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Abstract: The aim of the research work is to investigate the operability of the entire 23 pulmonary
function parameters, which are stipulated by the American Thoracic Society (ATS) and the European
Respiratory Society (ERS), to design a medical decision support system capable of classifying the
pulmonary function tests into normal, obstructive, restrictive, or mixed cases. The 23 respiratory
parameters specified by the ATS and the ERS guidelines, obtained from the Pulmonary Function Test
(PFT) device, were employed as input features to a Multi-Layer Perceptron (MLP) neural network.
Thirteen possible MLP Back Propagation (BP) algorithms were assessed. Three different categories
of respiratory diseases were evaluated, namely obstructive, restrictive, and mixed conditions. The
framework was applied on 201 PFT examinations: 103 normal and 98 abnormal cases. The PFT
decision support system’s outcomes were compared with both the clinical truth (physician decision)
and the PFT built-in diagnostic software. It yielded 92–99% and 87–92% accuracies on the training
and the test sets, respectively. An 88–94% area under the receiver operating characteristic curve
(ROC) was recorded on the test set. The system exceeded the performance of the PFT machine by 9%.
All 23 ATS\ERS standard PFT parameters can be used as inputs to design a PFT decision support
system, yielding a favorable performance compared with the literature and the PFT machine’s
diagnosis program.

Keywords: American Thoracic Society; European Respiratory Society; medical decision support
system; multi-layer perceptron neural network; pulmonary function test; respiratory disease

1. Introduction

The Pulmonary Function Test (PFT) is a basic device to evaluate the functionality of
the respiratory system [1]. The diagnostic decision obtained from the PFT is usually based
on two nonlinear curves: the respiratory flow–volume and volume–time curves. Apart
from those primary curves and patient data, many threshold limits and predicted values
of the respiratory parameters can be calculated and visualized to the physician to help
them make the right decision about the patient condition [2]. The knowledge base from
expert pulmonologists could be invested to design a PFT medical decision support system
that employs artificial intelligence techniques [3,4], such as an artificial neural network
(ANN). An ANN can be trained to deal with sophisticated nonlinear problems [5], such as
PFT curves and parameters. Using smart methodologies such as ANN may improve the
healthcare quality for patients [3,4].

Many types of ANN have been attempted in the literature for the auto diagnosis
of respiratory diseases. This includes Radial Basis Function (RBF) [6–10], MLP [7–17],
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Recurrent Networks (RN) [11,13,18], Learning Vector Quantization (LVQ), and Generalized
Regression [19]. Different classifiers were utilized, such as Support Vector Regression
(SVR) analysis [20], multiclass Support Vector Machine (SVM) [10,21,22], Data Mining [23],
Random Forest classifier [22,24,25], and Decision Tree [4,25]. Other attempts combined
ANN with different techniques to improve the classifier’s performance, such as Fuzzy
Algorithms [13,14], Principal Component Analysis [26], k-means clustering [8,22], or using
a convolutional neural network to extract the PFT features from the flow time [18]. They all
successfully reported a range of performances, indicating 82–100% accuracy.

Of those who utilized ANN with MLP, Baemani et al. [11] implemented eleven PFT
parameters as inputs to their two-stage network: the MLP and Elman network, resulting
in three-cases classification (normal, obstructive, and restrictive) with an average accu-
racy of 92.3%. Using 15 inputs to their MLP, Manoharan et al. [7] classified their samples
into only two cases (normal or abnormal), achieving 96% classification accuracy. In ad-
dition, Jafari et al. [12] obtained 97.6% average classification accuracy by using an MLP
neural network with ten inputs, categorizing their samples into four cases (normal, ob-
structive, restrictive, and mixed). Hakan et al. [17] utilized five PFT parameters to classify
their samples into three cases, achieving 98.7% accuracy. Moreover, Badnjevic et al. [13]
built a hybrid system using an MLP neural network and fuzzy algorithm to distinguish
three cases (normal, COPD (Chronic Obstructive Pulmonary Disease), and asthma) with
99.5% accuracy, utilizing three PFT parameters and two additional measurements. Spathis
and Vlamos achieved 89% accuracy differentiating between COPD and asthma by using
13 PFT parameters in their MLP to obtain 89% classification accuracy [22]. The expert
system developed by Badnjevic et al. [14] yielded 98.7% correctly classified samples into
three classes (normal, COPD, and asthma) with five inputs fed to the ANN. Unlike the
others, Loachimescu et al. [15] suggested new input extracted from the area under the
expiratory flow–volume curve (AEX). In addition to the conventional three PFT parameters,
they were able to classify a relatively large database of samples into four classes (normal,
obstructive, restrictive, and mixed) with 91.6% accuracy. Using ten anthropometric features
to predict the most important spirometric parameters using MLP, Kalantary et al. [16]
were able to correctly establish the patient condition (normal or abnormal), obtaining
84.6% prediction accuracy.

According to the American Thoracic Society (ATS) and the European Respiratory
Society (ERS) guidelines [2,27], respiratory diseases can be categorized into three main
categories; these are: obstructive disorders (difficulty to exhale), restrictive disorders
(difficulty to inhale), and mixed (both obstructive and restrictive disorders) [1]. World
Health Organization (WHO) statistics in 2016 revealed that COPD was considered the third
world biggest threat after heart diseases and strokes, while lower respiratory infections
occupied fourth place [28].

In this study, we assessed the practicability of using the entire respiratory parameters
(i.e., 23 features), which are recommended by ATS and ERS in the diagnosis of PFT exams,
as inputs to an MLP neural network [29]. In addition, many back-propagation algorithms
were used and evaluated and, eventually, compared in this work. To the best of our
knowledge, this study has not been investigated. Successfully, our experiment has resulted
in up to 99% and 92% accuracy on training and testing sets, respectively. Many standard
statistical metrics were utilized for outcome evaluations, including accuracy, sensitivity,
specificity, positive predictive value, negative predictive value, and area under the receiver
operating characteristic curve.

