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Abstract: IPS is a crucial technology that enables medical staff and hospital management to ac-
curately locate and track persons or assets inside medical buildings. Among other technologies,
readily available BLE can be exploited to achieve an energy-efficient and low-cost solution. This
work presents the design, implementation and comparison of a RSSI-based and a MCPD-based
indoor localization system. The implementation is based on a lightweight wkNN algorithm that
processes RSSI and MCPD distance data from connection-less BLE Beacons. The designed hardware
and firmware are implemented around the state-of-the-art SoC for BLE, the nRF5340 from Nordic
Semiconductor. Experimental evaluation with real-time data processing has been evaluated and
presented in a 7.3 m × 8.9 m room with furniture and six beacon nodes. The experimental results
on randomly chosen validation points within the room show an average error of only 0.50 m for the
MCPD approach, whereas the RSSI approach achieved an error of 1.39 m.

Keywords: bluetooth low energy; localization; indoor localization; low-power design; kNN; wkNN;
machine learning

1. Introduction

The complexity of medical buildings, such as hospitals, clinics and nursing facilities,
is increasing every day due to the increasing number of patients/hosts [1]. Moreover, the
complexity increases due to new equipment and technologies offered to the staff, ranging
from medical equipment to electronic medical data storage. In recent years, we have
been assisting with the introduction of information technology location-aware devices and
systems for healthcare environments that are exploiting different IoT technologies [1,2].
The main goal of those emerging IPS is enabling medical staff and hospital management
to accurately locate and track assets or even persons inside the medical buildings [1].
Among other scenarios where IPS can be exploited, promising hospital scenarios could
become a reality for IPS in the near future: finding equipment and other medical devices
inside a hospital or a building is often a complicated and time-consuming task. In large
hospitals, time is crucial, and having a fast and reliable way to identify the location of
equipment could save lives [3]. Moreover, the vision is to have a next-generation nurse
smart-calling system that is able to locate the nearest nurse in the medical building. This
can make medical work more efficient [4], e.g., to locate and track medical equipment,
which simultaneously helps identify paths of infection [5]. In further steps, the IPS can
lead to more freedom for patients and can help medical staff to track patients inside the
hospital or in large indoor areas. This could especially be helpful when patients with a
critical disease, such as dementia, get lost in the medical building. These are only a few
examples of how an IPS can improve the internal functionalities inside a hospital.

Advances in electronics, computer sciences, miniaturization and wireless communica-
tion enable energy-efficient communication among battery-operated smart devices inside
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the IoT paradigm [6,7]. The presence of a smart device allowing the discovery, communica-
tion and data analysis is the key enabling factor for the real development and deployment
of IoT applications such as IPS [1]. Wireless communication technologies enable IPS with
a precision down to a few centimeters [8]. The development of a functional localization
system accurate to one meter could be applied to many application scenarios, especially
within the medical section. In addition to the highest possible precision, this should also be
cost-effective and as easy to set up as possible—which guarantees a large application area.
GPS is a well-known and established technology to precisely identify a location—however,
it is well-known that it cannot be used indoors [9,10]. Different systems and technologies
have been investigated and proposed in the recent literature, and a few of them are avail-
able on the market to address the need for indoor localization, including systems that use
cameras or other combinations of sensors [11]. However, emerging research is investigating
new ways of using wireless communication to enable accurate indoor localization [9,12].

