
Citation: Barinov, R.; Gai, V.;

Kuznetsov, G.; Golubenko, V.

Automatic Evaluation of Neural

Network Training Results. Computers

2023, 12, 26. https://doi.org/

10.3390/computers12020026

Academic Editors:

Mariofanna Milanova,

Xavier Alameda-Pineda and

Friedhelm Schwenker

Received: 13 December 2022

Revised: 16 January 2023

Accepted: 17 January 2023

Published: 20 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Automatic Evaluation of Neural Network Training Results
Roman Barinov * , Vasiliy Gai , George Kuznetsov and Vladimir Golubenko

Department of Computing Systems and Technologies, Nizhny Novgorod State Technical University n.a. R.E.
Alekseev, st. Minina, 24, 603155 Nizhny Novgorod, Russia
* Correspondence: mrroman152@gmail.com

Abstract: This article is dedicated to solving the problem of an insufficient degree of automation of
artificial neural network training. Despite the availability of a large number of libraries for training
neural networks, machine learning engineers often have to manually control the training process
to detect overfitting or underfitting. This article considers the task of automatically estimating
neural network training results through an analysis of learning curves. Such analysis allows one to
determine one of three possible states of the training process: overfitting, underfitting, and optimal
training. We propose several algorithms for extracting feature descriptions from learning curves using
mathematical statistics. Further state classification is performed using classical machine learning
models. The proposed automatic estimation model serves to improve the degree of automation of
neural network training and interpretation of its results, while also taking a step toward constructing
self-training models. In most cases when the training process of neural networks leads to overfitting,
the developed model determines its onset ahead of the early stopping method by 3–5 epochs.

Keywords: learning curves; classification; training assessment automation

1. Introduction

Training of an artificial neural network is an iterative process which involves finding
parameters of the network in which it achieves the optimal performance [1–3]. There
exists a plethora of software designed to solve the task of automatic estimation of model
parameters: Auto-sklearn, Auto-WEKA, TPOT, H2O AutoML etc [4–10].

During training, the optimization algorithm tries to minimize the cost function of the
network; however, this process does not always proceed smoothly. As such, deep learning
engineers try to detect problems occurring during this process as early as possible [11–13].
Missing or ignoring training issues can degrade the performance of a network or render it
completely unusable for the task at hand, making retraining necessary and, thus, incurring
additional costs in time and resources [14].

This article proposes a method for evaluating the training process of a neural network.
Three states of the training process are considered in this work: underfitting, overfitting,
and optimal training. Thus, the task of evaluation of the network’s state is viewed as a
multiclass classification problem [15].

We propose an algorithm for calculating feature descriptions of the loss and accuracy
learning curves. The features calculated for these curves differ since the accuracy curve
allows normalization of values to the [0; 1] interval, while the loss curve does not.

Use of the proposed approach allows one to increase the degree of automation in their
network’s training process. The proposed approach allows for a much earlier stopping
point when compared to the classic early stopping method, while not allowing overfitting
and providing an additional decision reinforcement tool for novice deep learning engineers.

2. Overview of Existing Methods for Detecting Model Training Issues

1. Expert method: learning curve—a graph showing the change in a particular metric
as the machine learning model is being trained. There are two main types of learning curves.

Computers 2023, 12, 26. https://doi.org/10.3390/computers12020026 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers12020026
https://doi.org/10.3390/computers12020026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-0269-3205
https://orcid.org/0000-0002-3644-5234
https://orcid.org/0000-0001-5564-045X
https://orcid.org/0000-0002-4683-3249
https://doi.org/10.3390/computers12020026
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers12020026?type=check_update&version=1

Computers 2023, 12, 26 2 of 13

Optimization curves are learning curves calculated on the basis of the metric by which
model parameters are optimized, such as various types of error functions. Performance
curves are learning curves calculated on the basis of the metric by which the model will be
evaluated and selected later, such as accuracy, precision, recall, or a combined F1-score.

The most popular example of a learning curve is the curve of a model’s loss over time.
Loss measures a model’s error; consequently, a lower loss indicates higher performance
of the model. In the long run, loss should decrease over time, indicating that the model
is learning.

Another example of a learning curve is the accuracy graph, which reflects the per-
formance of the model, whereby a higher accuracy indicates a more efficiently trained
model. A model’s accuracy graph rising over time indicates that the model is improving
as it accumulates experience. Over time, the graph of the performance metric reaches a
plateau, which means that the model is no longer learning, and the performance limit for a
given configuration has been reached.

One of the most widely used combinations of metrics is training and validation
loss over time. Training loss shows how well the model matches the training data, and
validation loss shows how well the model matches new data that were not available
during training.

As mentioned above, the main issues that experts seek to identify during model
training are model underfitting and overfitting. To detect overfitting and underfitting,
machine learning experts apply a set of rules [16–18] according to an understanding of the
mathematical process of model training.

Basic case—absence of problems during model training. The training process stops
when the trend of the loss function on validation changes from downward to upward.

In the absence of issues in the training phase, the values of the model error function
on training data will almost always be lower than those on test data. This means that
we should expect some discontinuity between training and validation loss curves. This
discontinuity is one of generalization. The optimal case is considered to be one in which the
training loss curve decreases until a point of stability, the validation loss curve decreases
until a point of stability, or the generalization gap is minimal (almost zero in the ideal case).

If the values of the loss function are high and do not decrease with the number of
iterations for both test and training curves, this indicates insufficient complexity of the
model used in relation to the data, which leads to model underfitting.

