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Abstract: A large class with many responsibilities is a design flaw that commonly occurs in real-world
object-oriented systems during their lifespan. Such a class tends to be more difficult to comprehend,
test, and change. Extract class refactoring (ECR) is the technique that is used to address this design
flaw by trying to extract a set of smaller classes with better quality from the large class. Unfortunately,
ECR is a costly process that takes great time and effort when it is conducted completely by hand.
Thus, many approaches have been introduced in the literature that tried to automatically suggest
the best set of classes that can be extracted from a large class. However, most of these approaches
focus on improving the cohesion of the extracted classes yet neglect the coupling between them
which can lead to the extraction of highly coupled classes. Therefore, this paper proposes a novel
approach that considers the combination of the cohesion and coupling to identify the set of classes
that can be extracted from a large class. The proposed approach was empirically evaluated based on
real-world Blobs taken from two open-source object-oriented systems. The results of the empirical
evaluation revealed that the proposed approach is potentially useful and leads to improvement in
the overall quality.
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1. Introduction

Cohesion and coupling are two of the most important aspects of software quality.
Many empirical studies in the literature have proven the influence of the cohesion and
coupling on software complexity, maintainability, and testability [1–5]. Highly cohesive
and loose coupled software units take less effort to change and test because cohesive units
should ideally have a single responsibility and one reason to change and loosely coupled
units should ideally have very limited change propagation. Generally, cohesion refers to the
degree of internal dependency between the elements of a software unit whereas coupling
refers to the degree of external dependency between the elements of two software units. In
object-oriented systems, software practitioners put tremendous effort into modularizing
the systems into a set of classes that have high cohesion and low coupling. Unfortunately,
real-world systems have to undergo cycles of maintenance and evaluation during their
lifespan in order to meet the changing business domain requirements [6]. Consequently,
the design quality of the systems starts to decline gradually and the systems become very
rigid and fragile to changes [7].

Software refactoring is a preventive solution that aims to improve the design quality
to make the systems easier to change. It is the process of changing the internal structures
of the systems while preserving their external behaviors [8]. Martin in [8] described a
wide range of refactoring techniques that can be applied to tackle specific design flaws
(also known as bad smells). One of the design flaws that commonly occurs during the
maintenance and evaluation activities in object-oriented systems is known as “God Class”
or “Blob” which refers to a large class that has low cohesion and many methods. Extract
class refactoring (ECR) is the refactoring technique used to address God Class design flaw.
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It refers to the activities of partitioning a large class with many responsibilities into smaller
classes such that each class has one responsibility [8].

Refactoring is a time- and effort-consuming process [9]. Therefore, researchers have
striven hard to introduce approaches that aim to automate the implementation of different
kinds of refactoring techniques including ECR (e.g., [10–13]). Unfortunately, most of the
previously proposed ECR approaches focus on cohesion as a quality indicator to evaluate
and choose the possible classes that can be extracted from the Blob in question. Considering
only the cohesion of the extracted classes and neglecting the coupling between them can
result in classes that are highly cohesive yet tightly coupled because increasing the cohesion
of the extracted class can lead to increasing the coupling between them. Therefore, ECR
can be thought of as an optimization problem that can be solved by finding an optimal
balance between the cohesion and coupling of the extracted classes [14].

This paper proposes a novel approach that considers the cohesion and coupling when
performing ECR. The proposed approach evaluates the possible solutions of ECR based on
the combination of the cohesion and coupling for the set of classes that can be extracted
from a given Blob. The purpose of the proposed approach is to identify the set of extracted
classes with the best overall quality. The contribution of this paper can be summarized
as follows:

• Defining a combined measure of the cohesion and coupling for a set of classes. The
goal of this measure is to evaluate the overall quality (in terms of cohesion and
coupling) of a set of classes that can be extracted from a Blob when conducting ECR.

• Introducing a set of algorithms that automatically suggest the set of classes that can be
extracted from a given Blob.

• Conducting an empirical evaluation of the proposed approach based on Blobs taken
from two real-world systems.

The rest of the paper is organized as the following. Section 2 presents a summary and
discussion of a set of related studies. Section 3 presents in details the proposed approach.
Section 4 presents the empirical evaluation of the proposed approach. Section 5 gives the
conclusion of the study and future work.

