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Abstract: COVID-19 has raised the issue of fighting epidemics. We were able to realize that in this
fight, countering the spread of the disease was the main goal and we propose to contribute to it.
To achieve this, we propose an enriched model of Random Forest (RF) that we called RF EP (EP
for Epidemiological Prediction). RF is based on the Forest RI algorithm, proposed by Leo Breiman.
Our model (RF EP) is based on a modified version of Forest RI that we called Forest EP. Operations
added on Forest RI to obtain Forest EP are as follows: the selection of significant variables, the
standardization of data, the reduction in dimensions, and finally the selection of new variables that
best synthesize information the algorithm needs. This study uses a data set designed for classification
studies to predict whether a patient is suffering from COVID-19 based on the following 11 variables:
Country, Age, Fever, Bodypain, Runny_nose, Difficult_in_breathing, Nasal_congestion, Sore_throat,
Gender, Severity, and Contact_with_covid_patient. We compared default RF to five other machine
learning models: GNB, LR, SVM, KNN, and DT. RF proved to be the best classifier of all with the
following metrics: Accuracy (94.9%), Precision (94.0%), Recall (96.6%), and F1 Score (95.2%). Our
model, RF EP, produced the following metrics: Accuracy (94.9%), Precision (93.1%), Recall (97.7%),
and F1 Score (95.3%). The performance gain by RF EP on the Recall metric compared to default RF
allowed us to propose a new model with a better score than default RF in the limitation of the virus
propagation on the dataset used in this study.

Keywords: epidemic; prediction; classification; machine learning; COVID-19; random forests; metrics;
dataset

1. Introduction

Although intuitively understandable, the word epidemic can sometimes be complex
to define. To help the research community solve this problem, O’Neil, E. A. and Naumova,
E. N. [1] published a research paper that elucidates the different definitions of this term.
We have three definitions from [1].

O’Neil, E. A. and Naumova, E. N. define an epidemic as “any increase in the incidence
of a disease, to refer to even one case”. They call this definition the weakest. Another
definition given to the epidemic by the authors is “any number of identified cases in a
given space or time or taking both into account”. The third definition we will use here is
“an increase in the occurrence of a disease in a defined population that is clearly greater
than the usual or normal number observed in that population.”

The commonality of these three definitions and the popular and intuitive conception
we may have of the epidemic is “the number of cases”. An epidemic is necessarily related
to the number of people suffering from the disease [2]. The greater the number, the greater
the epidemic. The faster the epidemic spreads, the larger the number grows. This is why in
the fight against an epidemic, the decrease in its spread is always the first battle [3,4]. For
this reason, we decided to address this issue in this research work.
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Indeed, the socio-health objective of this work is to propose an enriched Machine
Learning (ML) model that will contribute to the fight against the spread of epidemics. To
do this, we have set ourselves the goal that our model will be moderately better than the
models existing in the literature regarding the detection of people with disease. It will
not allow many of the positive cases to escape, which can infect others and increase the
incidence of the epidemic.

The technical objective of this research work is to propose a Random Forest (RF) model
with improved metrics compared to the default model. The choice of the Random Forest
method is mainly based on our previous studies [5,6], which allowed us to identify Random
Forest as one of the most suitable methods for epidemic prediction studies. We therefore
decided to look into this method to propose a model. To ensure that our proposed RF
model performs better than the default RF, we needed to test both models on the same data
and variables. We will also needed to measure these two models with the same metrics to
be able to compare the results.

To reach this goal, we first went through the literature to discover the work of other
IT researchers in the fight against epidemics. The results of our findings are presented
in Section 2 of this article. Subsequently, we chose coronavirus disease 2019 (COVID-19)
as the outbreak on which we will test our model. The description of the dataset, the ML
models used to compare the performance of the model we propose, the evaluation criteria
(metrics) used, and the research methodology are presented in Section 3 of this article.

Section 4 presents the results obtained during the conduct of the research methodology.
These results include data pretreatment, analysis and splitting, some algorithms including
the one our model implements, the construction of our model, the results of the execution of
our model taking into account each step of our algorithm, and the results of the evaluation
of metrics compared to other models. It is in Section 5 that we make an argument for the
results presented in Section 6. This discussion shows how our model manages to satisfy
the socio-medical objective of this research. We start from an analysis of the metric values
obtained by our model in comparison with other models to establish a link with the fight
against the spread of the epidemic. The conclusion of this article is presented in Section 6.

2. Related Work

The fight against the COVID-19 epidemic is challenging in many ways. Since the
beginning of 2020, researchers around the world have tried to solve every aspect of this
struggle. However, the primary goal of governments and leaders around the world in the
fight against COVID-19 is to limit the spread of the disease. This is also stated by Ahamad
M. M. et al. [1].