If the learning curve is linear with a derivative close to zero or shows noisy values
around some constant high loss value, this indicates that the model failed to reveal patterns
during training, or in other words, the fact of learning is almost (or completely) absent.

The values of training and validation loss functions continuously decreasing in the
last epochs of training indicate premature cessation of training and the model’s inability to
learn further.

If the values of the training loss function decrease over time, reaching acceptably low
values, but the values of the validation loss function decrease only up to a certain point after
which they begin to increase, then it can be concluded that the model reached an overfit.

It is worth noting that the learning curves can identify not only issues associated with
the model, but also issues of unrepresentativeness of the data used to train or test the model.
A representative dataset proportionally reflects the statistical characteristics of another
dataset from the same subject area.

The issue of an unrepresentative training dataset occurs when the data available for
training are insufficient for effective training of the model relative to the test dataset. This
situation is also possible when the training dataset does not reflect the statistical parameters
that are inherent to the data in a given subject area.

In such cases, the training and validation loss values decrease, but there is a large gap
between the curves present, which means that the datasets used for training and validation
belong to different probability distributions.

Computers 2023, 12, 26 3 of 13

The issue of an unrepresentative validation dataset occurs if the dataset used to test
the quality of model learning does not provide enough statistical information to assess the
generalizability of the model. In such cases, the learning loss curve matches the basic case,
while the validation loss curve shows highly noisy values in a region close to the learning
loss curve.

It is possible that a validation loss may be much lower than training loss, reflecting
the fact that the validation dataset is easier to predict than the training dataset. In this case,
the validation dataset is too small and may be widely represented in the training dataset
(i.e., there is an overlap between the training and validation datasets).

The expert method of neural network training assessment implies direct control of the
network training process by an expert. In turn, this task imposes additional responsibilities
and risks on the experts. The expert method depends on competence and experience of a
decision maker, as well as increasing development time of a neural network. Additionally,
a serious disadvantage of the method is a complete or partial lack of automation.

2. Keras API callbacks. Keras is a commonly used API for building and deploying
deep learning models. A Keras API callback is a function that can be executed at dif-
ferent stages of the model’s training pipeline. Such functions can be used for various
tasks such as controlling the model’s learning rate, which can affect the behavior of the
training algorithm.

The main drawback of the described method is that the majority of parameters used
to detect instances of a model’s faulty behavior during training are constants specified in
advance by the researchers or a set of rules formulated by researchers in advance. It is
worth noting that the various events which can be detected by this method are not classified.
An event detected by a Keras callback, be it overfitting or underfitting, is assumed to be
hypothetical (with the final decision being made by an expert overseeing the training
process) and only valid for that specific stage of model training. Another disadvantage of
these callbacks is the lack of premade automatic tools for detection of a supposed model
underfit [19].

3. In [20], the authors proposed an approach to accelerate the search for optimal
hyperparameters of the neural network through an early stopping of training. The criterion
for such stopping is extrapolated learning curves.

In general, the process of extrapolation of a learning curve from an arbitrary number
of initial values to final values is as follows: during optimization of the neural network’s
parameters using the stochastic gradient descent algorithm, regular measurements of the
model’s performance function are taken. Let y1:n be the observed values of the performance
function for the first n iterations of stochastic gradient descent. Then, while observing y1:n
values of the performance function, it is necessary to predict the performance ym at step m,
where m >> n. In this approach, such a problem is solved using a probabilistic model.

The basic approach is to model the partially observed learning curve y1:n using a set of
parametric functions {f 1, . . . , fK}. In turn, each of these parametric functions fk is described
by a set of parameters θk. Assuming Gaussian noise ε ~ N(0; σ2), we can use each function
fk to model network’s performance at timestep t as yt = fk(t|θ) + ε. The unit observation
probability yt is, thus, defined as

p(yt

∣∣∣θk, σ2) = N(yt; fk(t
∣∣∣θk), σ2). (1)

The authors of [20] also presented a set of models of parametric curves, the shape of
which coincides with the general ideas about the shape of performance curves. Usually,
such curves represent an increasing, saturating function. In total, K = 11 different parametric
functions are presented in the paper. It is worth noting that all the models presented cover
only certain aspects of learning curves, but none of them can fully describe all of the
possible curves. Therefore, there is a need to combine these models.

Computers 2023, 12, 26 4 of 13

The stronger, combined model is a weighted linear combination of simple models:

fcomb(t|ξ) =
K

∑
k=1

wk fk(t|θk) , (2)

where the new combined vector of parameters,

ξ = (w1, . . . , wK, θ1, . . . , θK, σ2), (3)

includes the weight wk for each model, the individual model parameters θk, and the noise
variance σ2; then, yt = fcomb(t|ξ) + ε.

Given such a model, it is necessary to model uncertainty and, hence, adopt a Bayesian
perspective by predicting ym values using the Monte Carlo method with Markov chains.

The early stopping method using extrapolation of learning curves provides one with
an opportunity to estimate the value of an accuracy function ym at step m; however, the
decision about the model being subject to overfitting or the number of training epochs
m being insufficient (i.e., underfitting) has to be made by an external mechanism or an
expert [21,22]. Consequently, with this approach, the automation of the learning assessment
process is only partial and requires additional methods to support itself.

4. The authors of [23] described three criteria for an early stopping of the training
process. The first criterion of early stopping is the suggestion to stop training at the point
when the generalization loss exceeds a certain threshold. Let E be the target (error) function
of the training algorithm. Etr(t) is the training error, an average over the training set
measured after epoch t. Eva(t) is the error on the validation set. Ete(t) is the error on the test
set. In real life, the generalization error is usually unknown, and only the validation error
Eva(t) can be used to estimate it.

