector of the hyperplane in the manifold or feature
space, b denotes the threshold values of the hyperplanes, ξi indicates a slack factor pre-
sented to the classification error, and β signifies penalty factors for the error shown in
Equations (1) and (2). The variable β controls the penalty of misclassification and the val-
ues are generally defined by cross-validation. A large value of β generally leads to a smaller
margin that minimises the classification error when a small value of β might generate a
wide margin resulting in several misclassifications.

The feature space θ is extremely dimensional; hence, its direct computations could
lead to “dimensional disaster”. However, ω = ∑n

i=1 δiyi∅(xi), and every operation of
MSVM in the feature space θ is a dot product. Additionally, the kernel function, (xi, xi′) =
∅(xi)·∅(xi′), is effective in managing dot products; they were presented to the SVM.
Therefore, the election of the kernel and its coefficient is significant in the computation
efficacy and precision of an MSVM classifier method.

The standard kernel function was used continuously as a predictor that included linear
kernel, polynomial kernel, and Gaussian kernel functions defined in Equations (4)–(6).

These MSVM kernel functions could be widely classified into global and local kernel
functions. Sample distance has a greater effect on the global kernel value when samples
that are closer to one another highly impact the local kernel value. The polynomial kernel
and linear kernel are examples of global kernels, whereas the Gaussian radial basis function
(RBF) and the Gaussian are the local kernels. Generally, the linear kernel functions have
an improved extraction of global features from the sample, the polynomial kernels have a
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better generalising capability, and the Gaussian kernel (the commonly employed kernel)
has a better learning capability amongst each single kernel function.

Therefore, it is obvious that using single-kernel-function-based MSVM classifiers in
a provided application such as gene expression data might achieve either better learning
capability, appropriate global feature extraction capability, or good generalisation ability.

4.3.3. Fruit Fly Optimisation

The kernel function of the MSVM model implements the FFO algorithm and thereby
improves classification performance. The FFO technique is a novel swarm-based evolu-
tionary method stimulated by the food-finding behaviours of the fruit fly (FF). Once the
food is found, it smells the food source from the air via the olfactory organ and flies toward
the directions initially; after getting closer to the food position, the FF can employ its sharp
vision for finding food and another FFS flocking position and fly toward these directions.
The fundamental FFO algorithm was developed based on the FF swarm’s food-finding
characteristics [12,13].

The starting position of fruit fly swarms (X−axis, Y−axis) are randomly distributed
using Equation (7). Then, it finds the distance and direction for the ith fruit fly using
Equation (8). In Equation (9), it evaluates the distance from the origin to the food po-
sition and in Equation (10) it evaluates the smell concentration judgement. Finally, in
Equation (11), the fitness function is identified and later the present maximal smell concen-
trated value is compared with the historical optimal value to find the optimal smell.

Definition 1. To find N, P, and K values from a soil sample, the below Equation (3) can be applied,
where Nm implies the measured nitrogen (in ppm), Av denotes the analogue voltage, Ncurr_low refers
to the lower edge of the current range, Ncurr_upp implies the upper limit of the current range, and
Ntgt_low and Ntgt_upp denote the lower and upper limits of the target ranges.

Nm =
(Av − Ncurr_low)×

(
Ntgt_upp − Ntgt_low

)
(

Ncurr_up − Ncurr_low
) + Ntgt_low (3)

Definition 2. Equation (4) presents the linear kernel function which is used when the data of a
dataset can be separated using a single line. When higher number of features are present in a dataset
then the linear kernel is preferred. In Equation (4), xi, xi′are independent variables and G() is the
kernel function.

G(xi, xi′) = xi·xi′ (4)

Definition 3. Equation (5) represents the polynomial kernel method which is commonly used
in SVM and which presents the similarity of vectors. It is suitable when all training data
are normalised.

In Equation (5), d is the degree of the polynomial constant term δ and the slope η

G(xi, xi′) = (η ∗ (xi·xi′) + δ)d, (5)

Definition 4. Equation (6) defines the Gaussian kernel method in which the kernel function value
depends on the starting point. Here, we calculate the similarity of xiand xi′where σ > 0.

G(xi, xi′) = exp

(
xi − x2

i
2σ2

)
, (6)
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Definition 5. In the FFO algorithm, Equation (7) generates the initial position of the fruit fly from
where the food searching begins [12,13].