2. Related Work

There is a common belief among the research community that software refactoring is
beneficial and leads to improvement in software quality. Therefore, software refactoring
has been the focus of a great deal of research, which has resulted in the development of
many potential approaches to assist and automate the process. The following sections
discuss the impact of software refactoring on software quality and provide a review and
summary of several methods that are related to the proposed approach.

2.1. The Impact of Software Refactoring on Software Quality

Software maintenance is the longest and most expensive phase in the software devel-
opment life cycle [15]. Many inevitable changes occur to internal structures of software
systems during the maintenance phase which usually lead to negative impacts on the
internal quality of the systems [16]. Software refactoring is believed to be the solution that
addresses the degradation of software quality resulting from the changes that occurred
during the maintenance activities. Conceptually, software refactoring improves software
quality. In practice, however, software refactoring can have a positive and negative impact
on software quality [17,18]. Therefore, many studies in the literature have investigated the
influence of refactoring activities on software quality (e.g., see [15,17,19–22]).

cKaur and Kaur [19,20] conducted an experiment on an open source Java library to
investigate the impact of code refactoring on the software quality. Using the Eclipse plugin
JDeodorant, they identified two bad smells in the considered Java library. Before applying
the suitable refactoring techniques to remove the identified bad smells, they measured
the complexity of the library. Then they measured it again after applying the refactoring



Computers 2022, 11, 123 3 of 21

techniques. The results of the measurement showed that the complexity decreased after
the application of the refactoring techniques.

The authors of [21] examined different variations of the Hill Climb algorithm with
aim of identifying an optimum sequence of refactoring techniques that leads to the best
improvement in the maintainability. They conducted their experiments on a Java system
that needed several types of refactoring techniques. The optimum sequence of refactoring
techniques that led to the highest increase in the maintainability value of the system was
identified by the Steepest-Ascent Hill-Climbing algorithm.

Shatnawi and Wei conducted [17] an empirical study on two open source systems to
examine the effect of several types of refactoring activities on four software external quality
attributes namely: reusability, flexibility, extendibility, and effectiveness. They adopted
the model in [23] to indicate the values of the considered external quality attributes using
several object-oriented metrics such as coupling, cohesion, and inheritance. The findings
of the study showed that most of the refactoring techniques led to improvement in the
considered quality attributes. However, some refactoring activities had a negative impact
on software quality. Similar findings were identified in a recent study [18]. Therefore, the
maintenance team who is responsible for carrying our refactoring operations on a system
should use a multi-attribute model to assess the impact of code refactoring on the overall
quality of the system.

Al Dallal in [24] constructed a set of prediction models that can automatically identify
Extract Subclass Refactoring opportunities. He empirically evaluated the constructed mod-
els based on classes selected from six open-source Java systems. The results showed that
identified Extract Subclass Refactoring opportunities led to improvement in the cohesion,
coupling, and size of the selected classes.

Researchers in [25] conducted an empirical study to examine the refactoring techniques
that will likely cause faults. They used the refactoring tool Ref-Finder [26] to automatically
identify different types of refactoring opportunities in three open source Java systems.
Then they applied the SZZ algorithm [27] to identify whether changes in the source code
resulting from performing the refactoring opportunities detected by the tool Ref-Finder
would induce faults in the considered systems. The results indicated that most of the
refactoring types were safe to apply. However, hierarchy refactoring operations such as
Pull Attribute and Pull Method were more likely to cause bugs in the systems. Therefore,
these kinds of refactoring can have a negative impact on the software quality unless a
thorough testing and code inspection are performed after applying them.

Canfora et al. [28] experimentally studied the impact of the refactoring on the software
complexity. They examined the refactoring-related changes that occurred during a specific
interval in the lifespan of four open-source software systems. The results showed that the
number of files that needed to be changed during maintenance activities in the considered
systems usually decreased after performing refactoring operations which lead to lower
complexity of the systems.

Gatrell and Counsell [29] studied the effect of refactoring operations on software
maintainability. They selected 7489 classes from a large commercial system implemented
in C# and studied their change history over a period of 12 months that was divided into
intervals of 3 or 4 months. The researchers then identified the refactoring operations that
occurred in the selected classes during the middle intervals and investigated their impact
on the change and fault frequency of the classes after the middle intervals. The results
indicated that classes that underwent some refactoring activities were less change and
fault prone.