The value Eopt(t) is defined as the smallest error on the test set obtained before epoch t.
The generalization error at epoch t is then defined as the relative increase in error on the
test set compared to the minimum error at that point in time (as a percentage):

GL(t) = 100 ·
(

Eva(t)
Eopt(t)

− 1
)

. (4)

A high loss of generalization is one obvious possibility for stopping the training, as it
directly indicates overfitting. The criterion itself can be described as

GL(t) > α. (5)

The second early stopping criterion differs from the first in that the generalization error
is averaged over k previous epochs and is compared to the minimum error at those k epochs:

Pk(t) = 1000 ·

t

∑
t′=t−k+1

Etr(t′)

k ·mint
t′=t−k+1Etr(t′)

− 1

. (6)

It is assumed that, with large changes in the error function on a small interval (k of
about five epochs), there is a greater chance of subsequently obtaining a smaller value of
the generalization error. The second early stopping criterion is formulated as

GL(t)
Pk(t)

> α. (7)

The third criterion of early stopping is where training is halted when the generalization
error increases over s consecutive sequences of k epochs. The idea behind this definition is
that, according to the authors’ assumption, when the validation error increases not only

Computers 2023, 12, 26 5 of 13

once, but over s consecutive sequences, such an increase indicates the beginning of final
overfitting, no matter how large the actual increase is.

Choosing a particular stopping criterion, in essence, involves a tradeoff between
training time and generalization error.

3. Proposed Model for Automatic Assessment of Network Training

This paper proposes a model for automatic evaluation of the training results of a
neural network (Figure 1) based on quality metrics derived from its training process [24].

Computers 2023, 12, x FOR PEER REVIEW 5 of 13

()
()k

GL t
P t

α>
.

(7)

The third criterion of early stopping is where training is halted when the generaliza-
tion error increases over s consecutive sequences of k epochs. The idea behind this defini-
tion is that, according to the authors’ assumption, when the validation error increases not
only once, but over s consecutive sequences, such an increase indicates the beginning of
final overfitting, no matter how large the actual increase is.

Choosing a particular stopping criterion, in essence, involves a tradeoff between
training time and generalization error.

3. Proposed Model for Automatic Assessment of Network Training
This paper proposes a model for automatic evaluation of the training results of a

neural network (Figure 1) based on quality metrics derived from its training process [24].

Figure 1. A model for automatic evaluation of neural network training results.

At each step of model training, the optimizer calculates given network performance
metrics. For classification, the main metrics used are cost functions, such as binary or
cross-entropy, and the rate of correct predictions. Thus, it is reasonable to consider these
metrics as a time series with a step of one epoch of model training [25].

The metrics obtained from the optimizer are used to calculate a series of features that
are passed as input to a classification network. The classifier then determines the state of
a training process at a given epoch. Three states are defined for the model output: normal

Figure 1. A model for automatic evaluation of neural network training results.

At each step of model training, the optimizer calculates given network performance
metrics. For classification, the main metrics used are cost functions, such as binary or
cross-entropy, and the rate of correct predictions. Thus, it is reasonable to consider these
metrics as a time series with a step of one epoch of model training [25].

The metrics obtained from the optimizer are used to calculate a series of features
that are passed as input to a classification network. The classifier then determines the
state of a training process at a given epoch. Three states are defined for the model output:
normal training, underfitting and overfitting. Examples of learning curves representing the
dependence of the cost function on the number of training epochs are shown in Figure 2.

Computers 2023, 12, 26 6 of 13

Computers 2023, 12, x FOR PEER REVIEW 6 of 13

training, underfitting and overfitting. Examples of learning curves representing the depend-
ence of the cost function on the number of training epochs are shown in Figure 2.

The classification result, i.e., an assessment of the learning state at the current epoch,
is passed to a management system which, combined with the original performance met-
rics, determines whether to adjust the learning process, stop it, or continue without
changes.

Thus, the task of automatic estimation of neural network training results is reduced
to a task of multinomial classification into three classes.

(a) (b) (c)

Figure 2. Example of learning curves: (a) normal state; (b) underfitting; (c) overfitting.

4. Data Collection and Sampling
The main criteria for data selection were the types of neural network performance

metrics. Only learning curves for the cost and accuracy functions that depend on the train-
ing epochs passed were selected [26].

After the data collection phase, the obtained learning curves were converted from
graphical representation into time series.

It is worth noting that, due to the fact that training data were collected from multiple
sources, it was not possible to collect a single coherent set of data. Therefore, two samples
were generated—one including data from cost function learning curves and one including
data from accuracy function learning curves.

5. Feature Descriptions of Learning Curves
It is useful to divide descriptions of the learning curves into two types: those calcu-

lated from the learning curves for both cost and accuracy functions, and those obtained
from accuracy functions only.

This distinction is based on the fact that it makes sense to compute some of the pro-
posed attributes using only normalized data. The time series obtained using learning
curves of an accuracy function with values in the range [0, 1] are considered normalized.
On the other hand, time series obtained from cost function curves are not normalized. We
propose to introduce the common features described below for all considered learning
curves, regardless of the type of function (cost or accuracy).

1. Standard deviation of the difference between the functions of a given metric on
training and validation sets:

1 (), 1, ,
i it vf F F i Nσ= − = (8)

where Ft is the metric function for training, Fv is the metric function for validation, and N
is the number of training epochs of a neural network model. Using this feature, we can
infer how much the values of a given metric differ between training and validation, and
which function has a larger average. If the values of the training function nearly match
the values of the validation function, it will produce a value of f1 that is close to zero.