X_axisj = LBj +
(
UBj − LBj

)
∗ random()

Y_axisj = LBj +
(
UBj − LBj

)
∗ random()

(7)

Definition 6. In the fruit fly optimisation algorithm, Equation (8) finds the direction and distance
randomly using the sense of each fruit fly.

Xi,j = Xaxisj + RandomValue
Yi,j = Y−axisj + RandomValue

(8)

Definition 7. In the FFO algorithm, the fly senses the scent of fruit from a long distance.
Equation (9) allows one to find the distance from the origin to the food position.

Disti,j =

√(
X2

ij + Y2
ij

)
(9)

Definition 8. The smell concentration judgment Si,j is evaluated when the distance from the origin
is fed as an input. as shown in Equation (10).

Such that Si,j =
1

Disti,j
(10)

Definition 9. Equation (11) represents the fitness function which accepts the smell concentration
judgement as the input and finds the smell concentration of each fruit fly position.

Smelli = SFunction
(
Si,j
)

(11)

4.3.4. MSVM-DAG-FFO Algorithm

A novel approach is used for MSVM-based classification using a directed acyclic
graph and fruit-fly-optimisation-based parameter optimisation. The main objective of
this approach is to maximise the separation between the data points by identifying the
minimum distance towards the hyperplane.

Here, we break down the multiclass SVM into multiple one-vs-rest binary classifica-
tions. These binary SVM methods are executed using a direct acyclic graph. Here, the FFO
algorithm was used to tune the MSVM model. We made a comparative analysis between
this novel method and other methods such as the linear support vector machine (SVM),
the SVM kernel model, and decision tree. It was observed that the FFO algorithm could
be used in many applications of classification for selecting the optimised kernel function.
The MSVM with FFO allowed us to classify the soil minerals and the recommendation of
suitable crops more accurately in comparison with other methods.

Figure 4 presents a graph on the optimised classification of soil minerals based on
four crop categories using the MSVM-DAG-FFO method. Here, the classes A, B, C, and D
identified the crops of cotton, ground nut, maize, and rice, respectively. For each execution
of SVM, a suitable function was selected out of the five kernel functions: linear, non-linear,
polynomial, the radial bias function, and the sigmoid function. The fruit fly optimisation
algorithm was used to choose a suitable kernel function while minimising the range of soil
minerals per crop.
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Algorithm 1: Multi-class support vector machine using directed acyclic graph and fruit fly
optimisation (MSVM-DAG-FFO).

Input: Soil mineral samples from IoT sensors
Pre-requisite:

â Recursive function to implement support vector machine
â Classes to be in directed acyclic binary graph
â Implementing one-vs-one SVM called recursively from root node to leaf nodes

Initialisation:
The crop classes are from class 1 to class 4, where k = total no. of classes.
Kf is defined for selection of kernel function

• xt is soil nutrient sample for test
• xi is soil nutrient data of soil dataset classi
• R is predicted class

Process: classification of soil sample based on soil nutrient dataset.
Output: recommended crops

[Use multi-class SVM using DAG approach]
Begin

Step 1: i = 1, j = k
Step 2: R = SVM(i,j)
Step 3: Obtain the soil nutrients under class R and suggested crop

End

SVM(i,j)
Step 1: if(i! = j) then

Step 1.1: Choose optimised kernel function Kf

using disti = √(X(i)2
m + Y(i)2

m) of FFO
Step 1.2: For each xm in classi apply voting strategy between (xt, xm)

1.2.1: if xt is in classi then increment votei
1.2.2: if xt is in classj then increment votej
[end for]

Step 1.3: if votei > votej then
call SVM(i,j − 1)

Step 1.4: else
call SVM(i + 1,j)

[end if]
[end if]

Step 2: return i
Step 3: Exit
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In Figure 5, the flowchart is briefly elaborated upon about the implementation of
the proposed algorithm MSVM-DAG-FFO into the pre-processed crop-wise real-time soil
nutrient dataset from cloud storage. Here, we considered the dataset based on four crop
classes and applied multi-class SVM via a recursive class of one-vs-rest SVM as per the no.
of classes. For each call of SVM on a subset, the fruit fly optimisation method is invoked
which allows one to choose the best kernel function by finding the optimal value of the
kernel using the distance function disti = √(X(i)2

m + Y(i)2
m) in which X and Y are the

initial values and m is the iteration number. Once the kernel function Kf is identified, it
is applied in SVM, thereby following the voting strategy between all of the xm data and
sample xt. Based on the voting, the SVM is called recursively either to the left subset or to
the right subset. This recursive process continues until it reaches a single class which is
verified using condition i = j. Once i = j, the SVM returns the class R for the sample data xt.