Ahamad, M. M. et al. [1] have implemented and applied models that predict and
select the characteristics (variables) that correctly determine whether a person is positive
or negative. In other words, these models allow researchers to determine the order of
significance of the variables. Based on the variables and data on which [1] applied these
models, they obtained the following results: fever (41.1%), cough (30.3%), lung infection
(13.1%), and runny nose (8.43%). [7] conducted a study to predict the number of new people
infected, dead, and recovered in the next ten days. The models developed by [7] were
built on the basis of four methods: Linear Regression (LR), Least Absolute Shrinkage and
Selection Operator (LASSO), Support Vector Machine (SVM), and exponential smoothing
(ES). The results obtained by the authors proved that the ES method is the best of the four,
followed by LR, LASSO and SVM.

Greco, M. et al. [8] conducted a study to predict the mortality rate of COVID-19
patients. The purpose of their study was to predict the outcome of the crisis in the intensive
care unit. At the end of the study, they found that the following characteristics were strongly
related to mortality: age, number of comorbidities, and male gender. Muhammad, L.J. et
al. [9] looked at predicting recovery of patients from COVID-19. They developed models
with four algorithms. The model built with DT was better than the others with an accuracy
of 99.85%. Narin, A. et al. [10] have built a model based on CNN (Convolutional Neural
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Networks). The built model uses X-ray images to predict COVID-19 contamination at an
early stage. Similarly, [11] have proposed a model they named DarkCovidNet that predicts
COVID-19 contamination from chest CT images.

In [12], Mirri, S and co-authors developed a model that was used to predict the
resurgence of corona virus in the nine provinces of Emilia-Romagna, during the period
September–December 2020. The robustness of the model proposed in the work of Mirri,
S et al. is based, among other things, on the fact that the model was trained with all the
COVID-19 infections that occurred in the region concerned, the values of all the particles
collected in the experimental period and the succession of restrictions imposed by the
Italian government. The model proposed in [12] obtained an accuracy of 90%.

The spread of the epidemic has also been studied by [13]. In their work, they study
the future expansion of COVID-19, the likely time when the epidemic will reach its peak,
and the time when it may end. Yang, Z. et al. [14] built a model to predict the peak and size
of the epidemic in China. Dianbo, L. et al. [15] developed a model for real-time prediction
of the number of people living with COVID-19 in China. Remuzzi, A. and Remuzzi, G. [16]
conducted a study to predict the expansion of the epidemic in Italy and its impact in China.
Studies such as [17,18] focused on real-time prediction of cases of COVID-19 contamination
worldwide and early responses to these cases.

In other works, supervised Machine Learning models have been used to predict
whether a person is COVID-19 positive or negative. These include the work of [19,20].
In [9], the authors used a Mexican dataset that included age, sex, pneumonia, diabetes,
asthma, hypertension, cardiovascular disease, obesity, chronic kidney disease, tobacco, and
outcome (COVID-19 results). To make the prediction, the authors used and evaluated the
following models: Decision Tree (DT), Logistic Regression (LR), Naive Bayes (NB), Support
Vector Machine (SVM), and Artificial Neural Network (ANN). They came to the following
conclusion: DT proved to be the best model in terms of the ’Accuracy’ metric with 94.99%;
LR (94.41%), NB (94.36%), SVM (92.40%), and ANN (89.20) follow-up; while for ‘sensitivity’
metric, SVM takes the first place with 93.34%, ANN (92.40%), DT (89.20%), LR (86.34%),
and NB (83.76%); and finally on the “specificity” metric, the first position is held by NB
with 94.30% followed by DT (93.22%), LR (87.34%), ANN (83.30%), and SVM (76.50%).
Although all models share the top spot in this study, we can easily see that on average the
DT model comes in first with 92.47% followed by NB with 90.81%, LR with 89.36%, ANN
with 88, 30%, and finally SVM with 87.41%.

Researchers used a publicly available dataset in [20] to evaluate variables such as
country, age, gender, fever, body-pain, runny nose, difficulty breathing, nasal congestion,
sore throat, severity, and contact with COVID-19 patients. Their study included models
such as GNB (Gaussian Naive Bayes), LR (Logistic Regression), SVM (Support Vector
Machine), KNN (K-Nearest Neighbor), and DT (Decision Tree). Based on the authors’
evaluation of the four metrics Accuracy, Precision, Recall, and F1 score, DT performs the
best on all the metrics.

Considering the above, it is evident that the two studies we cited, [9,20], all placed
DT at the top of the list of models that best predict epidemics, and in particular, when
it comes to determining whether patients have a positive or negative COVID-19 status.
These studies are a strong support for the empirical demonstration of the study [6] that we
published in January 2021. This study was a brief literature review that took into account
four epidemics: African Swine Fever (ASF), dengue, influenza, and oyster norovirus. At
the end of that study, Random Forests distinguished itself from the others as being the best
classifier in the prediction of epidemics followed by ANN (Artificial Neural Network).