Figure 2. Example of learning curves: (a) normal state; (b) underfitting; (c) overfitting.

The classification result, i.e., an assessment of the learning state at the current epoch,
is passed to a management system which, combined with the original performance metrics,
determines whether to adjust the learning process, stop it, or continue without changes.

Thus, the task of automatic estimation of neural network training results is reduced to
a task of multinomial classification into three classes.

4. Data Collection and Sampling

The main criteria for data selection were the types of neural network performance
metrics. Only learning curves for the cost and accuracy functions that depend on the
training epochs passed were selected [26].

After the data collection phase, the obtained learning curves were converted from
graphical representation into time series.

It is worth noting that, due to the fact that training data were collected from multiple
sources, it was not possible to collect a single coherent set of data. Therefore, two samples
were generated—one including data from cost function learning curves and one including
data from accuracy function learning curves.

5. Feature Descriptions of Learning Curves

It is useful to divide descriptions of the learning curves into two types: those calculated
from the learning curves for both cost and accuracy functions, and those obtained from
accuracy functions only.

This distinction is based on the fact that it makes sense to compute some of the
proposed attributes using only normalized data. The time series obtained using learning
curves of an accuracy function with values in the range [0, 1] are considered normalized.
On the other hand, time series obtained from cost function curves are not normalized. We
propose to introduce the common features described below for all considered learning
curves, regardless of the type of function (cost or accuracy).

1. Standard deviation of the difference between the functions of a given metric on
training and validation sets:

f1 = σ(Fti − Fvi), i = 1, N, (8)

where Ft is the metric function for training, Fv is the metric function for validation, and N
is the number of training epochs of a neural network model. Using this feature, we can
infer how much the values of a given metric differ between training and validation, and
which function has a larger average. If the values of the training function nearly match the
values of the validation function, it will produce a value of f 1 that is close to zero.

2. Standard deviation of the training metric function:

f2 = σ(Fti), i = 1, N. (9)

Computers 2023, 12, 26 7 of 13

This feature can be used to understand how much the metric in question changes
during training. A feature value close to zero can indicate that the neural network is
not learning.

3. Standard deviation of the validation metric function:

f3 = σ(Fvi), i = 1, N. (10)

This feature can be used to understand how much the metric in question changes
during validation. For cost functions, if the initial value is unsatisfactory with respect to the
intended task, the lack of change during validation may indicate that the neural network
model has not learned, i.e., is not able to detect patterns

4. Average value of a metric’s derivative function at extreme training epochs:

f4 =
1

N(1− k)

N

∑
i=N(1−k)

Fti
′, (11)

where k is the percentage of extreme training epochs at which the feature is calculated. The
parameter k was empirically set to 10%. The sign of the feature serves as an indicator of a
function’s tendency toward increasing or decreasing. The value of the derivative can be
used to see how much a given metric changes by the end of training, which, together with
the sign, gives us an idea of the model’s trend towards overfitting or underfitting due to an
insufficient number of training epochs.

5. Average value of a metric’s derivative function at extreme validation epochs:

f5 =
1

N(1− k)

N

∑
i=N(1−k)

Fvi
′. (12)

6. Standard deviation of a metric’s function at extreme training epochs:

f6 = σ(Fti), i = N(1− n), N, (13)

where n is the percentage of extreme training epochs at which the feature is calculated. The
parameter k was empirically set to 20%. Using this feature, it is possible to infer how much
the metric in question changes during the last training epochs. Values close to zero can
indicate stabilization of the metric’s function at the end of training.

7. Standard deviation of a metric’s function at extreme training epochs:

f7 = σ(Fvi), i = N(1− n), N. (14)

This feature can be used to infer how much the metric in question changes during the
most recent validation epochs. A value close to zero may indicate that there is no overfitting.

8. A number of discrete basis functions from active perception theory [27–29] calcu-
lated for both metrics on training and validation:

f8 = −Fti − Ft
i+ 1

4 N
+ Ft

i+ 1
2 N

+ Ft
i+ 3

4 N
, i = 1,

1
4

N, (15)

f9 = −Fti + Ft
i+ 1

4 N
+ Ft

i+ 1
2 N
− Ft

i+ 3
4 N

, i = 1,
1
4

N, (16)

f10 = Fti − Ft
i+ 1

4 N
+ Ft

i+ 1
2 N
− Ft

i+ 3
4 N

, i = 1,
1
4

N, (17)

f11 = −Fvi − Fv
i+ 1

4 N
+ Fv

i+ 1
2 N

+ Fv
i+ 3

4 N
, i = 1,

1
4

N, (18)

Computers 2023, 12, 26 8 of 13

f12 = −Fvi + Fv
i+ 1

4 N
+ Fv

i+ 1
2 N
− Fv

i+ 3
4 N

, i = 1,
1
4

N, (19)

f13 = Fvi − Fv
i+ 1

4 N
+ Fv

i+ 1
2 N
− Fv

i+ 3
4 N

, i = 1,
1
4

N. (20)

These features provide a relationship between the time series for which they are
calculated. For example, features f 8 and f 11, which are calculated during the training
and validation phases, respectively, show the tendency of learning curves to increase
or decrease.

We also propose to introduce the following features for learning curves of the accuracy
function specifically.