The most promising wireless technologies for meter-precision indoor localization are
WLAN [13], UWB [14,15], RFID [16], BLE [17] and LoRa [18], including combinations with
GPS [19]. Many researchers have been investigating the possibility of using WLAN for the
fact that it is pervasive in all buildings and it has a long-range—however, the high energy
consumption for a battery-powered system and the not excellent accuracy in the detection
are the main weaknesses. Due to the ultra-wideband and the nature of the technology [14],
the solutions based on UWB allow very high accuracy of less than 30 cm in a radius of
tenths of meters—however, current UWB modules still have a too high power consumption,
around 55 mW [15], which reduces its use in a real-application scenario where the IoT device
needs to last months with a coin battery. RFID allows the achievement of very low-energy
consumption as many tags can even work without any supply. Moreover, the passive
tags achieve the most accurate cm accuracy [20]. But the operative range is restricted
to the small range of less than 2 m [21], while the active tags for extending the ranges
are affected by larger energy consumption and bigger antennas. Long-Range sub-giga
wireless communication such as LoRa [22] have been investigated to provide localization
information. However, the range achieved is in the order of several hundred meters, which
makes them not suitable for high-precision indoor localization. Some researchers combined
LoRa with GPS to achieve below-meter accuracy with real-time kinematics, however, this
solution works only outdoors [19]. BLE 5.x offers an optimal trade-off of accuracy, range,
energy consumption and availability in all modern phones that have been exploited by
many recent works, including the novel features of estimation of the AoA enabled from the
5.2 version of BLE [23], which also allows for ranging applications [24]. Figure 1 gives an
overview of the most exploited wireless technologies for indoor localization with some key
parameters such as range, accuracy and energy efficiency when supplied by batteries.

Figure 1. The most common wireless technologies exploited for localization in buildings, LoRa
and GPS are excluded since they have unsuitable accuracy in indoor application scenarios. Battery
lifetime estimation based on a 110 mAh LiPo.



Computers 2023, 12, 59 3 of 15

Although technology is advancing wireless communications, indoor localization
systems are still prone to errors—attenuated by software algorithms. Many previous works
focusing on the use of CNN have been proposed as a competitive solution, especially
for WLAN [25] and BLE [26]. CNN are improving the precision performance on the
one hand, and on the other hand, CNN models are designed to be executed on a CPU
or GPU, requiring data to be transmitted from the mobile sensor node to an external
computer engine through wired or wireless communication. Recently, a new generation
of mobile smart IoT is attracting academic and industrial researchers, using MCU, which
are supposed to bring computing capabilities toward the “edge” to perform real-time
computation [27,28]. Edge computing offers the following advantages:

1. lower energy consumption for the data transmission between IoT devices and re-
mote processing;

2. longer battery lifetime;
3. significantly shorter latency compared to remote computation;
4. user comfort;
5. security and privacy improvements, as the data are processed locally [27].

This paper focuses on the design and implementation of a low-cost and battery-
operated hardware and software system for an indoor localization system. In particular,
the system is based on BLE 5.2 using the low-power general-purpose multi-protocol SoC
nRF5340 from Nordic Semiconductor. Our study presents an evaluation and comparison
of two localization technologies based on BLE: MCPD and RSSI. While RSSI has been
analyzed in depth in previous research, MCPD is relatively new, and little research exists
on it. Notably, to the best of our knowledge, this is the first comparison of the two methods
under BLE. By comparing the performance of the wkNN algorithm using MCPD and RSSI
methods, our research contributes to the existing literature on IPS. The implementation of
the wkNN algorithm, together with MCPD and RSSI, is described, in detail, in this paper.
We hereby present the following contributions:

• On the software side, the paper compares the performance of wkNN for the two
different ranging methods based on BLE: One being based on MCPD, the other
on RSSI.

• The design of the anchors and the mobile nodes are presented and evaluated with
experimental results showing an overall accuracy of the implemented algorithm below
1 m using MCPD and below 2 m using RSSI on average for a 7.3 m × 8.9 m room.

2. Background on BLE-Based Localization

Ranging-based localization of a moving target, in general, requires the availability
of multiple fixed anchors [29], which can be arranged in two ways: In the first variant, a
mobile device receives packets from the fixed anchors and records the distance. The other
method would be to have multiple fixed receivers and a mobile device as a transmitter of
the packets. Figure 2 illustrates the two options where the white pentagon in the middle
identifies the mobile tag. The four circles in the corners are the BLE anchors that are fixed.