At the time of this study, we based ourselves on the following works: [21–23]. Each of
these three works, in different contexts, came to the conclusion that Random Forests was
the best classifier. Tapak L. et al. made a comparison of three ML methods (SVM, ANN,
and RF) to judge their ability in predicting epidemics. They concluded that the temporal
prediction of RF is better than that of the other methods studied (ANN and SVM) for such
problems while ANN is better in detecting epidemics. Liang and co-authors tested and
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compared six ML methods (Bayes Net, ANN, SVM, AdaBoost, C4.5, and RF) based on four
well-known comparison measures: SN (sensitivity), SP (specificity), ACC (Accuracy), and
MCC (Matthew Correlation Coefficient) before opting for the RF to carry out predictive
analysis of the epidemic of Swine Fever in Africa, because the result of this comparison
placed the RF above others. Ducharme G. R. compared six methods (Bn, RLog, SVM,
RF, KNN, and ANN). At the end of his study, Ducharme G. R. comes to the following
conclusion: “The classifier that emerges from this exercise with the best scores is RF and
its variants”.

This time, the fact that DT is aligned in first position in [9,20] knowing that RF is an
improvement of DT because RF is a set of Decision Trees, is an additional evidence of the
predictive quality of RF in the case of epidemics.

To this end, this study aims to propose a Random Forest model that performs better
than the default model. We will use four metrics (Precision, Accuracy, F1Score, and Recall)
to compare the two models. The study by Buvana and Muthumayil will allow us to
compare the two models to other ML models implemented on the same data and variables
for a fair comparison.

3. Materials and Methods

In this section, we will present and explain the data, Machine Learning (ML) methods,
metrics, and the workflow we followed in this study, as well as other tools.

3.1. Dataset Description

The data we used comes from a publicly accessible dataset on GitHub [24]. This
dataset has already been used previously by other researchers including Buvana, M. and
Muthumayil, K. in [20]. The credibility of this study [20] increased through its publication
on the World Health Organization’s website [25]. This dataset was built and put online by
Simran Pandey [26], researcher and member of the Industrial Design Cent (IDC) research
center of the Indian Institute of Technology (IIT Bombay).

It also contains demographic and clinical data divided into twelve variables in-
cluding: Country, Age, Gender, Fever, Bodypain, Runny_nose, Difficult_in_breathing,
Nasal_congestion, Sore_throat, Severity, Contact_with_covid_patient, and Infected as well
as 2500 entries. These data cover about 2500 persons.

3.2. Machine Learning Methods

This article aims to make a contribution to settling a problem that readily classifies
itself in the supervised classification category. We begin by specifying that to solve a
problem, supervised learning is used when the historical input/output data are known.
The system is first trained with this data and then used to find outputs for new inputs [27].
The problem is said to be classification when the variable to be predicted is a categorical
variable. Our problem fully meets these criteria. Included in our 30,000 points of data is
the variable “Infected”, which is the variable that this study is trying to predict. This is a
categorical variable that determines whether a person is positive or negative.

On this basis, we turned to supervised Machine Learning (ML) methods that can do
classification. The models developed in this study were built on the basis of the following
six ML methods: GNB (Gaussian Naive Bayes), LR (Logistic Regression), SVM (Support
Vector Machine), KNN (K-Nearest Neighbor), DT (Decision Tree), and RF (Random Forests).

3.2.1. Gaussian Naive Bayes

Gaussian Naive Bayes is a variant of Naive Bayes based on Bayes’ theorem. Bayes’
theorem makes it possible to find the conditional probabilities of occurrence of two events
on the basis of the probabilities of occurrence of each event by following this formula:

P(
A
B
) =

P( B
A )P(A)

P(B)
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With:
P(A/B) = The probability that event A is true knowing that B is true.
P(B/A) = The probability that event B is true knowing that A is true.
P(A) = The probability that A is true.
P(B) = The probability that B is true.
When Gaussian Naive Bayes is used for classification cases based on several variables,

as is the case for us, a strong assumption is made: the variables are considered independent
of each other [28].

3.2.2. Logistic Regression

Logistic Regression is a static method often used for classification and predictive
analysis [29,30]. Its algorithm is based on independent variables to predict the probability
that an event may occur. Since prediction is a probability, it is between 0 and 1. For a binary
classification, when the result is less than 0.5, the prediction will be 0; otherwise it will be
1 [31].

To achieve the desired result, the logistic regression algorithm applies a transforma-
tion known as log odds. This logistical transformation follows these next mathemati-
cal formulas:

Logit(pi) =
1

(1 + e(−pi))

ln(
pi

1− pi
) = Beta0 + Beta1 ∗ X1 + ... + Bk ∗ Kk

With:
Logit(pi): The target variable also called dependent variable.
X: The independent variable.
Beta: A coefficient estimated thanks to the maximum likelihood (MLE).