1. Difference between the initial and final values of the accuracy function during training:

f14 = FtN − Ft1 . (21)

In addition to the standard deviation over the whole period of training, the value of
this feature can be used to indicate how much the accuracy function has changed. A value
close to zero can be interpreted as a lack of learning. More importantly, a positive sign
for this feature’s value shows a trend toward improvement in the accuracy metric, and a
negative sign shows a trend toward its deterioration.

2. Difference between the initial and final values of the accuracy function during validation:

f15 = FvN − Fv1 , (22)

interpreted similar to the previous feature.
3. Difference between final values of the accuracy function for training and validation:

f16 = FtN − FvN . (23)

This feature can be used to determine how different the accuracy metrics are for training
and validation at the end of training. With the value of the training accuracy function close to
one, a value of around zero is an indication that the training was performed successfully.

4. Maximum value of the training accuracy function:

f17 = max(Ft). (24)

5. Maximum value of the validation accuracy function:

f18 = max(Fv). (25)

6. Difference between the initial and final values of the accuracy function at extreme
training epochs:

f19 = FtN
− FtN(1−n) . (26)

The parameter n was empirically set to 20%. A near-zero value of this feature, together
with a near-zero standard deviation for the last training epochs, may indicate a stabilization
of the accuracy function’s values.

7. Difference between the initial and final values of the accuracy function at extreme
validation epochs:

f20 = FvN
− FvN(1−n) . (27)

A near-zero value for this feature, together with a near-zero standard deviation for
the last validation epochs, can indicate stabilization of the accuracy function for validation.
If the value of the accuracy function is close to one, it can be used as an indicator that the
learning process was performed successfully. If the value of the accuracy function is close
to zero for validation, we can say that the model has not trained enough or that it is now in
a stabilized overfit.

Computers 2023, 12, 26 9 of 13

8. The area under the curve of the accuracy function for learning/validation (f 21). A
near-zero value of this feature may indicate underfitting of the neural network.

9. The area under the learning curve of the accuracy function on validation (f 22). A
near-zero value can indicate underfitting of the neural network, provided a maintained
upward trend of the accuracy function, as well as overfitting in situations where the
derivative of the accuracy function is negative for the last stages of validation.

Thus, the feature descriptions of learning curves consist of 13 features for the loss
functions and 22 features for the accuracy function.

6. Classifying the State of the Model

On the basis of the generated data samples and their feature descriptions, we decided
to create a classification algorithm based on two independent classifiers (Figure 3).

Computers 2023, 12, x FOR PEER REVIEW 9 of 13

The parameter n was empirically set to 20%. A near-zero value of this feature, to-
gether with a near-zero standard deviation for the last training epochs, may indicate a
stabilization of the accuracy function’s values.

7. Difference between the initial and final values of the accuracy function at extreme
validation epochs:

(1)20 N nNv vf F F
−

= − . (27)

A near-zero value for this feature, together with a near-zero standard deviation for
the last validation epochs, can indicate stabilization of the accuracy function for valida-
tion. If the value of the accuracy function is close to one, it can be used as an indicator that
the learning process was performed successfully. If the value of the accuracy function is
close to zero for validation, we can say that the model has not trained enough or that it is
now in a stabilized overfit.

8. The area under the curve of the accuracy function for learning/validation (f21). A
near-zero value of this feature may indicate underfitting of the neural network.

9. The area under the learning curve of the accuracy function on validation (f22). A
near-zero value can indicate underfitting of the neural network, provided a maintained
upward trend of the accuracy function, as well as overfitting in situations where the de-
rivative of the accuracy function is negative for the last stages of validation.

Thus, the feature descriptions of learning curves consist of 13 features for the loss
functions and 22 features for the accuracy function.

6. Classifying the State of the Model
On the basis of the generated data samples and their feature descriptions, we decided

to create a classification algorithm based on two independent classifiers (Figure 3).

Figure 3. Training state classification algorithm.

This algorithm takes learning curve feature descriptions of both cost and accuracy
functions obtained during the feature extraction process as input.

Next, two classifiers determine the probabilities that the learning curve feature de-
scriptions indicate one of the three training states: normal training, underfitting, and over-
fitting.

After this, the maximum value across obtained coefficients is selected, and a decision
about the state of model training is made. Thus, the classification algorithm consists of
three main stages:

Figure 3. Training state classification algorithm.

This algorithm takes learning curve feature descriptions of both cost and accuracy
functions obtained during the feature extraction process as input.

Next, two classifiers determine the probabilities that the learning curve feature descrip-
tions indicate one of the three training states: normal training, underfitting, and overfitting.

After this, the maximum value across obtained coefficients is selected, and a decision
about the state of model training is made. Thus, the classification algorithm consists of
three main stages:

1. Direct classification of input feature descriptions of learning curves by two indepen-
dent classifiers.

2. Combination of classification results.
3. Determination of the model’s state.

7. Results

In this selection experiment, after the feature extraction process and the SMOTE [30–33]
data augmentation algorithm, we obtained the following distribution of training samples:
cost function learning curve data sample size—387 objects (129 objects for each class);
accuracy function learning curve data sample size—225 objects (75 objects for each class).
The experiment consisted of performing cross-validation (Table 1).

Computers 2023, 12, 26 10 of 13

Table 1. Classifiers’ performance quality metrics.