Additionally, the ANN epoch and the learning rate were recorded. The results were
compared with the PFT built-in program, which is often used as a suggestion or a prediction
to PFT diagnosis. The suggested PFT medical support system was also compared with
similar attempts in the literature.
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2. Materials and Methods

Figure 1 illustrates the flow–volume and volume–time curves obtained from the PFT
exam. Based on these curves, the PFT machine usually generates a set of respiratory
parameters called spirometric measurements/parameters [30]. The major parameters
are: Forced Expiratory Volume (FEV1), Forced Vital Capacity (FVC), ratio FEV1/FVC
(briefly FEV1%), Forced Expiratory Flow (FEF), Peak Expiratory Flow (PEF), and Maximum
Expiratory Flow (MEF). Other parameters are acquired at different time intervals, such as
FEV1, which indicate the forced expiratory volume during the first second, or at different
percentages such as MEF25%, which indicates 25% maximum expiratory flow at 75% of
FVC [2,27]. Table 1 shows the full set of the 23 respiratory parameters specified by ATS and
ERS [2,27]. Usually, those parameters are classified as either the essential respiratory ones
(Group 1) or the secondary respiratory parameters (Group 3). Instead, Group 2 in Table 1
illustrates the patient anthropometric characteristics, including age, weight, height, sex,
and smoking/nonsmoking. In total, a set of 23 PFT features are usually recorded in the
PFT machine according to ERS/ATS recommendations. The pulmonologists observe these
PFT parameters in comparison to deduce diagnosis.

Computers 2022, 11, x FOR PEER REVIEW 3 of 16 
 

2. Materials and Methods 
Figure 1 illustrates the flow–volume and volume–time curves obtained from the PFT 

exam. Based on these curves, the PFT machine usually generates a set of respiratory pa-
rameters called spirometric measurements/parameters [30]. The major parameters are: 
Forced Expiratory Volume (FEV1), Forced Vital Capacity (FVC), ratio FEV1/FVC (briefly 
FEV1%), Forced Expiratory Flow (FEF), Peak Expiratory Flow (PEF), and Maximum Ex-
piratory Flow (MEF). Other parameters are acquired at different time intervals, such as 
FEV1, which indicate the forced expiratory volume during the first second, or at different 
percentages such as MEF25%, which indicates 25% maximum expiratory flow at 75% of 
FVC [2,27]. Table 1 shows the full set of the 23 respiratory parameters specified by ATS 
and ERS [2,27]. Usually, those parameters are classified as either the essential respiratory 
ones (Group 1) or the secondary respiratory parameters (Group 3). Instead, Group 2 in 
Table 1 illustrates the patient anthropometric characteristics, including age, weight, 
height, sex, and smoking/nonsmoking. In total, a set of 23 PFT features are usually rec-
orded in the PFT machine according to ERS/ATS recommendations. The pulmonologists 
observe these PFT parameters in comparison to deduce diagnosis. 

 
 

Figure 1. Graphical representation of the volume flow (left) and flow time (right), the spirometric 
measurements [29]. FVC—Forced Vital Capacity, FEV1—Forced Expiratory Volume at the 1st 
second, TLC—Total Lung Capacity, RV—Residual Volume. 

Table 1. List of the ATS/ERS standard respiratory parameters in the PFT exam. All the abbrevia-
tions are explained in Section 2. 

Group Parameters 
Group 1 FVC, FEV1, (FEV1/FVC) %, FEF (25–75%) 
Group 2 Age, Weight, Height, Sex, Smoking/non-smoking 

Group 3 PEF, MEF25%, MEF50%, MEF75%, FEV0.5, FEV2, FEV3, PEFT, FEV2/FVC, 
FEV3/FVC, FEF25–50%, FEF50–75%, FEF75–85%, FEF0.2–1.2 

The PFT device is usually supplied with built-in diagnostic software, suggesting 
suspicion of the presence of respiratory disorders. In this experiment, the PFT software 
was designed by COSMED Cardiopulmonary Diagnostics, Italy [31]. It suggests the di-
agnosis of the patient’s status, namely “normal” or “abnormal” with the suspicion of 
obstructive, restrictive, or mixed conditions. The software employs an IF/THEN program 
based on the comparison between the recorded and typical values. The software utilizes 
the ATS/ERS standard respiratory parameters (Table 1). 

We collected 201 retrospective PFT examinations from a pulmonary function device 
(Quark PFT device, manufactured by COSMED Cardiopulmonary Diagnostics, Pavona 

Figure 1. Graphical representation of the volume flow (left) and flow time (right), the spirometric
measurements [29]. FVC—Forced Vital Capacity, FEV1—Forced Expiratory Volume at the 1st second,
TLC—Total Lung Capacity, RV—Residual Volume.

Table 1. List of the ATS/ERS standard respiratory parameters in the PFT exam. All the abbreviations
are explained in Section 2.

Group Parameters

Group 1 FVC, FEV1, (FEV1/FVC) %, FEF (25–75%)

Group 2 Age, Weight, Height, Sex, Smoking/non-smoking

Group 3 PEF, MEF25%, MEF50%, MEF75%, FEV0.5, FEV2, FEV3, PEFT, FEV2/FVC,
FEV3/FVC, FEF25–50%, FEF50–75%, FEF75–85%, FEF0.2–1.2

The PFT device is usually supplied with built-in diagnostic software, suggesting
suspicion of the presence of respiratory disorders. In this experiment, the PFT software was
designed by COSMED Cardiopulmonary Diagnostics, Italy [31]. It suggests the diagnosis
of the patient’s status, namely “normal” or “abnormal” with the suspicion of obstructive,
restrictive, or mixed conditions. The software employs an IF/THEN program based on the
comparison between the recorded and typical values. The software utilizes the ATS/ERS
standard respiratory parameters (Table 1).