Computers 2023, 12, x FOR PEER REVIEW 22 of 33 
 

no. of classes. For each call of SVM on a subset, the fruit fly optimisation method is in-

voked which allows one to choose the best kernel function by finding the optimal value 

of the kernel using the distance function 𝑑𝑖𝑠𝑡𝑖 = √(𝑋(𝑖)𝑚
2  +  𝑌(𝑖)𝑚

2 ) in which X and Y are 

the initial values and m is the iteration number. Once the kernel function Kf is identified, 

it is applied in SVM, thereby following the voting strategy between all of the xm data and 

sample xt. Based on the voting, the SVM is called recursively either to the left subset or to 

the right subset. This recursive process continues until it reaches a single class which is 

verified using condition i = j. Once i = j, the SVM returns the class R for the sample data 
xt. 

 

Figure 5. Flowchart of MSVM using DAG and FFO. 
Figure 5. Flowchart of MSVM using DAG and FFO.



Computers 2023, 12, 61 23 of 34

Figure 6 shows a group of four classes represented in a binary graph to understand the
flow of execution. The SVM starts execution from the first node, and it calls itself recursively
for both of its subset nodes in the binary graph. The recursive execution continues until it
reaches the leaf node, i.e., identifies a unique class, so the total set of classes is divided into
two subsets each time.
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5. Experimental Analysis

The performance of the MSVM-DAG-FFO method was validated using agricultural
data collected from farmland by implementing the IoTSNA-CR model. The maximum and
minimum ranges of phosphorous, nitrogen, and potassium values found in the test data
from the field for four different crops are shown below in Table 4.

Table 4. Soil nutrient data summery.

Crops Nutrients Min. Value Max. Value

Cotton

Nitrogen (N) 180 350

Phosphorous (P) 60 110

Potassium (K) 15 30

Ground Nut

Nitrogen (N) 40 90

Phosphorous (P) 60 110

Potassium (K) 15 35

Maize

Nitrogen (N) 90 275

Phosphorous (P) 30 70

Potassium (K) 20 90

Rice

Nitrogen (N) 70 80

Phosphorous (P) 20 38

Potassium (K) 10 25
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The crops were classified into four classes, namely cotton, ground nut, maize, and rice,
based on their NPK values. Figure 7 illustrates the set of confusion matrices produced by
the MSVM-DAG-FFO method under five distinct runs.
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In the applied run 1, the MSVM-DAG-FFO method categorised 136 tests into cotton,
143 tests into ground nut, 138 tests into maize, and 142 tests into rice. Simultaneously,
in the applied run 3, the MSVM-DAG-FFO methodology classified 140 tests into cotton,
144 tests into ground nut, 140 tests into maize, and 142 tests into rice. Concurrently, in
the applied run 5, the MSVM-DAG-FFO approach ordered 139 tests into cotton, 142 tests
into ground nut, 143 tests into maize, and 143 tests into rice. Table 5 provides the detailed
classification results of the MSVM-DAG-FFO technique on the applied dataset with distinct
runs. The table values denote that the MSVM-DAG-FFO technique accomplished maximum
classification performance.

For instance, with run 1, the MSVM-DAG-FFO technique attained an average precision
value of 0.9344, whereby recall was 0.9317, accuracy was 0.9658, and F-score was 0.9322.
Additionally, with run 2, the MSVM-DAG-FFO manner found an average precision of
0.9342, whereby recall was 0.9317, accuracy was 0.9658, and F-score was 0.9322. Likewise,
with run 3, the MSVM-DAG-FFO IoTSNA-CR algorithm gained an average precision
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of 0.9453, whereby recall was 0.9433, accuracy was 0.9717, and the F-score was 0.9421.
Similarly, with run 4, the MSVM-DAG-FFO system obtained an average precision of 0.9437,
whereby recall was 0.9417, accuracy was 0.9708, and the F-score was 0.9421. Finally, with
run 5, the MSVM-DAG-FFO method achieved an average precision of 0.9461, whereby
recall was 0.9450, accuracy was 0.9725, and the F-score was 0.9452.

Table 5. Result analysis of MSVM-DAG-FFO method with distinct runs.