3.2.3. Support Vector Machine

Support Vector Machine (SVM) is used for both classification and regression but also
for anomaly detection [32]. In our case, as in most cases, it is used for classification. The
SVM algorithm treats the dataset as a set of points and aims to find the optimal hyperplane
that divides this set into two groups (two classes) in the case of a binary classification, such
as ours. The challenge is to find, among so many possible hyperplanes, the one that best
divides the two classes so that the class boundary is as far away as possible from the data
points. It will therefore be a question of maximizing the margin [33]. The margin is defined
as the distance between the nearest data point and the hyperplane.

3.2.4. K-Nearest Neighbor

K-Nearest Neighbor (k-NN) is a nonparametric supervised classifier. It can be used
for classification cases but also for regression cases although the latter use is infrequent.
For the classification k-NN works on the assumption that similar points can end up next to
each other. Based on this hypothesis a label is assigned to a point according to whether it is
the majority around it.

3.2.5. Decision Tree

Decision tree (DT) is a non-parametric supervised classifier that can be used for
classification and regression. Decision trees are built following the strategy “divide and
conquer” from a dataset [34]. This is because a Decision Tree is a hierarchical structure
organized into three main elements: the root node, the inner node, and the leaf node.

Initially, all data is placed in the root node, which will then be divided into two or
more nodes called internal nodes or decision nodes based on a rule [35]. The internal nodes
will in turn be divided to form others, and so on, recursively, until it is no longer possible
to divide them. The last nodes are called leaf nodes; they are the final predictions.
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For each node S (internal or leaf), its estimate (label in the case of a classification) in
relation to the target variable is calculated on the basis of entropy [36,37]:

H(S) = −
m

∑
i=1

pilog(pi)

With:
H(S): The entropy of node S. Determines the homogeneity of the node. The more it

tends towards zero (0) the more homogeneous the node.
pi: The probability that an element of S is in class Ci.

3.2.6. Random Forest

Appeared in the 90s, Random Forest is a set method operating according to two
basic principles: bagging and Random Feature Selection [38–40]. Leo Breiman, in [40],
defines Random Forest as a classifier consisting of a set of elementary Decision Tree
classifiers, denoted:

h(x, Θk), k = 1, . . . L

With:
Θk : A family of independent and identically distributed random vectors, and within

which each tree participates in the vote of the most popular class for an input data x.
Indeed, Random Forests benefits from the simplicity of Decision Trees while correcting

their great weakness which is overfitting. This is an improvement to the Decision Trees.
Random Forests has been designed to be more robust and accurate than a Decision Tree.

3.3. Evaluation Criteria

The objective of this article is to evaluate the performance of ML models in predicting
epidemics for classification cases before proposing an enriched model. To achieve this
end, we mainly considered four metrics: Accuracy, Precision, Recall, and F1 score, to
evaluate six models: GNB, LR, SVM, KNN, DT, and RF. Subsequently, we considered the
confusion matrix, in addition to the previous four metrics, to compare the default RF model
and the proposed RF model. In the following, we will define the metrics used from an
epidemiological perspective.

3.3.1. Accuracy

Accuracy is one of the most widely used metrics. It makes it possible to measure
the accuracy of the model on all predictions. Indeed, accuracy is a measure of both the
number of true positives and the number of true negatives. It can be used to measure
simultaneously whether or not a prediction is correct [41]. Its formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

With:
TP (True Positive): Predictions that are positive and that are actually positive.
TN (True Negative): Predictions that are negative and that are actually negative.
FP (False Positive): Predictions that are positive but are actually negative.
FN (False Negative): Predictions that are negative but are actually positive.

3.3.2. Precision

Precision measures the number of people who are reported positive by the model and
who are actually positive relative to the total number of people reported positive by the
model [41]. In other words, this metric allows us to estimate the degree of confidence we
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can have in a model’s predictions about a person’s likelihood of being infected. Its formula
is as follows:

Precision =
TP

TP + FP

3.3.3. Recall

Furthermore, called Sensitivity, Recall is one of the essential metrics of the classifi-
cation. It measures the number of people declared positive by the model and who are
actually positive in relation to the total number of positive people in the dataset [41,42]. In
other words, it is the metric that measures the model’s ability to detect all positive cases
transmitted to it. It answers the following question: of all the positive records, how many
were correctly predicted? A model with a high Recall will miss fewer positive cases. Its
formula is as follows:

Recall =
TP

TP + FN

3.3.4. F1 Score

F1 Score also measures the performance of ML models. Indeed, F1 Score is the
weighted average of Precision and Recall [41]. F1 Score makes it possible to find the best
compromise between Precision and Recall [43]. Its formula is as follows:

F1Score = (
2

precision−1 + recall−1 ) = 2(
precision× recall
precision + recall

)

3.3.5. Confusion Matrix

The confusion matrix or contingency table, shown in Figure 1, is not a performance
metric. On the other hand, it is a good way to visualize all the metrics previously defined.