The former configuration achieves a higher energy efficiency of the mobile device, as
it can wake up autonomously and decide when to receive messages and must not be con-
nected to the anchors. In addition, all calculations can be carried out on the receiver—thus,
the beacon themselves do not need to communicate with each other.

Therefore, the approach with the sending anchors is used in this work.
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(a) (b)

Figure 2. Two possible constellations for localization based on beaconing using BLE. (a) A mobile
device receives packets from the fixed anchors, records the distance and performs the localization.
(b) A mobile device transmits packets, and multiple fixed receivers record the distance and perform
the localization.

2.1. Ranging Technologies

The distance itself can be obtained in different ways. The classical way of ranging
between two BLE devices is by using the RSSI [30]. With the addition of Direction Finding to
BLE, novel devices have the capability of incoming phase measurements using IQ sampling
and can exploit this also for ranging.

2.1.1. RSSI-Based Ranging

All BLE devices are capable of measuring the power of an incoming signal, called
RSSI. To enable RSSI-based ranging, the decrease in signal strength has to be clarified with
the increase in distance in a medium such as air. A well-known mathematical model is
the logarithmic distance loss model [31]. In this model, the decrease in signal strength
is assumed to be logarithmic decreasing with the increasing distance [32]. Equation (1)
illustrates the model used for the RSSI value to approximate the distance.

RSSI(d) = RSSI(d0)− 10n · log10

(
d
d0

)
(1)

where d is the estimated distance, d0 describes a self-defined reference distance, RSSI() is
the function that assigns the expected signal strength to each distance and n is the path loss
parameter given by the properties of the environment.

Figure 3 shows the decay evaluated by Equation (1) based on approximations per-
formed in a room with the received RSSI values of the nRF5340 for both beacon and receiver
and a transmission power of 0 dBm.

However, although the theoretical concept describes a strong relationship between
distance and path loss, RSSI-based localization is not considered robust [33]. The reasons
for this include inaccurate measurement of the incoming signal strength, different antenna
gains depending on the antenna rotation and, in particular, dependence on the transport
medium and the environment. In particular, obstructed line of sight and reflections from
objects generate strong deviations in the received signal strength.
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Figure 3. Theoretical path-loss decay calculated for the Nordic nRF5340 transmitting with 0 dBm, as
used in this work.

2.1.2. MCPD-Based Ranging

The BLE 5.2 amendment adds functionality for direction finding using BLE. Measuring
the IQ components of the incoming signal, devices having multiple antennas can detect the
direction of an incoming signal (θ) using the formula in Equation (2),

θ = arccos
(

∆φ · λ
2π · l

)
(2)

where l is the distance between the two antennas, λ is the wavelength of the signal and ∆φ
is the measured phase difference of the incoming signal at the different antennas.

Although not explicitly stated in the definition of BLE direction finding, the distance
between two devices can also be determined by this IQ data. Two signals of different fre-
quencies traveling through space will experience a different IQ component. The measured
phase φ can be formulated using Equation (3) [34],

φ = 4π · d · f
c

(3)

where d is the distance between the devices, f is the propagation frequency and c is the
propagation speed. As this function is surjective but not injective, we have an ambiguity
when trying to find the distance for a measured phase shift φ. Using MCPD, this ambiguity
can be eliminated. The initiator of the measurement transmits a signal with a frequency
f1. The reflector retransmits the signal (after a fixed amount of time, which correlates with
a fixed phase shifts Φ) back to the initiator on the same frequency—where the initiator
measures the obtained phase shift φ1.