Datasets Learning Curves’
Cost Functions

Learning Curves’
Accuracy Functions

Models Accuracy Precision Recall Accuracy Precision Recall

Decision Tree 0.734 0.733 0.734 0.791 0.795 0.791

SVC (OvO) 0.336 0.554 0.336 0.640 0.701 0.640

SVC (OvO, polynomial features) 0.337 0.328 0.337 0.724 0.719 0.724

SVC (OvA) 0.354 0.392 0.408 0.782 0.806 0.796

SVC (OvA, polynomial features) 0.440 0.417 0.411 0.810 0.824 0.822

K-neighbors 0.612 0.615 0.612 0.769 0.770 0.769

Logistic regression 0.292 0.293 0.292 0.649 0.701 0.646

Gradient boosting 0.780 0.789 0.788 0.879 0.872 0.872

Random forest 0.860 0.862 0.860 0.880 0.876 0.876

From the obtained results, it is clear that, with respect to selected performance metrics,
the most efficient classifier models for determining the state of the training process were
the random forest classifier models.

To conduct a computational experiment comparing the proposed model with its
counterparts, it was decided to create and train 20 artificial neural networks to solve a
classification problem.

The criterion by which the models were compared with each other was the average
value of differences in the number of training epochs after which the training process was
stopped. In the case of the proposed model, the epoch at which training is halted was the
epoch at which the model first outputs “overfit”.

Q =
1
M

M

∑
i=1

n(i)
m − n(i)

a , (28)

where M is the number of neural network models, nm is the index of the last epoch
computed by the proposed model, and na is the last epoch computed by the counterpart.

For each neural network model, a fixed maximum of 100 training epochs was specified.
The system’s performance was compared to the “early stopping” method provided by the
Keras API, without any manual configuration on our part.

The obtained results showed a value of Q = −0.15 for API Keras callbacks. The
negative and near-zero value of the Q parameter indicates that, in most cases, the proposed
model detected overfitting simultaneously with the “early stopping” method of API Keras
and, occasionally, 3–5 epochs ahead of it.

However, it is worth noting that the API Keras callback method does not provide
information to interpret the training results, unlike the proposed model.

Figures 4–6 show examples of the results of the computational experiment. The vertical
line indicates the epoch at which the training process was stopped by the “early stopping”
API Keras method.

Computers 2023, 12, 26 11 of 13

Computers 2023, 12, x FOR PEER REVIEW 11 of 13

Figures 4–6 show examples of the results of the computational experiment. The ver-
tical line indicates the epoch at which the training process was stopped by the “early stop-
ping” API Keras method.

Figure 4. Results of computational experiment (overfitting; orange line—validation accuracy, blue
line—training accuracy).

Figure 5. Results of computational experiment (overfitting).

Figure 6. Results of computational experiment (no overfitting).

8. Discussion
We reviewed existing methods for detecting training issues in neural networks [34].

As a result, a number of conclusions could be made about the shortcomings of the re-
viewed methods. We then proposed a model for automatic evaluation of neural network
training results.

This approach not only allows one to automate the process of identifying issues dur-
ing training, but also provides a toolkit that allows nonexperts to train deep learning mod-
els without the need for additional consultation on the interpretation of their results.

Figure 4. Results of computational experiment (overfitting; orange line—validation accuracy, blue
line—training accuracy).

Computers 2023, 12, x FOR PEER REVIEW 11 of 13

Figures 4–6 show examples of the results of the computational experiment. The ver-
tical line indicates the epoch at which the training process was stopped by the “early stop-
ping” API Keras method.

Figure 4. Results of computational experiment (overfitting; orange line—validation accuracy, blue
line—training accuracy).

Figure 5. Results of computational experiment (overfitting).

Figure 6. Results of computational experiment (no overfitting).

8. Discussion
We reviewed existing methods for detecting training issues in neural networks [34].

As a result, a number of conclusions could be made about the shortcomings of the re-
viewed methods. We then proposed a model for automatic evaluation of neural network
training results.

This approach not only allows one to automate the process of identifying issues dur-
ing training, but also provides a toolkit that allows nonexperts to train deep learning mod-
els without the need for additional consultation on the interpretation of their results.

Figure 5. Results of computational experiment (overfitting).

Computers 2023, 12, x FOR PEER REVIEW 11 of 13

Figures 4–6 show examples of the results of the computational experiment. The ver-
tical line indicates the epoch at which the training process was stopped by the “early stop-
ping” API Keras method.

Figure 4. Results of computational experiment (overfitting; orange line—validation accuracy, blue
line—training accuracy).

Figure 5. Results of computational experiment (overfitting).

Figure 6. Results of computational experiment (no overfitting).

8. Discussion
We reviewed existing methods for detecting training issues in neural networks [34].

As a result, a number of conclusions could be made about the shortcomings of the re-
viewed methods. We then proposed a model for automatic evaluation of neural network
training results.

This approach not only allows one to automate the process of identifying issues dur-
ing training, but also provides a toolkit that allows nonexperts to train deep learning mod-
els without the need for additional consultation on the interpretation of their results.

Figure 6. Results of computational experiment (no overfitting).

8. Discussion

We reviewed existing methods for detecting training issues in neural networks [34].
As a result, a number of conclusions could be made about the shortcomings of the re-
viewed methods. We then proposed a model for automatic evaluation of neural network
training results.

This approach not only allows one to automate the process of identifying issues during
training, but also provides a toolkit that allows nonexperts to train deep learning models
without the need for additional consultation on the interpretation of their results.

The computational experiment showed that the performance metrics of the training
state classification system were comparable to those of its counterparts.

In the future, the following improvements of the model are planned:

1. Developing a smart control system for the training process which allows one to change
the optimizer’s configuration during model training to influence its behavior.