A visual support (table) helps us observe how often predictions have been good
compared to reality [44]. The confusion matrix makes it possible to visualize directly on a
table, for example, the number of correctly predicted positive people compared to the total
number of predictions in the dataset. It will no longer be a question of measuring a metric
(Accuracy, Recall, etc.) or the error rate, but rather of having precise figures related to the
case treated [44].

We used the confusion matrix in our case to visualize the result between the default
RF model and the RF model we proposed.

Figure 1. Confusion matrix.

3.4. Research Methodology

Our research methodology is a nine-steps process:

• Choice of epidemic: The question here is to determine which epidemic will serve as
an example of experimentation.

• Choice of dataset: After choosing the epidemic, it is then necessary to choose the
dataset among those available in the literature. It is on this dataset that the proposed
model will be tested.

• Selection of ML models: To attest the performance of our model, it will be imperative
to compare it to others.
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• RF Enriched Model: In this step, we will explain the process that led to the construc-
tion of our model.

• Data pre-processing and analysis: This is the step that prepares the data to be used
and then performs correlation studies to better understand our data before prediction.

• Splitting of the dataset: Consists of dividing the dataset into two parts. One part for
training and the other for testing.

• Model training: This involves training all models, including the one that we proposed.
Before that, the models to be used are selected, and the RF enriched model is proposed.

• Model testing: This is about testing all models, including the one we offer.
• Model evaluation: The aim here is to evaluate the models on the basis of the defined

metrics.

This approach is shown in Figure 2.

Figure 2. Research methodology.

4. Results

The purpose of this section is to present the results obtained after applying the research
methodology summarized in Figure 2. We recall that in this study, our main objective is to
set up a classification algorithm based on Random Forests (Random Forests), to allow the
COVID-19 test based on certain information provided by the patient to the AI (Artificial
Intelligence) which will use it to predict the outcome. First, we will start with descriptive
statistics on quantitative variables, we will conduct a correlation analysis between the
variable of interest (target variable) and the other variables. Next, we will explain the basic
algorithms of default Random Forests and the one we modified. Finally, we will develop
a comparison between the models used by the reference article [20], default RF, and our
model that implements our algorithm.

4.1. Epidemic and Dataset

As a result of our need to respond to current realities and also to contribute to fight
against COVID-19, we decided to take the COVID-19 pandemic as an example. For the
choice of dataset we were driven by the following constraints:

1. A dataset built for a classification study;
2. All variables in the dataset must be collectible via a form (namely the ODK form [45]);
3. The dataset must have been used in a scientific article;
4. The scientific paper using this dataset should include a comparison of several Machine

Learning (ML) models based on the metrics cited in Section 3.3;
5. At best, among the models compared in the article using this dataset, there must be

Random Forests.

The outcome of our research led us to the dataset described in Section 3.1 and whose
header is represented in Figure 3. All variables in this dataset can be collected via a form,
it was used by Buvana, M. and Muthumayil K. in [20]. From five previous constraints,
this dataset fully fulfills the first four. For the fifth criterion (comparison of RF and other
models), the presence of the DT (Decision Tree) model among the models compared in the
article is sufficient to fill the RF gap because there is a clear link between RF and DT.
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Figure 3. Dataset header used in this study.

4.2. Data Pre-Processing, Analysis and Splitting

Analysis of data from our dataset reveals that we have a sample of people ranging in
age from 10 to 89, as shown in Figure 4. The average is 43 years and the median is 39 years.
On the other hand, the majority of people belong to the 35–55 age group.

Figure 4. Descriptive statistics of the variable “Age”.

As for the body temperature of patients, it is expressed in Fahrenheit. It ranges from
98° to 104 °F, as shown in Figure 5. The mean and median are about 100 °F with a standard
deviation of 1.71. We observe that the majority of our subjects (between the first quartile
and the third) have a temperature ranging between 99 °F to 102 °F (37.22 °C to 38.88 °C).
Note that Celsius = (Fahrenheit-32)/1.8.

The correlation of the variable Infected, the variable that determines whether a person
is COVID positive or not, with the independent variables reveals interesting information.
In Table 1, that summarizes these correlations, it appears that the mode of transmission
of COVID-19 is mainly through contact with a positive person with a correlation of 57%,
and at the same time, it turns out that the patient who has not had contact with a positive
person has 80% chance of being healthy.

Figure 5. Descriptive statistics of the variable “Fever”.
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The other two very influential characteristics are difficulty of breathing and sore throat
which, if present, generally lead to a positive COVID test at 48.3% and 44.2% respectively.
An abnormal fever is also an indicator leading to more than 39% of cases of the presence
of the virus; this would justify taking temperatures in crowded places such as the bank or
shopping mall, as it is one of the easy ways to detect suspected cases of COVID-19.

Table 1. Correlations between the target variable and the independent variables.