φ1 = 4π · d · f1

c
+ Φ (4)

The procedure is then repeated on a second frequency f2, and the initiator obtains the
phase shift φ2.
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φ2 = 4π · d · f2

c
+ Φ (5)

Using this information, the initiator can then, using invertable Equation (6), calculate
the distance between the devices.

d =
c

4π

φ2 − φ1

f2 − f1
(6)

In practical applications, this procedure is repeated using multiple different frequen-
cies and solved using least squares to minimize errors introduced during the measurement.
This technology has been analyzed in a controlled environment by Zand et al. [24] and
then evaluated in a multipath-rich environment by Lu et al. [35] using a DA14695 SoC of
Renesas (back then Dialog Semiconductors). The experiment was carried out in an empty
experimental building with four anchors in a 6 m × 6 m square arrangement, fixed 160 cm
above ground. The tag was fixed in the center 50 cm above ground. The achieved accuracy
lies within 25 cm in the x-direction and 10 cm in the y-direction.

The implementation in our work is based on the Nordic Distance Toolbox and their
implementation of MCPD using the IFFT.

2.2. Localization Algorithms

The most used setting for localization applications with multiple anchors is trilatera-
tion [36], which is also used by GPS.

2.2.1. Trilateration

Trilateration [37] is a method where the distance between the target/beacon (di) and
at least three known reference positions ([xi, yi, zi]

>) are used, to calculate the position of
the target (in 3D space). The equations for trilateration are shown in Equation (7) and lead
to the target position when solved for the unknown coordinate [x, y, z]>.

di =
√
(x− xi)2 + (y− yi)2 + (z− zi)2 (7)

As the exact distance di is usually not known (noise, measurement uncertainty, . . . ), addi-
tional reference points should be added to the linear system of equations. As the system
gets overdetermined, regression methods, such as Gauss’s least squares [38], have to be
used to find the most probable position.

Although more references improve the performance of trilateration, it still relies on
good, qualitative measurements of the distances. As this is, especially with RSSI, not
necessarily given, the performance of trilateration is known to be poor [39]. In order to
improve localization accuracy, wkNN has been used in this paper.

2.2.2. Weighted k-Nearest Neighbors Indoor Localization Algorithm

The wkNN algorithm is one of the most widely used algorithms to improve the
performance of indoor localization based on RSSI [40]. Moreover, the algorithm can be
implemented directly on the MCU, as it does only require memory to store the training
data (one value per trainings position and anchor) and little computational resources. This
algorithm belongs to the category of supervised learning and requires that the position of
the beacons and the positions of the training points are known. Section 3.2 explains the
experimental setup used to acquire the data set. Through a previous training (fingerprint),
the RSSI and MCPD values from each beacon (vector with six values) at each position are
determined. Due to the nature of wkNN, only positions within the trained positions can
be estimated.

wkNN [41] is a complement to kNN. In the first step, as shown in Algorithm 1, the
distance between the measurement m and all training measurements t[·] is calculated using
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a choosable norm. The term “distance” is here used as d[i] = ‖m− t[i]‖n , where t[i] is the
training data of training i and ‖·‖n is the euclidian (‖·‖2) or Chebyshev (‖·‖∞) norm.

Then k smallest distances are taken to form a weighted arithmetic mean of the k closest
training positions p[i] by using the reciprocal of the estimated distance d[i] to the receiver.
The result then corresponds to the estimated position pest. The weighting assigns a very
high value to the training position with a difference close to zero, while the others split the
remainder, promoting convergence to the nearest positions. It is important to note that only
positions within the area spanned by the training positions can be correctly detected.

Algorithm 1 wkNN-based localization.

function WKNN(S, m, k) . S: list of training positions i
d←[] . m: measurement vector
for i ∈ S do . k: # closest neighbors to select

d[i]← ‖m[i]− t[i]‖n)
end for
d←SORTASCENDING(d)
K ← GETKCLOSESTNEIGHBORS(d, k)
w←[]
for i ∈ K do

w[i]← 1
d[i]

end for

pest ← 1
∑i w[i] ·

(
∑
i
(w[i] · p[i])

)

end function

3. Materials and Methods
3.1. System Architecture

This paper presents both the beacons and the receiver that were developed based
on the BLE 5.3 SoC nRF5340 from Nordic Semiconductor. This was the most advanced
BLE chip including BLE Direction Finding at the beginning of the design, as it had the
lowest power consumption among all available chips both for the radio interface as well
as in terms of computational efficiency. This SoC contains a dual-core ARM Cortex-M33
microcontroller for the user firmware.