Computers 2023, 12, 26 12 of 13

2. Extending the set of models supported by the proposed method.
3. Developing an algorithm to identify complexity issues in a network’s architecture for

a particular dataset using the proposed approach.

Author Contributions: Methodology, R.B. and V.G. (Vasiliy Gai); software, V.G. (Vladimir Golubenko)
and G.K.; data preparation, R.B. and G.K.; analysis and interpretation of results, R.B. and V.G. (Vasiliy
Gai); draft manuscript preparation, R.B. and V.G. (Vasiliy Gai). All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data confirming the published results, as well as the source code,
can be found in the repository at https://github.com/MrRoman152/learning-curves-analysis.git
(accessed on 12 December 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, R.; Shen, X.; Zhang, X. 3D ROC Histogram: A New ROC Analysis Tool Incorporating Information on Instances. IEEE Access

2019, 7, 183396–183404. [CrossRef]
2. Jalaeian Zaferani, E.; Teshnehlab, M.; Khodadadian, A.; Heitzinger, C.; Vali, M.; Noii, N.; Wick, T. Hyper-Parameter Optimization

of Stacked Asymmetric Auto-Encoders for Automatic Personality Traits Perception. Sensors 2022, 22, 6206. [CrossRef] [PubMed]
3. Yotov, K.; Hadzhikolev, E.; Hadzhikoleva, S.; Cheresharov, S. Finding the Optimal Topology of an Approximating Neural

Network. Mathematics 2023, 11, 217. [CrossRef]
4. Wever, M.; Tornede, A.; Mohr, F.; Hüllermeier, E. AutoML for Multi-Label Classification: Overview and Empirical Evaluation.

IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3037–3054. [CrossRef] [PubMed]
5. Xin, H.; Kaiyong, Z.; Xiaowen, C. AutoML: A survey of the state-of-the-art. Knowl. Based Syst. 2021, 212, 106622.
6. Kotthoff, L.; Thornton, C.; Hoos, H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA 2.0: Automatic model selection and hyperparameter

optimization in WEKA. J. Mach. Learn. Res. 2017. [CrossRef]
7. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer Nature: Berlin, Germany, 2019.
8. Celik, B.; Vanschoren, J. Adaptation Strategies for Automated Machine Learning on Evolving Data. IEEE Trans. Pattern Anal.

Mach. Intell. 2021, 43, 3067–3078. [CrossRef]
9. Alsharef, A.; Sonia; Kumar, K.; Iwendi, C. Time Series Data Modeling Using Advanced Machine Learning and AutoML.

Sustainability 2022, 14, 15292. [CrossRef]
10. Emmert-Streib, F.; Dehmer, M. Evaluation of Regression Models: Model Assessment, Model Selection and Generalization Error.

Mach. Learn. Knowl. Extr. 2019, 1, 521–551. [CrossRef]
11. Chetoui, M.; Akhloufi, M.; Yousefi, B.; Bouattane, E. Explainable COVID-19 Detection on Chest X-rays Using an End-to-End Deep

Convolutional Neural Network Architecture. Big Data Cogn. Comput. 2021, 5, 73. [CrossRef]
12. Algehyne, E.; Jibril, M.; Algehainy, N.; Alamri, O.; Alzahrani, A. Fuzzy Neural Network Expert System with an Improved Gini

Index Random Forest-Based Feature Importance Measure Algorithm for Early Diagnosis of Breast Cancer in Saudi Arabia. Big
Data Cogn. Comput. 2022, 6, 13. [CrossRef]

13. Dora, S.; Kasabov, N. Spiking Neural Networks for Computational Intelligence: An Overview. Big Data Cogn. Comput. 2021, 5, 67.
[CrossRef]

14. Frank, M.; Drikakis, D.; Charissis, V. Machine-Learning Methods for Computational Science and Engineering. Computation 2020,
8, 15. [CrossRef]

15. Huang, Y.-C.; Hung, K.-C.; Lin, J.-C. Automated Machine Learning System for Defect Detection on Cylindrical Metal Surfaces.
Sensors 2022, 22, 9783. [CrossRef] [PubMed]

16. Ghasemian, A.; Hosseinmardi, H.; Clauset, A. Evaluating Overfit and Underfit in Models of Network Community Structure.
IEEE Trans. Knowl. Data Eng. 2020, 32, 1722–1735. [CrossRef]

17. Cho, H.; Kim, Y.; Lee, E.; Choi, D.; Lee, Y.; Rhee, W. Basic Enhancement Strategies When Using Bayesian Optimization for
Hyperparameter Tuning of Deep Neural Networks. IEEE Access 2020, 8, 52588–52608. [CrossRef]

18. Nallakaruppan, M.; Ramalingam, S.; Somayaji, S.; Prathiba, S. Comparative Analysis of Deep Learning Models Used in Impact
Analysis of Coronavirus Chest X-ray Imaging. Biomedicines 2022, 10, 2791. [CrossRef]

19. Gu, Y.; Wylie, B.K.; Boyte, S.P.; Picotte, J.; Howard, D.M.; Smith, K.; Nelson, K.J. An Optimal Sample Data Usage Strategy to
Minimize Overfitting and Underfitting Effects in Regression Tree Models Based on Remotely-Sensed Data. Remote Sens. 2016,
8, 943. [CrossRef]

20. Domhan, T.; Springenberg, J.T.; Hutter, F. Speeding up automatic hyperparameter optimization of deep neural networks by
extrapolation of learning curves. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence
Buenos Aires, Buenos Aires, Argentina, 25 July 2015.