Independent Variables Infected

Age 0.165
Fever 0.390

Bodypain 0.442
Runny_nose 0.284

Difficult_in_breathing 0.483
Nasal_congestion 0.287

Sore_throat −0.218
Gender_Female 0.094
Gender_Male −0.066
Severity_Mild −0.368

Severity_Moderate 0.206
Severity_Severe 0.257

Contact_with_covid_patient_no −0.796
Contact_with_covid_patient_not_known 0.327

Contact_with_covid_patient_yes 0.579

We look at the distribution of data according to two classes: positive (infected persons)
represented by 1 and negative (healthy persons) represented by 0. Figure 6 shows that the
distribution is balanced by class thus avoiding bias caused by an over-representation of
one class compared to the other causing a low accuracy rate of the model for the under-
represented class. Before moving on to the implementation of our model, we had to
adapt our data to the form understandable by our Machine Learning model, i.e., encoding.
This dataset was well formatted and cleaned when it was downloaded, the majority of
qualitative variables were already encoded.

Figure 6. Distribution of individuals by Class.

Thus, after data mining, we proceeded to code qualitative variables that were not
yet encoded. To avoid scale effects for variables with more than two values, we opted
for one-hot encoding, also called dummy encoding, allowing us to create a new indicator
variable for each modality. This was the case for the variables “Severity” and “Con-
tact_with_covid_patient”. The encoding took place as follows:

Gender: With 0/1 binary encoding for Male/Female.
Severity: The one hot encoding of this variable is shown in Figure 7. It allowed to

explode the variable in three: Severity_Moderate, Severity_Mild, and Severity_Severe. The
three new variables were each binary coded: 0/1 for absence/presence.
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Contact_with_covid_patient: The dummy encoding of this variable allowed to have
three variables: Contact_with_covid_patient_yes, Contact_with_covid_patient_no, and
Contact_with_covid_patient_ignore. The three new variables were each coded binary: 0/1
for absence/presence.

Other qualitative (or categorical) variables that were already encoded are: Bodypain,
Runny_nose, Difficult_in_breathing, Nasal_congestion, Sore_throat, and Infected.

Figure 7. Dummy encoding the “Severity” variable.

To train the model, we opted for data separation by adopting 80% to train the model
and 20% to test the built model.

4.3. Model Training, Testing and Evaluation

As mentioned above, our study uses a dataset that was used by Buvana M. and
Muthumayil K. in [20]. We will base ourselves on the results they obtained for the first
five models namely GNB, LR, SVM, KNN, and DT and then compare these results to what
we obtained with default Random Forests and with Random Forests EP (Epidemiological
Prediction) always on the same dataset. Table 2 gives the results of metrics of six models,
five of which came from the work of [20] and the sixth from our work.

Table 2. Comparison of metrics between RF and other models.

Model Accuracy Precision Recall F1 Score

GNB 0.799 0.786 0.828 0.806
LR 0.809 0.798 0.831 0.814

SVM 0.850 0.811 0.916 0.860
KNN 0.923 0.937 0.909 0.923

German 0.945 0.939 0.952 0.946
Default RF 0.949 0.940 0.966 0.952

Here we call default RF, RF version presented by default in the scikit-learn package.
Default RF is built on the basis of Forest RI algorithm proposed by Breiman L [40] which
uses the recursive Random Tree algorithm. Forest RI is considered as the reference algo-
rithm of Random Forests [46]. In order to propose an enriched RF model, which we have
chosen to name RF EP, we have undertaken modifications into Forest RI. These changes
led to a new algorithm we named Forests EP which uses the Var_Cust algorithm that we
propose in addition to Random Tree used in Forest RI. It is on the basis of this algorithm
that we built Random Forests EP. These Algorithms 1–4 and their explanations are given in
the rest of this section.
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Algorithm 1 Forest RI

Input: T, the train set
Input: L, the number of trees in the forest
Input: K, the number of characteristics to be randomly selected at each node
Output: forest, all the trees that make up the built forest

1: for l from 1 to L do
2: Tl ← bootstrap set, whose data is randomly drawn (with delivery) from T
3: tree ← an empty tree, i.e., composed of its root only
4: tree.root ← RndTree(tree.root, Tl , K)
5: forest ← forest ∪ tree
6: return forest

Forest RI explanation: It allows one to gather all the components of the Random
Forests. With L the number of estimators to be used in forest construction, for each tree we
use the RnTree construction method to construct the corresponding tree, using:

• Data randomly drawn from a database with Tl delivery;
• Randomly selected variables (features) K.

This operation makes it possible to create a tree at each iteration by ensuring the
independence of opinion of these estimators. Finally, these trees are grouped together to
constitute the so-called Random Forests because of the tree construction method.