No. of Runs Crops Precision F-Score Recall Accuracy

Run 1

Cotton 0.944 0.925 0.907 0.963

Ground Nut 0.861 0.905 0.953 0.950

Maize 0.939 0.929 0.920 0.965

Rice 0.993 0.969 0.947 0.985

Average 0.934 0.932 0.932 0.966

Run 2

Cotton 0.926 0.923 0.920 0.962

Ground Nut 0.871 0.907 0.947 0.952

Maize 0.940 0.937 0.933 0.968

Rice 1.000 0.962 0.927 0.982

Average 0.934 0.932 0.932 0.966

Run 3

Cotton 0.952 0.943 0.933 0.972

Ground Nut 0.883 0.920 0.960 0.958

Maize 0.952 0.943 0.933 0.972

Rice 0.993 0.969 0.947 0.985

Average 0.945 0.944 0.943 0.972

Run 4

Cotton 0.946 0.943 0.940 0.972

Ground Nut 0.883 0.917 0.953 0.957

Maize 0.953 0.946 0.940 0.973

Rice 0.993 0.962 0.933 0.982

Average 0.944 0.942 0.942 0.971

Run 5

Cotton 0.965 0.946 0.927 0.973

Ground Nut 0.893 0.919 0.947 0.958

Maize 0.953 0.953 0.953 0.977

Rice 0.973 0.963 0.953 0.982

Average 0.946 0.945 0.945 0.973

An ROC analysis of the MSVM-DAG-FFO method on the dataset applied is demon-
strated in Figure 8. The figure showcases that the MSVM-DAG-FFO method achieved the
maximum result with an ROC of 99.5843.

Finally, a comparative analysis of the MSVM-DAG-FFO method was made with the
other methods in Figures 9–12. The results demonstrated that the MSVM-DAG-FFO method
surpassed the existing techniques in terms of various measures. Upon examination of the
results in terms of precision, the MSVM-DAG-FFO method resulted in a higher precision
of 0.946, whereas the SVM, SVM-kernel, and DT models attained lower precisions of 0.932,
0.921, and 0.909, respectively, as shown in Figure 10. In the meantime, upon investigating
the outcomes for recall, the MSVM-DAG-FFO approach resulted in an enhanced recall of
0.945 whereas the SVM, SVM-kernel, and DT methods gained a minimal recall of 0.927,
0.941, and 0.926, respectively, as shown in Figure 11.
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Ref. 

No. 
Algorithm Applied Best Algorithm 

Accuracy 

Rate 
Dataset Source Sensors Used 

Crops Used/ 

Accuracy Rate on 

Variables 

33 

Extreme learning ma-

chine (ELM) along with 

the following activation 

functions: sine-squared, 

Gaussian radial basis, 

hyperbolic tangent, and 

triangular basis 
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Figure 12. Comparison of MSVM-FFO algorithms with others according to F-Score.

Eventually, upon inspection of the results in terms of their accuracy, the MSVM-DAG-
FFO algorithm produced an increased accuracy of 0.973, whereas the SVM, SVM-kernel,
and DT manners obtained minimal accuracies of 0.932, 0.922, and 0.914, as correspondingly
shown in Figure 9. Lastly, upon observing the results in terms of the F-score, the MSVM-
DAG-FFO methodology gave a maximum F-score of 0.945, whereas the SVM, SVM-kernel,
and DT approaches achieved lower F scores of 0.938, 0.931, and 0.926, respectively, as shown
in Figure 12. From the above result analysis, it is found that the MSVM-DAG-FFO method
is found to be an efficient tool for soil nutrient classification and crop recommendation.

A comparative analysis has been conducted on the performance of the proposed
algorithm with the other algorithms. It has been observed that the proposed model is the
most suitable for predicting crops based on soil. Table 6 presents the state of the art for a
comparison on the usage of the dataset, the use of sensors, and the different algorithms
used and their accuracy, along with the proposed algorithm and the other algorithms
implemented in precision farming. It has been observed that many different algorithms are
implemented by researchers in different contexts and on different datasets such as image
datasets, soil datasets collected from agricultural departments and real-time data collections.
We have implemented analysis on real-time data collection using the MSVM-DAG-FFO
algorithm and achieved a better accuracy of 97.3% compared to the others.
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Table 6. Comparison between the proposed algorithm along with other implemented algorithms.