Researchers in [30] qualitatively analyzed the impact of refactoring operations on
Windows 7 over a period of 3 months. They identified the refactoring operations by
mining the history log of windows 7. The findings showed the most frequently refactored
modules during the development of Windows 7 were the modules that had a high rate
of test coverage, complexity, and inter-module dependencies. The complexities and inter-
module dependencies of the refactored modules slightly decreased compared to other
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modules. However, the size of the modules increased after performing the refactoring.
Therefore, the researchers suggested that software project managers and developers should
conduct a multi-aspect assessment to better observe the impact of refactoring operations
on software quality.

2.2. Relevant ECR Techniques

In an early study in the field of software refactoring [31], researchers developed a
visualization tool that can recognize the parts of a system that might need to undergo one of
four types of refactoring techniques namely: Extract Class, Move Method, Move Attribute,
and Inline Class refactoring. The refactoring changes in the system under consideration
can be identified with the assistance of this tool due to the use of structural dependency
metrics. Marinescu [32] developed a technique that he named the detection strategy to
assist software developers in discovering software modules (e.g., classes) that have a
specific problem in their design, such as a class that is responsible for a large number of
tasks. The strategy recommends writing metrics-based rules that are able to immediately
identify software modules that are influenced by a deficiency in the design. There are four
stages involved in the process of developing metrics-based rules to find errors in the design.
Firstly, the manifestations of the design defects are identified. For instance, God Class
is characterized by a high level of class complexity, a poor level of class coherence, and
dependency on data from other classes. Secondly, a metric that is suitable for predicting
each symptom is selected. For example, LCOM2 [33] is the measurement that is used to
measure cohesion. Thirdly, a filtering technique, such as a less-than filter, is used for each
metric to identify the symptom. For example, a value of LCOM2 greater than 10 is deemed
to indicate poor class cohesiveness. In the last stage of the process, you will need to correlate
the symptoms by using AND/OR operators. An opportunity for refactoring will present
itself as soon as a defect in the design has been identified. A similar study [34] presented
a metric-based detection approach for a collection of bad smells, one of which was the
God Class. In order to identify God Classes, the authors relied on size and cohesiveness
measures. They offered four different kinds of refactoring procedures, one of which was
ECR, to eliminate the design smells caused by large classes.

A technique for the ECR was suggested by Fokaefs et al. [10], and it makes use of an
agglomerative clustering algorithm that is determined by the Jaccard index between the
methods of the class that is going to be refactored. Comparing two class methods using the
Jaccard index takes benefit of their structural similarities. There is a larger potential that two
methods would be included in the same cluster if their Jaccard index is higher. The clusters
produced as a consequence show the possible classes that can be extracted from the class in
question. In a similar manner, an extension tool of the JDeodorant Eclipse plugin that can
discover chances for ECR in God Classes was developed by Fokaefs et al. [35]. A software
developer can choose one of the opportunities for refactoring from those the tool offers, and
the tool will then implement it automatically. The tool uses structural dependency metrics
to generate classes that have greater cohesiveness than the class that will be refactored.

The approach introduced by Bavota et al. [11] separates the class to be refactored into
two classes that have greater cohesion than the original class. The approach exploits the
semantic and structural dependencies that exist between the methods of the class. The class
that has to be refactored is first represented as a weighted graph, with nodes representing
individual methods and edges representing the degree to which those methods structurally
and semantically depend on each other. The Max Flow-Min Cut technique [36] is then
used in this approach to divide the weighted graph into two weighted subgraphs that are
representative of the two classes that can be extracted from the class to be refactored. In
addition, Bavota et al. [12] presented a different approach that can automatically break
down the class that will be refactored into two or more classes. Similar to their previous
work, the class under consideration is modeled as a weighted graph. However, they
utilize in this work a two-step clustering algorithm instead of the Max Flow-Min Cut. This
algorithm separates the edges of the graph with light weights to partition the graph into
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a collection of subgraphs that reflect the classes that can be extracted from the original
class. A similar method to automate the refactoring was proposed by the authors of [37].
This technique can automatically pin down three different refactoring possibilities: Move
Method Refactoring, Move Field Refactoring, and ECR. These opportunities can be utilized
to improve the quality of the design.

An ECR technique was presented by Akash et al. [38] that makes use of topic modeling.
In this approach, each method included within a class is considered to be a document,
and a topic distribution is produced for each class by making use of the Latent Dirichlet
Allocation model [39]. Then the cosine similarity between the topic distributions of the two
methods is utilized to determine their semantic similarity. However, a drawback of this
technique is that to train the topic model, there has to be a significant volume of textual
data. In most cases, the textual data of a class (such as identifiers and comments) will not
be sufficient to properly train the topic model. As a result, the learned topic distribution
may not be enough to adequately represent the semantics of a method included in a class.