Algorithm 2 Random Tree

Input: n, the current node
Input: T, the set of data associated with node n
Input: K, the number of characteristics to be selected randomly at each node
Output: n, the same node, modified by the procedure

1: If n is not a leaf then
2: C ← K randomly selected characteristics
3: for everything A ∈ C to do
4: CART procedure for the creation and evaluation (Gini criterion) of the partition pro-

duced by A according to T
5: partition ← partition that optimizes the Gini criterion
6: n.addSons(partition)
7: for each son ∈ n.sonsNode do
8: RndTree(son, sons.done, K)
9: return n

Explanation of Random Tree: It allows for the establishment of a tree through the
partitioning method based on the randomly chosen variables K. To build a child node (or
potentially a sheet) from a node n, we apply the Gini criterion to each variable A ∈ C in
order to choose the partition that minimizes the disorder, allowing us to predict the real
value. This process is then used on each node to build the tree recursively.
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Algorithm 3 Forest EP

Input: X_train, the train set
Input: X_test, the test set
Input: y_train, training data label
Input: k, the number of variables to be eliminated from the learning set
Input: threshold_ratio, the amount of information to be retained in the training data
Input: L, the number of trees in the forest
Input: K, the number of characteristics to be randomly selected at each node
Output: forest, all the trees that make up the built forest

1: T_train_retain, T_test_retain= Var_Cust( X_train, X_test, y_train, n, threshold_ratio)
2: for l from 1 to L do
3: Tl ←bootstrap set, whose data are randomly drawn (with discount) from

T_train_retains
4: tree ← an empty tree, i.e., composed of its root only
5: tree.root← RndTree(tree.root,T l, K)
6: forest ← forest ∪ tree
7: return forest

Algorithm 4 Var Cust

Output: n, the number of less significant variables to be removed from the database
Output: threshold_ratio, the amount of information to be kept in the main components
Output: X_train, train set before processing
Output: X_test, test set before processing
Output: y_train, training data label
Output: X_train_retain, train set after processing
Output: X_test_retain, test set after processing

1: T_train_retain, T_test_retain= Var_Cust( X_train, X_test, y_train, n, threshold_ratio)
2: for l from 1 to L do
3: Tl ←bootstrap set, whose data are randomly drawn (with discount) from

T_train_retains
4: tree ← an empty tree, i.e., composed of its root only
5: tree.root← RndTree(tree.root,T l, K)
6: forest ← forest ∪ tree
7: return forest

Explanation of Var_Cust algorithm when running the RF EP model:
(1): This step, shown in Figure 8, extracts initial variables in the database that best

explain the variable of interest (Infected), respecting the number n given as input.

Figure 8. Step 1 of var_cust algorithm.

(2,3): In order to continue with the processing of our training and test data, we
normalize the data, as shown in Figure 9, by putting all quantitative variables on the same
scale to avoid the size effect that skews the inertia (information) explained by the other
variables with a reduced scale. This normalization is carried out according to the centered
method reduced by standardscaler.

NormalizedX =
(X− µ)

σ

With X a quantitative variable, µ the mean of X and σ the standard deviation.
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Figure 9. Step 2 of var_cust algorithm.

(4,5): After normalizing the data, we proceed to the dimension reduction by creating
new components from the variables retained in step (1), as shown in Figure 10. Each
component is associated with a value to explain its contribution.

Figure 10. Step 3 of var_cust algorithm.

(6,7): Finally, we select the new variables that most synthesize all the starting informa-
tion with the choice of the quantity to be retained fixed by threshold_ratio, as shown in
Figure 11.

Figure 11. Step 4 of var_cust algorithm.

The implementation of RF EP has yielded satisfactory results as presented in Table 3.
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Table 3. Comparison of metrics between RF EP, RF default, and other models.

Model Accuracy Precision Recall F1 Score

GNB 0.799 0.786 0.828 0.806
LR 0.809 0.798 0.831 0.814

SVM 0.850 0.811 0.916 0.860
KNN 0.923 0.937 0.909 0.923

German 0.945 0.939 0.952 0.946
Default RF 0.949 0.940 0.966 0.952

RF EP 0.949 0.931 0.977 0.953

5. Discussion

The objective of this study is to contribute to a decrease in the spread of COVID-19.
To achieve this, we have undertaken to propose an enriched model of Random Forests,
named Random Forests for Epidemiological Prediction (RF EP) with results that will allow
us to achieve this goal. Our model implements the new Random Forests algorithm that
we proposed and named Forest EP which is a modified version of Forest RI algorithm, the
basic algorithm of default Random Forests.

In order to evaluate the effectiveness of RF EP, we based ourselves on the work of
Buvana M. and MuthumayilK [20] and then on an implementation of the default RF that
we made ourselves. The results presented in Table 2 in Section 4, show that among the
models evaluated by [20], Decision Tree (DT) stands out as the best performer for all the
metrics considered. On the same table we have inserted in the last row the results obtained
with default Random Forests (RF) and we can observe, not surprisingly, that RF is better
than DT for all metrics.

The results that are interesting to comment on here are those of RF EP presented in
Table 3 of Section 4. The average of all default RF metrics is 0.95175 and that of RF EP is
0.95250, which is about an improvement of 0.001. Much more than this gross average of
metrics, it is more interesting to analyze in detail the evolution of each metric.