https://github.com/MrRoman152/learning-curves-analysis.git
http://doi.org/10.1109/ACCESS.2019.2959620
http://doi.org/10.3390/s22166206
http://www.ncbi.nlm.nih.gov/pubmed/36015967
http://doi.org/10.3390/math11010217
http://doi.org/10.1109/TPAMI.2021.3051276
http://www.ncbi.nlm.nih.gov/pubmed/33439834
http://doi.org/10.1007/978-3-030-05318-5_4
http://doi.org/10.1109/TPAMI.2021.3062900
http://doi.org/10.3390/su142215292
http://doi.org/10.3390/make1010032
http://doi.org/10.3390/bdcc5040073
http://doi.org/10.3390/bdcc6010013
http://doi.org/10.3390/bdcc5040067
http://doi.org/10.3390/computation8010015
http://doi.org/10.3390/s22249783
http://www.ncbi.nlm.nih.gov/pubmed/36560156
http://doi.org/10.1109/TKDE.2019.2911585
http://doi.org/10.1109/ACCESS.2020.2981072
http://doi.org/10.3390/biomedicines10112791
http://doi.org/10.3390/rs8110943

Computers 2023, 12, 26 13 of 13

21. Li, Z.; Kamnitsas, K.; Glocker, B. Analyzing Overfitting Under Class Imbalance in Neural Networks for Image Segmentation.
IEEE Trans. Med. Imaging 2011, 40, 1065–1077. [CrossRef]

22. Qian, L.; Hu, L.; Zhao, L.; Wang, T.; Jiang, R. Sequence-Dropout Block for Reducing Overfitting Problem in Image Classification.
IEEE Access 2020, 8, 62830–62840. [CrossRef]

23. Prechelt, L. Early Stopping—But When? In Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science; Montavon, G.,
Orr, G.B., Müller, K.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7700, pp. 53–67.

24. Huo, J.; Gao, Y.; Shi, Y.; Yin, H. Cross-Modal Metric Learning for AUC Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2018,
29, 4844–4856. [CrossRef] [PubMed]

25. Diaz, G.I.; Fokoue-Nkoutche, A.; Nannicini, G.; Samulowitz, H. An effective algorithm for hyperparameter optimization of neural
networks. IBM J. Res. Dev. 2017, 61, 9:1–9:11. [CrossRef]

26. Kim, D.; Seo, S.B.; Yoo, N.H.; Shin, G. A Study on Sample Size Sensitivity of Factory Manufacturing Dataset for CNN-Based
Defective Product Classification. Computation 2022, 10, 142. [CrossRef]

27. Utrobin, V.A. Elements of the study of image detection. Trans. NNSTU N. A. R. E. Alekseev 2010, 81, 61–69.
28. Wang, C.; Baratchi, M.; Bäck, T.; Hoos, H.H.; Limmer, S.; Olhofer, M. Towards Time-Series Feature Engineering in Automated

Machine Learning for Multi-Step-Ahead Forecasting. Eng. Proc. 2022, 18, 17. [CrossRef]
29. Leite, D.; Martins, A., Jr.; Rativa, D.; De Oliveira, J.F.L.; Maciel, A.M.A. An Automated Machine Learning Approach for Real-Time

Fault Detection and Diagnosis. Sensors 2022, 22, 6138. [CrossRef] [PubMed]
30. Pradipta, G.A.; Wardoyo, R.; Musdholifah, A.; Sanjaya, I.N.H. Radius-SMOTE: A New Oversampling Technique of Minority

Samples Based on Radius Distance for Learning From Imbalanced Data. IEEE Access 2021, 9, 74763–74777. [CrossRef]
31. Chen, Y.; Chang, R.; Guo, J. Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals

Based on Convolutional Neural Network. IEEE Access 2021, 9, 47491–47502. [CrossRef]
32. Dablain, D.; Krawczyk, B.; Chawla, N.V. DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data. IEEE Trans.

Neural Netw. Learn. Syst. 2022. [CrossRef]
33. GhoshRoy, D.; Alvi, P.A.; Santosh, K. Explainable AI to Predict Male Fertility Using Extreme Gradient Boosting Algorithm with

SMOTE. Electronics 2023, 12, 15. [CrossRef]
34. Kumar, P.; Ali, I.; Kim, D.-G.; Byun, S.-J.; Kim, D.-G.; Pu, Y.-G.; Lee, K.-Y. A Study on the Design Procedure of Re-Configurable

Convolutional Neural Network Engine for FPGA-Based Applications. Electronics 2022, 11, 3883. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TMI.2020.3046692
http://doi.org/10.1109/ACCESS.2020.2983774
http://doi.org/10.1109/TNNLS.2017.2769128
http://www.ncbi.nlm.nih.gov/pubmed/29993954
http://doi.org/10.1147/JRD.2017.2709578
http://doi.org/10.3390/computation10080142
http://doi.org/10.3390/engproc2022018017
http://doi.org/10.3390/s22166138
http://www.ncbi.nlm.nih.gov/pubmed/36015899
http://doi.org/10.1109/ACCESS.2021.3080316
http://doi.org/10.1109/ACCESS.2021.3068316
http://doi.org/10.1109/TNNLS.2021.3136503
http://doi.org/10.3390/electronics12010015
http://doi.org/10.3390/electronics11233883

	Introduction
	Overview of Existing Methods for Detecting Model Training Issues
	Proposed Model for Automatic Assessment of Network Training
	Data Collection and Sampling
	Feature Descriptions of Learning Curves
	Classifying the State of the Model
	Results
	Discussion
	References