Different from most of the studies in the literature, researchers in [13,40,41] proposed
to exploit the clients of the class to be refactored to identify ECR opportunities. The clients
of the class were used to measure the dependency between the methods of the class such
that methods that were used by common clients were considered to have a dependency
on each other. Then each set of methods that had strong client-based dependency were
suggested to be extracted into a separate class.

The broad research on ECR is a valuable resource. However, it is evident that the
majority of previous research only focuses on class cohesion when considering ECR. The
main drawback observed here is improving only the cohesion of the extracted classes can
lead to a decline in their overall quality because increasing the cohesion often comes at the
price of the coupling. This paper, however, introduces a new approach that considers both
the cohesion and coupling to identify better ECR opportunities.

3. The Proposed Approach

This section presents a set of mathematical definitions and notations that are used in
the proposed approach. In addition, it presents the proposed algorithms for ECR and gives
a worked example to demonstrate how to apply the presented approach on a given class.

3.1. Mathematical Definitions and Notations

Definition 1 (Methods). A class c contains of a set of methods that define the behaviour of the
class and it is formally given as: M(c) = {m1, m2, . . . , mn} where n is the number of methods in
the class c.

Definition 2 (Attributes). A class c contains a set of attributes that define the state of the class
and that are shared by the methods of the class: A(c) = {a1, a2, . . . , ak} where k is the number of
attributes in the class c.

Definition 3 (Dependency between two methods). Similar to [12,42], the dependency between
two methods is defined as the number of attributes that are used in common by the two methods
divided by the total number of attributes used by the two methods. It is formally given by the
following equation:

d(mi, mj) =


|Ui ∩ Uj |
|Ui ∪ Uj |

iff |Ui ∪Uj| > 0,

0 Otherwise;
(1)

where Ui and Uj are the set of attributes used by method mi and mj, respectively.

The value of the dependency between two methods ranges from 0 to 1 where a value
of 0 means the two methods have no dependency (i.e., they do not use any attribute in
common) and a value of 1 means the two methods have full dependency (i.e., the two
methods use the same set of attributes).
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Definition 4 (Cohesion). As suggested in [43,44], the cohesion of a class is defined as the total
summation of the dependencies between each pair of methods in the class divided by the total number
of pairs of methods in the class. The cohesion is formally defined as follows:

cohesion(c) =


∑n−1

i=1 ∑n
j=i+1 d(mi ,mj)

n×(n−1)
2

iff n > 1,

0 Otherwise;
=


2×∑n−1

i=1 ∑n
j=i+1 d(mi ,mj)

n2−n iff n > 1,

0 Otherwise;
(2)

where
{

mi, mj
}
∈M(c) and n is the number of methods in the class c.

The range of cohesion(c) is within the closed interval [0,1]. The larger the value of
cohesion(c), the higher the cohesion and better the quality of the class and vice versa.

Definition 5 (Coupling). The coupling between two classes is defined as the summation of the
total dependencies between the methods of the first class and the methods of the second class divided
by the multiplication between the number of methods in the first class and the number of methods in
the second class. It is formally given as the following:

coupling(c1, c2) =
∑n

i=1 ∑k
j=1 d(xi, yj)

n× k
(3)

where xi ∈ M(c1) and yj ∈ M(c2); and n and k are the number of methods in the class c1 and c2,
respectively.

The value of coupling(c1, c2) falls within the closed interval [0,1]. The smaller the
value of coupling(c1, c2), the lower the coupling between the two classes and the better
the quality of the classes and vice versa.

Definition 6 (Combined value for the cohesion and coupling for a set of classes). The
combined value for the cohesion and coupling for a set of classes is defined as the value of the average
cohesion of the extracted classes minus the average coupling between the extracted classes. It is
formally defined as follows:

β(S) =

∑
p
i=1 cohesion(ci)

p −
2×∑

p−1
i=1 ∑

p
j=i+1 coupling(ci ,cj)

p2−p iff p > 1,

cohesion(ci) Otherwise;
(4)

where S = {c1, c2, . . . cp} is the set of the extracted classes and p is the number of classes in the set.