We notice that the values of the Accuracy metric are the same in both models (default
RF and RF EP). This means that the total number of good predictions (positive and negative)
is the same in both models. This can be verified on the default RF EP and RF confusion
matrices presented in Figures 12 and 13, respectively. For RF EP we have 213 TN + 255
TP = 468 and for default RF we have 216 TN + 252 TP = 468. The difference can therefore
be made in the ability to correctly predict positive or negative cases. For this, it will be
necessary to analyze the other metrics.

Figure 12. RF EP Confusion Matrix.
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Figure 13. Default RF Confusion Matrix.

Regarding the Precision metric, RF EP records a performance loss of 0.009 compared
to default RF. This means that the positive test provided by default RF is more reliable than
the one provided by RF EP. Since positive tests are more reliable at default RF level, this
means that negative tests are also reliable. Therefore, default RF will overall give fewer
False Negative (FN) tests compared to RF EP. We can verify this on the confusion matrices
of our implementation of both models on the test set: default RF has 16 FN while RF EP
has 19 FN.

The result of Recall metric shows a performance gain of 0.011 for RF EP level compared
to default RF. This means that RF EP has a better predictive ability regarding positive cases.
In other words, when we consider the set of positive cases present in a dataset, with RF EP
we will detect a greater number of cases compared to default RF. RF EP thus allows less
missed detection of patients with COVID-19. However, because it is the positive patients
who carry the disease and spread the virus, by increasing the model’s ability to detect them
we have thus achieved the objective of this study. This can be verified on the confusion
matrices of our implementation of the two models on the test dataset: default RF produced
252 TP and 9 FP while RF EP produced 255 TP and 6 FP. We see here that compared to
patients who are actually positive default RF misclassified three people more than RF EP.
This means that for our dataset three virus carriers are in the wild spreading the virus when
they could have been detected using RF EP.

The F1 Score, which is the harmonic mean of the last two metrics, shows a performance
gain of 0.001 of RF EP compared to the default RF.

6. Conclusions

The purpose of this paper was to propose a model to improve the fight against
the spread of epidemics. The epidemic that has been chosen as an example is COVID-
19. To do this, we used a dataset publicly accessible on GitHub that was designed for
classification studies.

The predictive analysis performed was to determine whether a person is positive or
negative for COVID-19 based on eleven variables, including: Country, Age, Fever, Body-
pain, Runny_nose, Difficult_in_breathing, Nasal_congestion, Sore_throat, gender, Severity, and
Contact_with_covid_patient. The target variable is named infected.

Most of the qualitative variables in this dataset were already encoded when we
downloaded it except Gender, Severity, and Contact_with_covid_patient which we encoded
ourselves using binary encoding for Gender and dummy encoding for Severity and Con-
tact_with_covid_patient.

In this study, we propose an enriched model of Random Forests (RF). The choice of
RF was based on a literature review of the research of several researchers who compared
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RF to other models in the context of epidemic predictions and placed RF at the top as the
best classifier.

The enriched model of RF, named RF EP (EP for Epidemiological Prediction), imple-
ments an algorithm that we have proposed. This algorithm, named Forest EP, is a modified
version of Forest RI, considered to be the main algorithm of RF which was proposed by
Breiman L. Within Forest EP, we included the Var_Cust algorithm to perform four steps
within RF itself without having to look for other methods outside. These four steps are:
the selection of the significant variables, the normalization of the data, the dimension
reduction in the dataset, and finally the selection of new variables that best synthesizes the
information that the algorithm needs on the basis of the previously defined threshold_ratio.

Overall, our model performs satisfactorily. We first compared default RF with five
other models: GNB, LR, SVM, KNN, and DT. Default RF stood out from all other models
for all metrics considered; knowing that there were four: Accuracy, Precision, Recall, and F1
score. Compared to the default RF, RF EP has a performance improvement of 0.011 on the
Recall metric. This improvement makes it possible to achieve the objective set at the outset
of this study. This is because this performance gain means that RF EP is able to detect more
positive patients than default RF for a given dataset. In other words, when a hospital or
health center uses RF EP, they increase their ability to detect all positive patients, meaning
that fewer people carrying the disease will be able to slip through the cracks of testing. We
have with RF EP 255 TP and 6 FP while with default RF we have 252 TP and 9 FP on the
same dataset.

Finally, we find it important to specify that this model, in order to be useful to health
actors to contribute to the fight against epidemics, will be deployed in an environment that
we have named MEPS (Mobile Epidemiological Prediction System). This is a mobile system
that will use the model proposed in this paper and some tools from the ODK software suite
to perform data collection and prediction in a hospital setting. This is a study that will be
the subject of our next paper.

It should be noted that ODK is a very well known software suite used by health actors,
mainly in developing countries. We have already worked on this software suite in the past,
notably in [45,47,48]. In our next work, we will propose an extension of ODK that will use
the model proposed in this paper (RF EP).
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