We collected 201 retrospective PFT examinations from a pulmonary function device
(Quark PFT device, manufactured by COSMED Cardiopulmonary Diagnostics, Pavona
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RM, Italy [31]) in a university hospital archive relating to a recent three-year period (just
before the SARS-CoV-2 pandemic). Personal information was removed, so they became
anonymous medical records. For every PFT exam, we had the pulmonologist’s diagnostic
decision of whether the patient condition was normal or suspicion of restrictive, obstructive,
or mixed disorders. There were 103 normal cases (51%), 74 obstructive (37%), 14 restrictive
(7%), and 10 mixed (5%) cases. Based on the 75–25% strategy, the 201 samples were
randomly divided into training and test sets. It is worth mentioning that a bigger dataset
of 381 samples with 13 features was also tested and evaluated (results not shown), but it
did not outperform the 201 dataset with 23 features. Thus, the latter (with 201 samples)
was only considered in this work. Additionally, the 201 dataset was filtered carefully from
a larger dataset (consisting of about 1000 samples), and only samples that followed the
ATS/ERS standards and were certified by the pulmonologists were included. Table 2
illustrates the distribution of the 201 samples in the experimental dataset. All experiments
were tested and evaluated in a MATLAB environment program version R2017b (Math
Works. Inc., Natick, MA, USA), utilizing its artificial neural network library [32].

Table 2. The distribution of the dataset.

Normal Obstructive Restrictive Mixed

Training (75%) 76 55 8 7

Test (25%) 26 19 6 3

Total 102 74 14 10

Even though the used dataset is relatively small compared with other works in the
literature, it is certified and confinable. Instead, other works in the literature had a bigger
dataset, but this was not enough to improve the accuracy. In other words, not only the
quantity of the samples matters but also the quality (i.e., a variability that means distinct
samples covering a wide range of the input space).

Figure 2 illustrates a sample from the 201 Pulmonary Function Test (PFT) exams that
have been analyzed in this research work. It shows the anthropometric characteristics
of the patient (at the top of Figure 2), the flow–volume curve as “Forced Vital Capacity
(FVC)” (on the left center), the volume–time curve as “Forced Expiratory Volume (FEV)”
(on the right center), and the summary report (at the bottom of Figure 2) as a table for the
13 respiratory parameters that are usually calculated from these two curves. In this sum-
mary report, the predicted values (Pred.) of each PFT parameter are estimated according to
the patient anthropometric characteristics (4th column). Instead, the actual measurement
of the PFT parameter (“BEST#1”) and its percentage (“%Pred.”) related to the predicted
value are shown in the 5th and 6th columns, respectively.

The final diagnosis suggested by the built-in PFT program is reported at the bottom of
the report as “Normal Spirometry”. The MEF75%, MEF50%, MEF25%, FVC, PEF, and FEV1
values, which are reported on the curves, are examples of the respiratory parameters. It is
worth mentioning that the patient maneuver, as shown in the volume–time curve, should
last for at least 6 s according to the American Thoracic Society (ATS) and the European
Respiratory Society (ERS) to obtain reliable results.

Table 3 illustrates the descriptive statistics of all the 201 Pulmonary Function Test (PFT)
samples for the 23 PFT parameters. It shows the mean and the standard deviation (SD) of
all 23 respiratory parameters, which are recommended by the American Thoracic Society
(ATS) and the European Respiratory Society (ERS), for the 201 PFT exams. For the Sex
parameter, the number of men and the related percentage were calculated instead of the
mean and SD values. Likewise, the number of positive cases of smoking and the related
percentage in the database were calculated for the Smoker parameter.
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Table 3. The mean and SD values of the 201 samples of all PFT parameters.

#
PFT Examination

Parameters
Normal 103 Samples Obstructive 74 Samples Restrictive 14 Samples Mixed 10 Samples