The value of β(S) is used to evaluate the overall quality (in terms of cohesion and
coupling) of the extracted classes suggested by the proposed approach. β(S) ranges from
−1 to +1. The larger the value of β(S), the better the overall quality of the extracted classes
because a large value of it indicates that the extracted classes have high cohesion and low
coupling between them which is the main goal of performing ECR. On the other hand, a
small value of β(S) indicates lower quality of the extracted classes because it means either
the extracted classes have low cohesion or have high coupling between them. Smaller
values of β(S) can result from performing ECR on a class that is highly cohesive (i.e., the
methods of the class have high dependencies between each other) because the extracted
classes may have higher cohesion than the original class, but they will have high coupling
between them. In such a case, it might be better to leave the class as is without performing
ECR. In addition, a small value of β(S) can occur when performing ECR on a class that has
very low or no dependencies between most of its methods because the extracted classes
will have low cohesion. For such a class, other types of refactoring might be more suitable
than ECR. The value of β(S) is used in the proposed approach to choose the set of classes
that can be extracted from the original class.
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3.2. The ECR Algorithms

The goal of ECR is to extract classes from the original class that have high cohesion
and low coupling between each other. Therefore, ECR can be considered as an optimization
problem in which the aim is to maximize the cohesion of the extracted classes while
minimizing the coupling between them as much as possible. To this aim, a greedy approach
is proposed to address the ECR problem. A greedy approach is an algorithmic technique
that can be used to tackle optimization problems. Although this technique is not always
guaranteed to find the optimal solution, it has been used to optimally solve a wide range
of optimization problems such as Huffman coding and fractional knapsack problems [36].
Greedy algorithms solve a problem by selecting the best (greedy) choice at the moment
that solves part of the problem and reduces its size without considering the final optimal
solution of the whole problem. Figure 1 gives a process overview of the proposed ECR
approach. The details of the process are better explained in Algorithm 1. The algorithm
takes as an input the class to undergo ECR and outputs a set of classes suggested to be
extracted from the input class. The algorithm initially takes each method in the input
class and put it into a separate class and adds all resulting classes into a set S. Then the
algorithm makes a greedy choice by merging the two classes in the set S that have the
highest coupling, (see Algorithm 2), compared to the coupling between any other two
classes in the set. This choice will reduce the size of the problem (i.e., |S|) by one. The
algorithm repeats the previous step until the size of the problem become 2 which means
there are only 2 classes in the set S. The algorithm stores the classes in the set S and their
β(S) value, see Equation (4), after each merger of two classes. The algorithm finally selects
the set of the classes that have the highest β(S) value as the suggested classes that can
be extracted from the input class. To avoid the extraction of small classes that have only
one method, the algorithm merges any class in the selected set that has only one method
with another class with which the resulting class will have the highest β(S) value (see
Algorithm 3).

Figure 1. Process overview of the proposed ECR approach.
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Algorithm 1: extractClassRefactoring(A)
Input: the class A to undergo ECR
Output: a set of suggested classes to be extracted from the input class.

1 begin
2 S = { };
3 SuggestedExtractedClasses = [ ]; // a list of sets. Each set contains different

classes that can be extracted from the input class.
4 β = [ ]; // a list of float values. The value in β[i] is the value of

β(SuggestedExtractedClasses[i]), see Equation (4).
5 Extract each method in the input class A into a separate class and add the class

to the set S; // the number of classes in the set S will be equal to the number
of methods in the input class A.

6 while |S| > 2 do
7 S = mergeTwoClasses(S); // a greedy choice, see Algorithm 2.
8 add the current classes in S to the list SuggestedExtractedClasses;
9 add β(S) to the list β; // see Equation (4).

10 end
11 max = −∞;
12 j = 1;
13 for i = 1 to the length of the list β do
14 if β[i] ≥ max then
15 max = β[i];
16 j = i;
17 end
18 end
19 return mergeSmallExtractedClasses(SuggestedExtractedClasses[j]); //see

Algorithm 3.
20 end

Algorithm 2: mergeTwoClasses(S)
Input: a set of classes.
Output: the input set after merging two classes.

1 begin
2 max = −∞;
3 mergedClasses = {};
4 for each unordered pair of classes {ci, cj} ∈ S do
5 if coupling(ci, cj) ≥ max then
6 mergedClasses = {ci, cj};
7 max = coupling(ci, cj);
8 end
9 end

10 merge the two classes in the set mergedClasses into one class R;
11 add R to S;
12 return S−mergedClasses; //remove the merged classes from S.
13 end
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Algorithm 3: mergeSmallExtractedClasses(S)
Input: a set of classes.
Output: the input set after merging small classes.