Beacon and Receiver Nodes

Figure 4 shows the prototype and block diagram of the node developed and imple-
mented in this work. The node is designed to operate from a 3.7 V LiPo battery, which is
used to power the nRF5340 (u-blox Nora B106 module with a ProAnt PCB antenna) using a
1.8 V buck converter, represented by the MCU block in Figure 4b. The node is designed
for low power consumption and a small footprint (see Figure 4a). To provide an extended
battery lifetime, the nodes are equipped with a can be charged using USB-C.

Version March 6, 2023 submitted to Computers 7 of 15
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Figure 4. Prototype of the node (a) and block diagram (b). The battery is attached to the backside of
the PCB. The module-integrated PCB antenna is designed by ProAnt.
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The average power consumption of the node is around 0.185 mW when advertis-
ing/measuring every 100 ms for RSSI and 1.850 mW for MCPD. When increasing the
measurement interval for MCPD to 1.5 s (see Section 4.5, possible due to the low variance),
the power consumption can be reduced to 0.122 mW, resulting in a runtime of 92 days for
RSSI and 139 days for MCPD on the 110 mAh LiPo battery.

3.2. Experimental Setup

To evaluate the designed prototypes and algorithm, six beacons were distributed
equally in the room, as shown in Figure 5. The beacons were placed at a height of 1.8 m
above floor level at the edges and side walls of the room. The height was chosen so that
the signal is blocked as little as possible, as there are usually no or only a few objects at
this height. Figure 5a shows the classroom used for the experimental evaluation with an
area of 7.3 × 8.9 m. Additionally, Figure 5b shows the nine training positions and the five
validation positions. The edge beacons were mounted on a 45° angle towards the room
(see Figure 6a). During the measurements, the receiver node was statically placed on a
table, pointing with the antenna always in the same direction (see Figure 6b). Obstacles in
the room were the chairs, desks and monitors, which were around 1 m high, as shown in
Figure 5a.

(a) (b)

Figure 5. Experimental setup during training and validation. (a) The classroom used for experimental
evaluation had an area of 7.3 m × 8.9 m, with the beacons at a height of 1.8 m. (b) Floorplan of the
experimental setup used to acquire training and validation data.

It is important to note that the implemented algorithm is evaluated as a regression
problem and not as a classification problem of the nine known positions. This is performed
to obtain a more realistic and useful system that can be used in an IPS for medical applica-
tions. To obtain a proper validation of the algorithm, the validation positions are chosen
randomly and different from the training positions.
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(a) Edge-mounted beacon. (b) Receiver and its holder.
Figure 6. Mounting of the beacons and the receiver.

4. Results

The wkNN algorithm in Algorithm 1 was implemented using both the euclidian (2-norm)
and Chebyshev (∞-norm) norms and with k ∈ {3, 5}. The raw measurement results of the two
ranging technologies were then used as an input in the different wkNN configurations.

4.1. Influence of the Number of Beacons for the Localization Accuracy

Since the number of beacons in the room is relatively high, which is unlikely in a
realistic scenario, the algorithm was evaluated for all possibilities of “6 choose x”, with
x ∈ {3, 4, 5, 6}. Thus, the performance of all combinations of the available beacons could
be analyzed. For the following evaluations, an estimation is performed for every single
measurement we took (no a priori averaging of the raw data).

To keep the overview, only the euclidian norm for k = 3 is considered in this part. The
results with k = 3 were always better than with k = 5, and the euclidian norm was always
better than the Chebyshev norm for RSSI, and for MCPD never more than 20 cm worse.
Table 1 shows the influence of the number of beacons on the accuracy. For each category,
the average results over all combinations using x beacons are shown.