Ref. No. Algorithm Applied Best Algorithm Accuracy
Rate Dataset Source Sensors Used Crops Used/

Accuracy Rate on Variables

[33]

Extreme learning
machine (ELM) along

with the following
activation functions:

sine-squared, Gaussian
radial basis, hyperbolic

tangent, and
triangular basis

Extreme learning
machine

(average accuracy rate
obtained for all minerals)

90%

North–central Laterite
region

datasets and Marathwada
region datasets

No 90% accuracy in soil
pH classification

[34]
Support vector machine

and decision tree
methods

Decision tree 94% Real-time dataset
collection conducted

Sensors for measuring
pH, humidity, moisture,

NPK value,
andmicrocontroller

equipped with the cloud

87% accuracy in SVM for crop
prediction, 90% accuracy in

decision tree in crop prediction

[35] C 4.5 decision tree

C 5.0 ADT classifier for
soil fertility prediction 92%

Soil data for Virudhunagar
District, Tamil Nadu, from

http://soilhealth.dac.gov.in
for 2015–2016. It contains

soil testing report of
11 blocks of

Virudhunagar District

No

92% accuracy in
soil fertility level and

95% accuracy in predicting crops
such as gingelly, cotton, onion,

sunflower, block
gram, paddy, ground nut,

sugar cane, etc.

C 5.0 ADT classifier for
crop prediction 95%

[36] Rule-based classifier Rule-based classifier 91%

An ontology-based
knowledge base was created
for storing the details of soil

composition with
different minerals

No

Accuracy of 91% obtained
by analysing the 21 rules which

allowed for classifying the
soil composition

[37]
Artificial neural network,
fuzzy C-means method,
support vector machine

Artificial neural network 88.27%

A dataset of 4049 leaf and
fruit images collected from

https://growabundant.
com/nutrient-deficiencies/

No

Accuracy of 77% in thresholding
scheme and 88.27% in hue-based
scheme on leaf image analysis of

crops for finding
nutrient deficiency

http://soilhealth.dac.gov.in
https://growabundant.com/nutrient-deficiencies/
https://growabundant.com/nutrient-deficiencies/
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Table 6. Cont.

Ref. No. Algorithm Applied Best Algorithm Accuracy
Rate Dataset Source Sensors Used Crops Used/

Accuracy Rate on Variables

[38] SVM, SVM with kernel,
decision tree SVM with kernel 92%

1700 samples for soil NPK,
pH, temperature,

humidity, etc.
collected from different

parts of Chhattisgarh state.

Yes
Rice, wheat, and sugar cane

using micronutrients along with
weather data

[39]
AdaSVM, SVM,
AdaNaive, and

naive Bayes
AdaNaive

96.52% for rice, 93.45%
for cotton, 96.10% for
sugar cane, 92.6% for

black gram

Climate data obtained from
indianwaterportal.org

and crop production data
obtained from

faostat3.fao.org

No Rice paddy, cotton, sugar cane,
ground nut, and black gram

[40]

KNN, ANN, naive
Bayes, multinomial

logistic regression, and
random forest

Random forest 94.13%

Real-time data were
collected from Department

of Agriculture, Talab,
Tillo, Jammu

Yes Mustard crop

[17]
Random forest (RF),

Gaussian naive Bayes,
and SVM

Random forest 72.74%

Historical municipality-level
soybean yield data

(2003–2016) was obtained
from IBGE

(https://sidra.ibge.gov.br/
pesquisa/pam/tabelas)

No

Soybean yield:
study was conducted in the

northern region of the Rio Grande
do Sul (RS) state, Brazil

[18]

Artificial neural network,
recurrent neural

network, and deep
neural network

Hybrid network with
re-enforcement learning
multiple network = 90%

90%

Yield datasets were gathered
from the Directorate of

Agriculture, Gandhinagar.
Weather datasets were

collected from the
Agro-meteorology

Department, Gujarat

No Wheat crop

https://sidra.ibge.gov.br/pesquisa/pam/tabelas
https://sidra.ibge.gov.br/pesquisa/pam/tabelas
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Table 6. Cont.