1 begin
2 max = −∞;
3 mergedClasses = {};
4 for each class ci ∈ S such that |M(ci)| < 2 do
5 for each class cj ∈ S−{ci} do
6 merge the two classes {ci, cj} into one temporary class t;
7 if β(S∪{t} − {ci, cj}) ≥ max then
8 mergedClasses = {ci, cj};
9 max =β(S∪{t} − {ci, cj});

10 end
11 end
12 merge the two classes in the set mergedClasses into one class R;
13 add R to S;
14 max = −∞;
15 end
16 return S−mergedClasses; //remove the merged classes from S.
17 end

3.3. Worked Example

This section presents an example for the purpose of illustrating how the proposed
ECR technique is used. In this example, the proposed technique is applied to a hypothetical
class consisting of 10 methods and 12 attributes. Table 1 shows the methods-by-attributes
Z matrix that models the hypothetical class where the rows of the matrix represent the
methods of the class and the columns represent the attributes of the class. The value of the
entry Z[i][j] shows whether the method i uses the attribute j where a value of 1 means the
method i uses the attribute j and a value of 0 means the method i does not use the attribute
j. The dependency between each pair of methods in the class is modeled as a weighted
undirected graph (Figure 2) where the nodes of the graph represent the methods of the
class and the weights of the edges of the graph represent the dependencies between the
methods of the class. The missing edges between nodes mean the methods represented by
the nodes have 0 dependencies. The dependency between the two methods is calculated
using Equation (1). For example, the weight of the edge{m1, m3} is equal to 0.4, which is
coming from calculating the dependency between the two methods as follows:

d(m1, m3) =
|U1 ∩U3|
|U1 ∪U3|

=
2
5
= 0.4

where U1 and U2 are extracted from the matrix Z:

U1 = {a1, a2, a3, a9}

U3 = {a1, a2, a4}

Figure 3 shows colored graphs that represent the classes in the set S during the
execution of the proposed ECR algorithm (see Algorithm 1). Each color represents a
separate class and methods (nodes) that have the same color belong to the same class. The
value of β(S) is given under each graph. Part (A) of Figure 3 shows the classes in the set S
after executing lines from 2 to 5 in Algorithm 1. As it can be seen, each method belongs
to a different class (i.e., each method has a different color) after executing line 5 of the
algorithm. Parts (B) to (I) in Figure 3 represent the classes in S after each time two classes
in the set are merged into one class which is implemented in lines 6 to 10 of the algorithm.
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Finally, and after the execution of lines 11 to 19, the algorithm suggests the set of classes
represented in the colored graph depicted in part (H) of Figure 3 to be extracted from the
input hypothetical class because they have the highest β(S) value (i.e., 0.33) compared to
the other sets of classes. The suggested extracted classes are the following:

c1 = {m1, m2, m3, m4}

c2 = {m5, m6, m7}

c3 = {m8, m9, m10}

The cohesion of c1, c2, and c3 are 0.31, 0.47, and 0.47, respectively, whereas the cohesion
of input class is 0.17. As it can be noticed the cohesion of the extracted classes improved
significantly compared to the cohesion of the input class and most importantly the β(S)
value of the set of the extracted classes is larger than β (the cohesion) of the input class. Thus,
it can be claimed that the extracted classes have better overall quality than the input class.

Table 1. The methods-by-attributes matrix that represents the hypothetical class in the worked example.

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

m1 1 1 1 0 0 0 0 0 1 0 0 0
m2 1 0 1 1 0 1 0 0 0 0 0 1
m3 1 1 0 1 0 0 0 0 0 0 0 0
m4 1 1 0 0 0 0 1 0 0 1 0 0
m5 0 0 0 0 1 1 0 1 0 0 0 0
m6 0 0 1 0 1 0 1 1 0 0 1 0
m7 0 0 0 0 1 0 0 1 0 0 0 0
m8 0 0 0 0 0 0 0 0 1 1 1 1
m9 0 1 0 0 0 0 0 0 1 0 1 0
m10 0 0 1 0 0 0 0 0 1 0 1 1

Figure 2. The graph shows the dependency between each pair of methods in the hypothetical classes
used in the worked example.
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Figure 3. A colored graph that shows the classes in the set S during the implementation of the
proposed ECR algorithm.

4. Empirical Evaluation

This section presents an empirical evaluation of the proposed approach based on Blobs
taken from two real systems.