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

1 FVC (L) 4.23 0.91 3.31 0.70 2.68 0.45 2.67 0.39

2 FEV1 (L) 3.14 0.72 1.91 0.49 2.14 0.40 1.93 0.37

3 (FEV1/FVC)% 74.06 5.36 57.45 5.68 79.71 6.10 71.56 7.96

4 FEF25–75% (L/min) 2.58 0.96 0.98 0.33 2.52 1.15 1.57 0.60

5 Age (year) 50.08 11.51 55.85 10.35 46.93 12.22 51.60 12.60

6 Height (cm) 167.72 7.74 166.14 5.93 164.86 8.63 170.70 7.10

7 Weight (kg) 78.70 12.73 76.43 14.59 73.36 16.41 75.30 10.58

8 Sex (men/%) 80.00 77.7% 64.00 86.5% 11.00 78.6% 8.00 80.0%

9 Smoking (+/%) 7.00 6.8% 8.00 10.8% 3.00 21.4% 1.00 10.0%

10 PEF (L/min) 7.10 1.65 4.67 1.16 6.43 1.71 5.08 0.82

11 MEF25% (L/min) 1.10 0.52 0.41 0.14 1.08 0.54 0.72 0.37

12 MEF50% (L/min) 3.32 1.11 1.23 0.43 3.16 1.39 1.91 0.75

13 MEF75% (L/min) 5.90 1.30 2.63 0.87 5.56 2.09 3.76 1.32

14 FEV0.5 (L) 2.35 0.53 1.34 0.35 1.74 0.37 1.47 0.34

15 FEV2 (L) 3.67 0.83 2.47 0.60 2.41 0.43 2.29 0.38

16 FEV3 (L) 3.89 0.86 2.77 0.64 2.52 0.46 2.44 0.37

17 PEFT (s) 98.69 32.50 66.50 44.65 78.95 32.33 67.94 30.88

18 (FEV2/FVC)% 86.59 4.16 74.46 4.80 89.74 3.56 84.86 5.85

19 (FEV3/FVC)% 91.86 3.20 83.54 4.07 93.75 2.66 90.84 4.28

20 FEF25–50% (L/min) 4.42 1.22 1.74 0.59 4.24 1.75 2.64 1.04

21 FEF50–75% (L/min) 1.86 0.78 0.69 0.24 1.82 0.88 1.15 0.49

22 FEF75–85% (L/min) 0.72 0.37 0.31 0.10 0.63 0.33 0.49 0.26

23 FEF0.2–1.2 (L/min) 6.07 1.57 2.78 1.24 5.34 1.92 3.42 1.46

2.1. Spirometer Procedure

All patients were instructed to perform the standard spirometry procedure recom-
mended by the ATS/ERS [2]. In detail, the patient inhaled rapidly and completely, then
exhaled in the mouthpiece (turbine flow meter) forcefully until no more air could be ex-
pelled, keeping the nose clip attached and the mouth tightly closed on the mouthpiece. The
procedure was repeated until acceptable results were obtained, and the best outcomes were
stored for further analysis.

2.2. MLP Neural Network

The experiment employed the Multi-Layer Perceptron Neural Network (MLPNN
or MLP for short) with a back-propagation (BP) algorithm [5,32], as shown in Figure 3,
also known as a fully connected feed-forward back-propagation neural network. This
MLP is basically made up of an input layer, an output layer, and at least one hidden layer.
Each layer consists of a high number of neurons, based on the layer location and ruled by
essential constraints. For example, the number of neurons in the input layer should be
determined by the number of sample features, which are the 23 features in this experiment.
The number of neurons in the output layer is ruled by the number of decisions that the
ANN will classify (e.g., normal, obstructive, restrictive, and mixed). Whereas, for hidden
layers, the at least maximum number of neurons can be calculated according to Equation
(1) explained by Stathakis et al. [33–35], where “N” is the number of distinct samples and
“m” is the number of output neurons. Selecting higher limits than what theoretically can
be calculated from Equation (1) would guarantee the optimum combination of neurons
during training [35]. The number of neurons in the hidden layers was varied during the
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training tryouts (searching for the optimum performance) from 2 to 65 in the first and
from 2 to 32 in the second for each individual back-propagation algorithm [33]. Thus,
32 × 65 = 2080 structures of NNs were constructed/trained and then evaluated for each
algorithm. The optimum number of neurons was determined after several variations until
the ANN yielded a minimum error (i.e., highest performance) [5,32].

L1 =
√
(m + 2)N + 2

√
N/(m + 2), L2 = m

√
N/(m + 2) (1)
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Figure 3. The MLP medical decision support architecture for PFT exam using the 23 respiratory
parameters from ERS/ATS. The abbreviations are explained in detail in Section 2.

The MLP architecture was initially tested several times by changing the normalization
scale of the input data (e.g., [−1, +1] and [0, +1]), the type of activation function, and the
number of hidden layers (e.g., 1 or 2 layers). After these preliminary tryouts, the best
performance was achieved by employing a [−1, +1] normalization scale and two hidden
layers. A single hidden-layer neural network may be sufficient in any decision support
system, but a complex activation function should be used [36]. The second hidden layer is
important to compensate for any loss in network performance [34–36]. Thus, we utilized
two hidden layers. Increasing the hidden layers would require an increment in time and
processing capacity. Then, the nonlinear symmetric sigmoidal activation functions were
implemented in all neurons of the input, hidden, and output layers. This function was
preferred because they achieved the best performance during the preliminary tryouts. The
early stopping criterion was employed; namely, the training immediately stops once the
validation error starts to increase [32]. Finally, the proposed MLP architecture (Figure 3)
was trained and then tested for all the 13 possible BP algorithms to validate the research
work objective, namely the investigation of the validity of using all 23 ARS and ETS PFT
parameters to design a PFT medical decision support system. The planned MLP PFT
medical decision support architecture is illustrated in Figure 3.



Computers 2022, 11, 130 8 of 16

2.3. Measures of Classification Performance

There are well-established statistical metrics for assessing the classification perfor-
mance of medical decision support systems [37]. In our research work, we employed
six different statistics parameters [37,38]; these are: the classification accuracy, sensitivity,
and specificity. Additionally, the positive predicted value (PPV) and negative predicted
value (NPV) are other statistical indicators. Equations (2)–(7) explain these metrics, consid-
ering that TP, TN, FP, and FN represent the true positive, true negative, false positive, and
false negative cases, respectively. The variations in sensitivity versus specificity generate
the receiver operating characteristics (ROC) curve, which is another statistical indicator
for the ANN classification performance resulting in another indicator, the area under the
curve (AUC) (Equation (7)). Further ANN model statistical indicators could have been
utilized, such as those reported in Ref. [16]. However, Equations (2)–(7) are commonly used
in assessing the classification performance of the ANN bioinformatics applications [37–39].
It is important to note that many performance metrics (namely sensitivity, specificity, posi-
tive predictive value, negative predictive value, ROC, and area under ROC), besides the
accuracy, were used to evaluate the classification outcomes well in a reliable and consistent
manner, taking into consideration the imbalanced classes in the ANN output [40]. Using
different measures of accuracy helps to reveal blind spots, to avoid misleading evalua-
tion, and to provide many accurate outcomes [41]. In addition, as the other metrics have
provided high percentages, the classifier’s performance was considered reliable.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

PPV =
TP

TP + FP
(5)

NPV =
TN

TN + FN
(6)

AUC =
∫ 1

0
ROC(t) dt (7)

3. Results

Several experiments that we have already done, using fewer parameters (e.g., 13 fea-
tures/inputs) with the same strategy explained in Section 2.2, resulted in worse accuracies
than using the same number of samples with 23 features/inputs. Thus, we concluded that
the dataset with more features outperformed the one with fewer features, remembering that
all 23 features were recommended by the international standards (ATS/ERS) for diagnosis.
After fixing the number of features, we started many further experiments to determine
other hyperparameters related to the neural network (NN), which is the central focus of
this research work (several training algorithms).