Ref. No. Algorithm Applied Best Algorithm Accuracy
Rate Dataset Source Sensors Used Crops Used/

Accuracy Rate on Variables

[43]

Simple non-linear
regression, SNR;

backpropagation neural
network, BPNN; and

random forest
regression, RF

Random forest (average
accuracy rate) 80.47% Soil image dataset No Rice crop

[44]

CP-ANNs, supervised
Kohonen networks, and

XY-fused
networks (XY-Fs)

Supervised Kohonen
networks 81.65%

The study site was a 22 ha
field at Duck End Farm,

Wilstead, Bedfordshire, U.K.
(Latitude 52◦05′51′′ N,
Longitude 0◦27′19′′ W)

Spectroscopy sensor Wheat yield

[45]
SVM, DT,

multi-layer
perception (MLP)

Multi-layer perception
(MLP) (average accuracy

rate of NPK nutrients)
94%

Data were collected from
Department of Soil

Science, Agricultural
University, located in

Tiruchendur and from
Soil Science Laboratory,
Kanyakumari district

No Banana, varieties of rice, varieties
of maize, and Ragi

[46] K mean clustering
algorithm K mean clustering 77% Paddy crop images No Different crops

[47] CNN, MLP

Convolution neural
network (average score

of wheat, maize,
sunflower, soybeans, and

sugar beet)

85%
Kyiv region of Ukraine
using multi-temporal
multisource images

Landsat-8 and
Sentinel-1A

satellites

Wheat, maize, sunflower,
soybeans, and

sugar beet

[48]

DT, KNN,
KNN with cross

validation,
linear regression, naive

Bayes,
neural network, SVM

Neural network 89.80%

Various datasets from
government website:
https://data.gov.in/

and Kaggle: https://www.
kaggle.com/notebook

No

16 major crops grown such as rice,
maize, ragi, wheat, ground nut,

soyabean, cotton, jute, etc. across
the Andhra Pradesh state, India

https://data.gov.in/
https://www.kaggle.com/notebook
https://www.kaggle.com/notebook
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Table 6. Cont.

Ref. No. Algorithm Applied Best Algorithm Accuracy
Rate Dataset Source Sensors Used Crops Used/

Accuracy Rate on Variables

[49]

Linear algorithms:
logistic regression, linear

discriminant analysis
(LDA), and non-linear
tools NB, KNN, CART,

and SVM

Linear discriminant
analysis algorithm

(LDA)
61%

Collected for seven years in
five countries of the ESA
region, namely Ethiopia,

Kenya, Tanzania, Malawi,
and Mozambique

No Maize grain

PROPOSED ALGORITHM:
multi-class support vector machine using directed acyclic

graph and
fruit fly optimisation
(MSVM-DAG-FFO)

97.3% Real-time dataset collected
using IoTSNA-CR model

Sensors for
temperature, moisture,
GPA, water level, NPK,

and pH along with
node MCU, Arduino,

and Wi-Fi hotspot

Crops: rice, cotton, maize,
ground nuts
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6. Conclusions and Future Work

This real-time data collection and its analysis brought us closer to enabling effective
predictions. The IoTSNA-CR model allows us to acquire soil nutrient data along with
GPS location, moisture, temperature, and water level using its sensors. A common farmer
can maintain his own field soil information using this device and can maintain the soil
information in a low-cost cloud service. This helps a farmer to have updates about his soil’s
health to know the suggested crops. The proposed MSVM-DAG-FFO algorithm allows
farmers to access and analyse the pre-processed soil data. An Android application was
developed to access this cloud data, analyse it, and predict the most suitable crops. The role
of the FFO algorithm is to tune the MSVM model through the selection of kernel functions.
A detailed experimental validation was carried out in five different time intervals on the
real-time data of four different crops using SVM, SVM kernel, decision tree, and MSVM-
DAG-FFO. It was observed that there was a significant improvement in the accuracy rate
compared to other methods. The average accuracy rate of the proposed model overall over
the five runs is 0.969. This is a more appropriate approach for predicting the suitable crops
for a particular cultivation area. Additionally, it allows one to maintain the periodic soil
health details in a low-cost cloud, which not only guides the farmer in choosing a crop but
also allows them to give appropriate input regarding the usage of minerals.

Furthermore, an extensive survey of crop fields and the collection of real-time data
from different geographical locations suggested for crops by the department of agricul-
ture of a governmental body is required. Additionally, the collection of datasets can be
improved for more crops, such as sugar cane, potatoes, tomatoes, cauliflowers, mustard,
ragi, soybeans, bananas, oil seeds, onions, ginger, etc., as suggested by the agricultural
department. Additionally, if the application is used regularly by a farmer to maintain his
own field information, it will allow the farmer to analyse his own field data with a more
detailed approach for making better decisions regarding crops and maintaining soil health.
The farmer can take the necessary steps to enhance the soil quality with limited investment
in minerals.
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