4.1. Research Questions and Planning

The purpose of this evaluation is to show that applying the proposed approach to real
Blobs will extract from the Blobs classes with better overall quality and to show that the
proposed approach (which considers both cohesion and coupling) can suggest refactoring
solutions with better overall quality than the solutions suggested by considering only the
cohesion. For this purpose, the following two research questions are defined:

• RQ1. When applied on real Blobs, does the proposed approach extract classes with
better overall quality than the quality of the Blobs?

• RQ2. Can the refactoring solutions suggested by considering both the cohesion and
coupling have better overall than the refactoring solutions suggested by considering
only the cohesion?

To answer RQ1, the proposed approach is first applied on each considered Blob. Then
the combined value for the cohesion and coupling for the set of classes extracted by the
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proposed approach (i.e., β value, see Equation (4)) is compared with the β of the Blobs
where β for a Blob is equal to the cohesion of the Blob according to Equation (4) as the
combined value for the cohesion and coupling for a set of classes that has only one class
(which is the Blob in our case) equals to the cohesion of the class. It is expected that the
proposed approach will extract classes with higher β values compared to the β values of
the input Blobs.

To answer RQ2, the β value of the extracted classes suggested by the proposed ap-
proach is compared with the β value of the extracted classes suggested by a variation
of the proposed approach that only considers the cohesion when choosing the set of the
classes to be extracted from a Blob and when merging the small classes. Specifically, the
variation of the proposed approach results from altering Algorithms 1 and 3, such that the
average cohesion (see Equation (2)) of the extracted classes is used instead of the β value of
the extracted classes (see Algorithms 4 and 5). Algorithm 2 is not altered in the variation
approach because β is not used in the algorithm.

Algorithm 4: variationOfExtractClassRefactoring(A)//a variation of Algorithm 1.
It considers the average cohesion instead of β

Input: the class A to undergo ECR
Output: a set of suggested classes to be extracted from the input class.

1 begin
2 S = { };
3 SuggestedExtractedClasses = [ ]; // a list of sets. Each set contains different

classes that can be extracted from the input class.
4 averageCohesion = [ ]; // a list of float values. The value in

averageCohesion[i] is the value of the average cohesion for the classes in
SuggestedExtractedClasses[i], see Equation (2).

5 Extract each method in the input class A into a separate class and add the class
to the set S; // the number of classes in the set S will be equal to the number
of methods in the input class A.

6 while |S| > 2 do
7 S = mergeTwoClasses(S); // a greedy choice, see Algorithm 2.
8 add the current classes in S to the list SuggestedExtractedClasses;
9 add the average cohesion of the classes in S to the list averageCohesion; //

see Equation 2.
10 end
11 max = −∞;
12 j = 1;
13 for i = 1 to the length of the list averageCohesion do
14 if averageCohesion[i] ≥ max then
15 max = averageCohesion[i];
16 j = i;
17 end
18 end
19 return variationOfMergeSmallExtractedClasses(SuggestedExtractedClasses[j]);

//see Algorithm 5.
20 end
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Algorithm 5: variationOfMergeSmallExtractedClasses(S)//a variation of Algo-
rithm 3. It considers the average cohesion instead of β.

Input: a set of classes.
Output: the input set after merging small classes.

1 begin
2 max = −∞;
3 mergedClasses = {};
4 for each class ci ∈ S such that |M(ci)| < 2 do
5 for each class cj ∈ S−{ci} do
6 merge the two classes {ci, cj} into one temporary class t;
7 if average cohesion of the classes in (S∪{t} − {ci, cj}) ≥ max then
8 mergedClasses = {ci, cj};
9 max = average cohesion of the classes in(S∪{t} − {ci, cj});

10 end
11 end
12 merge the two classes in the set mergedClasses into one class R;
13 add R to S;
14 max = −∞;
15 end
16 return S−mergedClasses; //remove the merged classes from S.
17 end

4.2. Considered Blobs

The considered classes (i.e., Blobs) were taken from Xerces2 (Xerces-J 2.12.0) [45]
and GanttProject (ganttproject-1.10.2) [46] systems. Both systems are open-source object-
oriented systems implemented in Java. Xerces2 is a library that can be used in Java systems
to parse, validate, and manipulate XML elements. GanttProject is a management project
tool that can be used to manage small to medium projects. The tool provides support
for different project management activities such as task scheduling and resource loading.
Tables 2 and 3 provide information about the used classes including the fully qualified
names, number of methods, and number of lines of code (LOC). The fully qualified name of
a class shows the packages to which the class belongs. The number of methods reported in
Tables 2 and 3 includes the constructors, setters, and getters of the considered classes. LOC
given in the two tables counts all the lines in the source code files of the classes including the
comments and empty lines. The considered classes were chosen in this empirical evaluation
because they have been classified as Blobs and have been used in several empirical studies
in the literature (e.g., [11,12,38]).