In the first experiment, the 23 spirometer measurements from all training samples in
Table 2 were fed to the proposed MLP architecture shown in Figure 3. The mean and SD of
the values of all parameters are shown in Table 3. After training, the MLP was evaluated
on samples in the test set. The classification accuracy was reported on both the training
and test sets for each BP algorithm. Table 4 reports the obtained results and the optimum
number of neurons in the hidden layers, the epoch, and the learning rate.

Table 4 demonstrates that the fixed number of neurons in each hidden layer cor-
responds with the best results obtained after training and parameter tuning. Thus, no
encoder/decoder structure of the recurrent neural network was needed; instead, we used
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a fully connected feed-forward back-propagation neural network or Multilayer Perceptron
Neural Network (MLP).

Table 4. The MLP architecture and classification accuracy on the training and test sets for different
13 BP algorithms. LR—learning rate, NA—not applicable.

# BP Algorithm No. of Neurons
Hidden Layer 1

No. of Neurons
Hidden Layer 2 Epoch LR Accuracy

(Training)
Accuracy

(Test)

1 Levenberg
Marquardt (LM) 7 21 21 <0.01 0.99 0.90

2 Bayesian
Regularization (BR) 6 24 20 2.36 0.96 0.89

3 Resilient Back
Propagation (RBP) 47 16 60 0.01 0.98 0.89

4 Scaled Conjugate
Gradient (CGS) 47 28 55 <0.01 0.96 0.87

5 Polak–Ribiere Conjugate
Gradient (CGP) 36 18 47 0.01 0.97 0.87

6 Powell–Beale Conjugate
Gradient (CGB) 45 30 42 0.01 0.97 0.92

7
Fletcher–Powell

Conjugate
Gradient (CGF)

43 19 31 0.01 0.96 0.90

8 One Step Secant (OSS) 4 28 43 0.01 0.96 0.89

9

Gradient Descent with
Momentum and

Adaptive Learning
Rate Rule (GDX)

50 15 158 2.62 0.96 0.88

10
Gradient Descent with

Adaptive Learning
Rule (GDA)

64 4 212 0.68 0.94 0.90

11 Gradient Descent (GD-1) 24 29 1000 0.01 0.92 0.87

12

Sequential Order
Incremental Training

with Learning
Functions (SOIT)

25 10 1000 NA 0.92 0.88

13
Batch Training with

Weight and Bias
Learning Rules (BT)

31 30 1000 NA 0.92 0.87

To carry on the experiments, we preferred six BP algorithms from the 13 BP detailed
in Table 4. The CGB was selected because it led to the highest accuracy (i.e., 97% and
92% accuracy on the training and test sets, respectively) among the four possible Conjugate
Gradient (CG) algorithms, the CGS, CGP, CGB, and CGF. The LM algorithm was often
reported in the literature [7–15], so it was particularly considered; it yielded the highest
accuracy (i.e., 99%) on the training set. The BR, RBP, and the OSS were selected because
they performed high accuracy on both the training and the test sets. Finally, the GDA
was preferred because it yielded to the best accuracy among the three Gradient Descent
(GD) algorithms, the GDX, GDA, and GD-1. All these BP algorithms are highlighted in
Table 4. Subsequently, in the second experiment, we evaluated the MLP performance for
the selected six BP algorithms in terms of sensitivity, specificity, PPV, NPV, and AUC. This
objective was achieved on the test set samples by comparing the MLP decision with the
clinical decision (i.e., the pulmonologist’s diagnostic decision about patient condition).
Table 5 illustrates the obtained results.

Finally, the third experiment reported the MLP’s accuracy of the selected six BP
algorithms in terms of each MLP’s output (i.e., the decision whether the PFT was normal,
obstructive, restrictive, or mixed). This experiment was attained on all samples and the
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training and test sets (i.e., the 201 samples in Table 2). Consequently, the MLP’s accuracy
was possibly compared with the PFT IF/THEN program’s accuracy, which was in the same
manner estimated from the 201 samples. Figure 4 demonstrates the results; the PFT device
outputs are represented by green bars while the MLP outputs are represented by different
colored bars.

Table 5. Statistical results of MLP neural network in comparison with the clinical truth. PPV—positive
predictive value, NPV—negative predicted value, AUC—area under the receiver operating character-
istic curve (ROC).

# BP Algorithm Accuracy Sensitivity Specificity PPV NPV AUC

1 Levenberg Marquardt (LM) 0.90 0.71 0.92 0.73 0.92 0.88

2 Bayesian Regularization (BR) 0.89 0.76 0.92 0.55 0.91 0.94

3 Resilient Back
Propagation (RBP) 0.89 0.54 0.92 0.50 0.91 0.93

4 Powell–Beale Conjugate
Gradient (CGB) 0.92 0.81 0.94 0.63 0.93 0.93

5 One Step Secant (OSS) 0.89 0.57 0.92 0.55 0.91 0.94

6 Gradient Descent with
Adaptive Learning Rule (GDA) 0.90 0.77 0.93 0.57 0.92 0.90

Computers 2022, 11, x FOR PEER REVIEW 10 of 16 
 

training and test sets (i.e., the 201 samples in Table 2). Consequently, the MLP’s accuracy 
was possibly compared with the PFT IF/THEN program’s accuracy, which was in the 
same manner estimated from the 201 samples. Figure 4 demonstrates the results; the PFT 
device outputs are represented by green bars while the MLP outputs are represented by 
different colored bars. 