Table 1. Analysis of the data for the selected amount of badges in the room and for both methods
RSSI and MCPD, using k = 3 and the euclidian norm.

Number of Beacons

Avg.
Statistics

3 4 5 6

RSSI MCPD RSSI MCPD RSSI MCPD RSSI MCPD

Avg. 2.239 m 0.696 m 2.111 m 0.610 m 2.069 m 0.539 m 2.037 m 0.579 m

Var. 1.373 m 0.129 m 1.397 m 0.050 m 1.356 m 0.027 m 1.350 m 0.020 m

Std. 1.167 m 0.311 m 1.178 m 0.204 m 1.160 m 0.158 m 1.162 m 0.143 m

Min. 0.048 m 0.067 m 0.048 m 0.145 m 0.095 m 0.115 m 0.245 m 0.245 m

Max. 5.379 m 2.702 m 5.111 m 1.441 m 5.027 m 0.879 m 4.990 m 0.786 m

When it comes to the number of beacons; a higher number of beacons generally
corresponds to an improvement in accuracy, as can be seen in Figure 7; only with a change
from five to six beacons did the performance of MCPD slightly degrade. On average, the
accuracy is improved by 3.08% for RSSI and 6.075% for MCPD when adding one more
beacon to the room. Notably, precision is also improved by similar percentage points for all
nodes, as both the variance and the standard deviation also decreases when more beacons
are added.
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Figure 7. Performance change depending on the number of beacons.

The selection of the subset of beacons can have a significant influence on the accuracy. As
can be seen in Figure 8, depending on which three beacons of the six are used for the calculation
of wkNN, the outcome has a large variation. For example, the best selection of three beacons
for RSSI achieved a 32.6% improved result when compared to the worst selection of three
beacons. For MCPD, the effect was even higher, where the deviation was 52.9%.

(a) Results for RSSI (b) Results for MCPD

Figure 8. Influence of the selected subset of three out of the six beacons.

4.2. Results When First Averaging 15 Measurements before Estimation, Using 6 Beacons

For further analysis, the case with six beacons is considered, as all available data are
taken into account, and measurement inaccuracies can be better filtered out. Table 2 shows
the estimation error on the validation positions when first averaging all measurements (15
per position) before performing the estimation using all six beacons.
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Table 2. Average error of the different wkNN configurations and ranging technologies when averag-
ing 15 measurements.

Method
k = 3 k = 5

2-Norm ∞-Norm 2-Norm ∞-Norm

RSSI 1.369 m 1.410 m 1.766 m 1.999 m
MCPD 0.577 m 0.501 m 0.753 m 0.788 m

The configurations of the wkNN algorithm leading to the best results for both the
RSSI-based and the MCPD-based approach are looked at in more detail in the following.

4.3. Results for MCPD Using k = 3 and the Chebyshev Norm

Applying wkNN to every single measurement of MCPD leads to an average error of
0.52 m with a variance of 0.02 m and a standard deviation of 0.16 m. The best measurement
showed an error of 0.35 m, whereas the worst had an error of 0.79 m. Figure 9 shows the
histogram and boxplot of all the individual measurements, and on the right side, a map
containing the estimations of all individual measurements as well as the estimation result
when averaging all measurements (before estimation).

(a) (b)

Figure 9. Results for MCPD, k = 3 and the Chebyshev norm. (a) Histogram and boxplot of
the individual measurements. (b) Map showing estimations of individual measurements and the
average estimate.

4.4. Results for RSSI Using k = 3 and the Euclidian Norm

The average error when estimating the position using a single RSSI measurement is
2.04 m. The variance of 1.35 m and the standard deviation of 1.16 m already indicate the dif-
ficulty when performing wkNN estimations using RSSI. The maximal error was 4.99 m, and
the minimal estimation error was 0.35 m. Figure 10 shows the larger variation of the RSSI
estimate when compared to the MCPD estimate, considering a single RSSI measurement.
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(a) (b)

Figure 10. Results for RSSI, k = 3 and the euclidian norm. (a) Histogram and boxplot of the individual
measurements. (b) Map showing estimations of individual measurements and the average estimate.