 
Figure 4. The accuracy of the PFT MLP medical decision support vs. the PFT Machine Program (i.e., 
IF/THEN Program). MLP—Multilayer Perceptron, LM—Levenberg Marquardt, BR—Bayesian 
Regularization, RBP—Resilient Back Propagation, CGB—Powell–Beale Conjugate Gradient, 
OSS—One Step Secant, GDA—Gradient Descent with Adaptive Learning Rule. 

4. Results Discussion 
Table 4 illustrates the MLP’s classification accuracy of all 13 BP algorithms. The 

number of epochs was less than 60 for LM, BR, RBO, all CG, and OSS algorithms, 
whereas it was higher than 100 epochs for all GD, SOIT, and BT algorithms. The learning 
rate (LR) was equal to or less than 0.01 for all algorithms except BR, GDX, and GDA. The 
number of epochs was impossible for SOIT and BT because their structure does not uti-
lize the stopping criteria or LR values. All MLP BP algorithms with the various archi-
tectures of numbers of neurons succeeded in yielding 92% to 99% accuracy on the train-
ing set and 87% to 92% accuracy on the test set. Therefore, these results sustain this pa-
per’s question statement (i.e., hypothesis) that the 23 respiratory parameters from 
ERS/ATS can successfully operate a PFT medical decision support system. This one is the 
first finding in this research paper. 

Table 5 demonstrates the statistical performances of the preferred six BP algorithms 
on the test set. They resulted in 54 to 81% sensitivity, 92 to 94% specificity, 50 to 73% PPV, 
91 to 93 NPV, and 88 to 94 AUC. On the one hand, these results revealed that the different 
BPs yielded different performance values. That is, a BP algorithm can outperform other 
BP algorithms in terms of one measure (e.g., accuracy), but it may underperform other BP 
algorithms (e.g., sensitivity). This result may be attributed to the low number of samples 
in the test set (50 PFT exams); this concept will be further discussed in the next para-
graph. On the other hand, these results further support this paper’s hypothesis that the 23 
ERS/ATS standard respiratory parameters can be utilized satisfactorily in a PFT medical 
decision support system. 

Figure 4 illustrates the second finding of this paper. It shows that the performance of 
an operating MLP BP algorithm is not necessarily the same for all outputs (decisions). For 
example, the LM resulted in approximately 95% accuracy on normal samples, while it 
yielded 95%, 98%, and 99% in classifying obstructive, restrictive, and mixed disorders, 

Figure 4. The accuracy of the PFT MLP medical decision support vs. the PFT Machine Program (i.e.,
IF/THEN Program). MLP—Multilayer Perceptron, LM—Levenberg Marquardt, BR—Bayesian
Regularization, RBP—Resilient Back Propagation, CGB—Powell–Beale Conjugate Gradient,
OSS—One Step Secant, GDA—Gradient Descent with Adaptive Learning Rule.

4. Results Discussion

Table 4 illustrates the MLP’s classification accuracy of all 13 BP algorithms. The
number of epochs was less than 60 for LM, BR, RBO, all CG, and OSS algorithms, whereas
it was higher than 100 epochs for all GD, SOIT, and BT algorithms. The learning rate (LR)
was equal to or less than 0.01 for all algorithms except BR, GDX, and GDA. The number of
epochs was impossible for SOIT and BT because their structure does not utilize the stopping
criteria or LR values. All MLP BP algorithms with the various architectures of numbers
of neurons succeeded in yielding 92% to 99% accuracy on the training set and 87% to
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92% accuracy on the test set. Therefore, these results sustain this paper’s question statement
(i.e., hypothesis) that the 23 respiratory parameters from ERS/ATS can successfully operate
a PFT medical decision support system. This one is the first finding in this research paper.

Table 5 demonstrates the statistical performances of the preferred six BP algorithms
on the test set. They resulted in 54 to 81% sensitivity, 92 to 94% specificity, 50 to 73% PPV,
91 to 93 NPV, and 88 to 94 AUC. On the one hand, these results revealed that the different
BPs yielded different performance values. That is, a BP algorithm can outperform other
BP algorithms in terms of one measure (e.g., accuracy), but it may underperform other BP
algorithms (e.g., sensitivity). This result may be attributed to the low number of samples in
the test set (50 PFT exams); this concept will be further discussed in the next paragraph. On
the other hand, these results further support this paper’s hypothesis that the 23 ERS/ATS
standard respiratory parameters can be utilized satisfactorily in a PFT medical decision
support system.

Figure 4 illustrates the second finding of this paper. It shows that the performance
of an operating MLP BP algorithm is not necessarily the same for all outputs (decisions).
For example, the LM resulted in approximately 95% accuracy on normal samples, while
it yielded 95%, 98%, and 99% in classifying obstructive, restrictive, and mixed disorders,
respectively. This marginal disparity occurred in all BP algorithms, the RB, BRP, CGB,
OSS, and GDA. Consequently, as we mentioned in the previous section, a BP may exceed
other BP algorithms in classifying one output (e.g., normal), but it may go beyond other
BP algorithms for other decisions (e.g., restrictive disease). This means that the six BP
algorithm outputs disperse slightly among each other. Therefore, the second finding in
this paper is that different BP algorithms for the same type of ANN may yield different
performances on different possible medical outputs (i.e., diagnostic decisions). This result
can be applied to other medical decision support tasks other than the PFT exam.