4.5. Discussion

For both ranging technologies, k = 3 leads to an improvement of between 23.4%
and 36.4% over k = 5. The chosen norm has a much smaller influence and depending
on the used ranging technology, the result changes: For RSSI-based measurements, the
euclidian norm performs 2.9% better than the Chebyshev norm, whereas, for the MCPD-
based measurement, the Chebyshev norm performs better by 13.2%. Considering only the
best configuration of wkNN for both ranging technologies, the MCPD approach leads to a
63.4% decreased average estimation error than RSSI when first averaging the measurements
before performing the estimation and by 74.9% when not averaging the measurements.

Due to the small variance of only 0.02 m in the MCPD estimation with individual mea-
surements, the averaging of the measurement before estimation decreases the average error
of MCPD by only 3.6%. This is insofar noticeable, as power consumption can be drastically
decreased since single measurements are already reliable enough to perform an accurate
estimation. On the other hand, RSSI suffers from huge variance in the measurements and
estimation (1.35 m). Averaging 15 measurements to perform the estimation can decrease
the error by 32.9%, with the trade-off of a slower estimation or higher power consumption.
Comparing this to the original paper [17], it seems slightly worse. This can be explained by

1. In the original paper, the validation is performed at the same position as the training;
the estimation error there can, therefore, be attributed to the variance of the RSSI
measurement and not the performance of the algorithm (and linearity between the
position) itself.

2. Here only 15 measurements have been used to perform the estimation, whereas, in
the original paper, 1000 measurements were used.

3. A different node design, with a different SoC and antenna design, has been used.

Taking this aspect into account and assuming an estimation interval of 1.5 s (i.e.,
1 sample of MCPD for 15 samples of RSSI, collected every 100 ms), the current consumption
of MCPD can be reduced to≈ 33.3 µA by still having a 62.0% improved estimation accuracy
over RSSI.

5. Conclusions

This paper presents and compares the design and implementation of an indoor local-
ization hardware-software system that enables localization and tracking in medical appli-
cations based on RSSI and MCPD measurements. The used algorithm is the lightweight
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wkNN that can run on an ARM Cortex-M33 microcontroller. Experimental results in a
7.3 × 8.9 m room have shown the superiority in the accuracy of the MCPD method over
the RSSI method. Even with an amount of only three beacons, an accuracy below 1 m can
be achieved, which can be improved when adding more beacons. In particular, due to the
small variance in the measurements with MCPD, an accuracy of 0.52 m, on average, can be
achieved with a single measurement and 6 beacons, while with RSSI, despite the averaging
of 15 measurements, a significantly higher average deviation of 1.39 m is achieved. The
average current consumption of the beacons is around 50 µA at 3.7 V, resulting in a long
lifetime of at least three months when powered by a small LiPo battery of 110 mAh. The ad-
vantages of the novel MCPD-based ranging is the more and more upcoming availability of
BLE Direction Finding, leading to energy-efficient, low-cost and more accurate localization
systems than the previously RSSI-based ones.
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Abbreviations

The following abbreviations are used in this manuscript:
3D three-dimensional
AoA angle of arrival
BLE Bluetooth Low Energy
CNN convolutional neural network
CPU central processing unit
GPS Global Positioning System
GPU graphics processing unit
IFFT Inverse Fast Fourier Transform
IPS Indoor Positioning System
IQ in-phase and quadrature
IoT internet of things
LiPo lithium polymer
LoRa Long Range
MCPD multi-carrier phase difference
MCU microcontroller unit
PCB Printed Circuit Board
RFID radio-frequency identification
RSSI received signal strength indicator
SoC system on a chip
USB Universal Serial Bus
UWB Ultra-Wideband
WLAN Wireless Local Area Network
kNN k-Nearest Neighbors
wkNN weighted kNN
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