Furthermore, Figure 4 reveals further findings. On the one hand, it indicates that the
classification performances from the PFT machine program varied among different medical
decisions, similarly to what was noticed from the MLP, as explained in the previous section.
On the other hand, Figure 4 shows that all six MLP BP algorithms can outperform the
built-in machine program in classifying the normal, obstructive, and restrictive conditions.
However, only the LM, BR, and RBP exceeded the machine program in identifying the
mixed condition. Therefore, the third finding in this paper is that by providing 23 ATS/ERS
respiratory parameters as inputs to ANN, an MLP neural network could generate better
performance than the PFT machine’s diagnostic software. This finding was not similarly
addressed in the literature. For instance, the LM algorithm exceeded the performance of the
machine program by 6%, 5%, 9%, and 3% for classifying normal, obstructive, restrictive, and
mixed cases, respectively. This result corresponds to a 6% average increment in classifying
PFT cases. It is attributed to the capabilities of any ANN to analyze sophisticated nonlinear
data; the matter is not feasible by an IF/THEN program.

Since the LM, BR, and RBP outperform the built-in machine program in classifying
all PFT diagnosis decisions, including the mixed cases, they were utilized to plot the ROC
curves, which is the comprehensive statistical parameter to observe any medical decision
support capabilities. A ROC curve plots variations in sensitivity and specificity due to
applying different threshold values in classifying outputs. Figure 5 shows the resulting
ROC curves.

Table 6 shows results from some attempts presented in the literature. Regarding the
number of samples, the report by Loachimescu et al. [15] utilized more than 15,000 PFT
exams (i.e., patients). They utilized three respiratory features and a signal processing
feature (i.e., the area under the expiratory flow–volume curve in Figure 1). They reported
83.5% and 91.6% accuracy, utilizing three and four features, respectively, to classify the
same four respiratory cases (i.e., normal, obstructive, restrictive, and mixed cases). These
results were the most reliable due to the extensive training and test sets. Another study
was conducted by Badnjevic et al. [14], in which more than 5000 PFT exams were uti-
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lized. However, they attempted to classify COPD from normal exams only. In addition,
Topalovic et al. [4,39] trained their system on 1500 samples.
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The rest of the scientific papers reported in Table 6 used an almost similar number
of samples as in this paper (i.e., 150 to 500 samples). They reported accuracies between
82 to 99% as the results in Table 4, but they explored part of the ERS/ATS parameters.
Furthermore, they did not classify their samples into all four cases (four outputs) ex-
cept for the work by Jafari et al. [12] and Topalovic et al. [4,39]. Jafari et al. utilized
fitting coefficients of the processed signal and the four ERS/ATS parameters, whereas
Topalovic et al. used about 21 PFT parameters and classified their samples into eight cases.

In terms of the type and number of input features (i.e., PFT parameters), most re-
ports only explored the essential respiratory parameters (Group 1 in Table 1). However,
except for the study made by Topalovic et al. [4,39], no reports had tested all 23 param-
eters, including the secondary respiratory parameters and the patient’s anthropometric
characteristics (Groups 2 and 3 in Table 1), as in this paper. Kalantary et al. [16] tested
ten anthropometric parameters in the MLP decision support system (DSS) to discern nor-
mal from abnormal 130 PFT examinations. The results showed approximately 94% and
85% accuracies on the training and test sets, respectively. In this research work, all 23 fea-
tures were included as inputs to MLP according to prior knowledge of these features’ impor-
tance, which was confirmed by pulmonologists and international standards (ATS/ERS) for
diagnosis [42]. However, specific selection methods of the unsupervised and supervised fea-
tures could be implemented to investigate the significance of these features individually and
combined [42,43]. While the unsupervised methods do not depend on the classification
targets, and information loss might occur, the supervised methods suffer from multi-
collinearity and independency issues [42]. Therefore, feature selection methods were not
utilized here to avoid any loss of valuable information, to accelerate the training process
computationally, and to focus on MLP tunning parameters and algorithms.

Finally, in terms of the type of ANN technique, some researchers investigated MLP
alone [11,12,14–16] or with other ANNs [4,7,13], as reported in Table 6. It seems that MLP
is a successful ANN choice, since it yielded encouraging performances, comparable with
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the results obtained in this experiment (Tables 4 and 5). However, other ANNs were also
investigated, as in the references [4,6,10,21,22,24] reported in Table 6, leading to a range of
accuracies as those obtained by the MLP neural network.

Table 6. Summary of specifications and accuracies from similar medical decision support systems of
PFT exams.

Author/s ANN Method Features # Medical
Decision Samples Accuracy [%]

Veezhinathan et al. [6] RBF FVC, FEV1, FEV1%, PEF,
3 pressures, 3 resistances 10 Normal and

obstructive 100 90

Baemani et al. [11] MLP
FVC, FEV1, FEV1%, PEF,
FEF25–75%, age, height,

weight, sex, smoker, race
11

Normal,
obstructive,

and restrictive
250 92.3

Manoharan et al. [7] RBF/MLP
FVC, FEV1, FEV1%, PEF,

FEF75%, 5 anthropometric,
and 5 percentage values

15 Normal
and abnormal 150 100/96

Sahin et al. [21] SVM FVC, FEV1, FEV1% 3
Normal,

obstructive,
and restrictive

499 97.3

Jafari et al. [12] MLP (LM)
Predicted (FVC, FEV1,

FEV1%, and PEF) +
6 fitted-curve coefficients

10

Normal,
obstructive,
restrictive,
and mixed

205 97.6

Hakan et al. [17] MLP FVC, FEV1, FEV1%,
FEF25-75, PEF 5

Normal,
obstructive,

and restrictive
486 98.7

Badnjevic et al. [13] MLP (LM)
+ Fuzzy

FVC, FEV1, FEV1%,
resistance, reactance,

frequency (using IOS *)
6 Normal, COPD,

and asthma 455 99.5

Spathis and Vlamos [22] NN, NB, LogR,
SVM, KNN, RFC

FEV1, FVC, FEV1%, PEF,
MEF25/50/75/25-75, Sex,
Smoke, pulse, O2 sat., age,

and 9 symptoms

13 Asthma
and COPD 132 89

Badnjevic et al. [14] MLP FVC, FEV1, FEV1%, VC,
probability of disease 5 Normal, COPD,

and Asthma ~5300 98.7

Topalovic et al. [4,39] Decision Tree

FEV1, FVC, FEV1%, PEF,
FEF25/50/75/25-75, Raw,
sGaw, VC, RV, TGV, TLC,
DLco, Kco, age, Smoke,

CAT, gender, BMI

21
Asthma, COPD,
OBD, NMD, TD,

ILD, PVD, N

1430 + 50
+ 136 82

Iadanza et al. [10] RBNN +
SVM + C5.0

FEV1, FVC, SVC, FEV1%,
FEV1/SVC, FEF25-75, PEF,

VC, TLC, RV, FRC, ERV,
DLco, VA, DLco/VA,

Height, Weight, Sex, Age

19 Mild, moderate,
severe COPD 414 94.5

Loachimescu et al. [15] MLP
Percent predicted

(FVC, FEV1 & FEV1%) +
sqrt AEX **

4

Normal,
obstructive,
restrictive,
and mixed

15,308 83.5 91.6

Bodduluri et al. [24] FCN + RFC FEV1/FVC, FEV1 pred. 3

Normal, airway
disease,

emphysema,
mixed

8980

80 Normal,
78 airway
disease,

78 emphysema,
91 mixed

Kalantary et al. [16] MLP DSS

Gender, age, weight, stature,
body mass index, smoking,
type of work, fat mass, fat

free mass, and work history.

10 Normal
and abnormal 130

93.6 (train)
84.6% (test)

91.5 (all)

This research work MLP 23 parameters as specified
by ATS and ERS (Table 1) 23

Normal,
obstructive,
restrictive,
and mixed

201 92–99 training,
87–92 test

* IOS—Impulse Oscillometry System. ** AEX—Area Under the Expiratory Flow–Volume curve.

For example, Spathis and Vlamos [22] investigated machine learning techniques such
as Naïve Bayes (NB), Logistic Regression (LogR), Neural Network (NN), Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), Decision Tree (DT), and Random Forest
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Classifier (RFC) to classify 132 PFT samples into two medical respiratory conditions, the
COPD, and asthma. In contrast, Iadanza et al. [10] evaluated three models to design
automatic learning techniques to classify 414 PFT samples into three levels of COPD
severity, utilizing the Radial Basis Neural Network (RBNN), SVM, and C5.0, which is
an automatic classifier function from the IBM SPSS Modeler capable of selecting the most
suitable classification algorithm for any given data. Bodduluri et al. [24] attempted to use
a deep-learning model (i.e., Fully Convolutional Network (FCN)) and RFC, employing PFT
flow–volume curves of nearly 9000 samples. The latter three studies [10,22,24] recorded
78–94.5% accuracies, which overlap with records utilizing MLPs [7,11–16] in Table 6, along-
side the results obtained in this paper (as reported in Table 4).

It is worth mentioning that the number of classes to which the artificial intelligence
(AI) technique will classify is determinant to the complexity of the modeled relationship
input–output classes. Topalovic et al. [4,39] were the first to classify their samples into
eight different cases (categories), making the classification task for machine learning even
harder to achieve. Those eight cases are asthma, COPD, other obstructive diseases (OBD),
neuromuscular disorder (NMD), thoracic deformity (TD), interstitial lung disease (ILD),
pulmonary vascular disease (PVD), and normal condition.

As observed from the specific eight cases (which contain the four previous ones used
in our study) the complexity to distinguish between these classes is relatively higher than
that of fewer classes (e.g., four cases). That is why the classification accuracy reported in
this study was relatively lower than that of other studies with fewer output classes (≤4).
Furthermore, Topalovic et al. used very extensive examinations, such as the diffusing
capacity of the lung for carbon monoxide, to obtain more parameters and support the
pulmonologist’s decision.

It is also of importance to highlight that the reports in Table 6 have differences in the
terms of the ANN specifications (i.e., ANN architecture). Possible specifications, but not
limited to, are the number of hidden layers, number of neurons, type of activation function,
and the normalization scale of the input data. The distribution of the PFT samples, whether
they cover the entire input space or not, also has an important role in enriching the learning
process. They all affect the performance of any AI medical decision system. These AI
specifications were not reflected in comparison with the literature because this is beyond
the purpose of this research work.

However, it is important to indicate that other MLP architecture specifications may
further optimize or refine the results; one of which is the assessment of different activation
functions that govern ANN outputs. Another factor is the repetition of the experiment
using several iterations of the random 75–25% splitting protocol of the dataset, which
would ascertain ANN’s performance. Increasing the number of hidden layers is another
impact in ANN science; this might improve the classification performance, but it would
also increase the training time and the computer capacity requirements. To end, increasing
the number of PFT samples, as in reports by Loachimescu et al. [15] and Badnjevic et al. [14],
would finalize the merits of using the 23 ERS/ATS respiratory parameters as inputs to the
PFT medical decision support system.

5. Conclusions

This paper demonstrated that the 23 ATS/ERS international standard PFT parameters
could be used as input for a reliable medical decision support system. A system was
proposed using the MLP neural network technique with 13 BP algorithms. It yielded
92–99% and 87–92% accuracy on training and test sets from 201 PFT samples. On the
one hand, the results outperformed the PFT built-in diagnostic software. On the other
hand, they overlapped with records by other researchers who utilized part of the ATS/ERS
parameters. In addition, a slight disparity in accuracy was observed among the BP algo-
rithms for each medical output, indicating that it may be worthwhile to utilize the best BP
algorithm for each medical decision.
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