Table 2. The considered Blobs from Xerces2.

Fully Qualified Name of the Class Number of Methods LOC

org.apache.xerces.dom.DeferredDocumentImpl 80 2155
org.apache.xerces.xinclude.XIncludeHandler 117 3102
org.apache.xerces.dom.CoreDocumentImpl 129 2815
org.apache.xerces.parsers.AbstractDOMParser 46 2656
org.apache.xerces.dom.DOMNormalizer 32 2101
org.apache.xml.serialize.BaseMarkupSerializer 64 1850
org.apache.xerces.jaxp.datatype.DurationImpl 48 1868
org.apache.xerces.parsers.AbstractSAXParser 52 2401
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Table 3. The considered Blobs from GanttProject.

Fully Qualified Name of the Class Number of Methods LOC

net.sourceforge.ganttproject.gui.GanttTaskPropertiesBean 28 919
net.sourceforge.ganttproject.GanttTree 49 1848
net.sourceforge.ganttproject.GanttProject 92 2727
net.sourceforge.ganttproject.GanttGraphicArea 44 2459
net.sourceforge.ganttproject.ResourceLoadGraphicArea 30 1258

4.3. Tools

Two tools were developed to automatically apply the proposed approach and its
variation on the considered Blobs. The first tool was implemented in Java based on
JavaParser [47]. The Java tool takes as an input the source code file of a Blob and outputs a
methods-by-attributes matrix (similar to the matrix given in Table 1) that represents the
Blob. The second tool was developed using Python 3. The Python tool takes as an input
the methods-by-attributes matrix resulting from the Java tool and applies the proposed
approach and its variation on the matrix. The output of the Python tool is disjoint sets of
methods where each set represents an extracted class from the input Blob.

4.4. Results and Discussion

The proposed approach and its variation were applied on the considered Blobs. Con-
structors, setters, and getters were excluded from the Blobs before the application of the
proposed approach. Constructors are special methods used to instantiate objects from
classes, and they were removed because they usually use all the attributes of the class
which means they will have a dependency with each method that accesses an attribute in
the class. Similarly, the setters and getters are special methods in the class used to change
and get the values of the attributes. They were removed from the Blobs because usually
each setter and getter accesses only one attribute in the class meaning that they will not
have a dependency with other setters and getters in the class. In addition, methods that do
not access any attribute in the class were removed because they will have no dependency
with other methods in the class. These methods were removed because the proposed
approach conducts the refactoring based on the cohesion and coupling which are calculated
in the approach based on one kind of dependency between the methods of the class (i.e.,
the structural dependency resulted from accessing common attributes, see Equation (1)).
The setters and getters constitute most of the removed methods. Direct and indirect access
to attributes by methods were considered when identifying the set of attributes accessed by
the methods of the class. A method directly accesses an attribute if the attribute appears
in the body of the method (i.e., the piece of code that implements the method). On the
other hand, a method indirectly accesses an attribute if the attribute appears in the body of
another method that is directly or indirectly called by the method.

Tables 4 and 5 show the number considered methods (NCM) and the β value of each
Blob before refactoring where the β value for one class is equal to the cohesion of the
class. In addition, the two tables show the number of extracted classes (NEC), the number
of methods (NM) in each extracted class, the β value, and the average cohesion (Ave.
Cohesion) of the extracted classes after the application of the proposed ECR approach. For
instance, results in Table 4 show that NCM in the Blob DeferredDocumentImpl is 34 and
the β value of the Blob before refactoring is 0.44. The proposed approach suggests 3 classes
to be extracted from the Blob DeferredDocumentImpl. The number of methods (NM) in
the first, second, and third extracted classes are 27, 4, and 3, respectively. The number of
extracted classes suggested by the proposed approach varies from one Blob to another.
For some Blobs (e.g., XIncludeHandler), the number of suggested extracted classes is high
compared to the other Blobs. The reasons behind this are that these Blobs have high NCM
and low cohesion because most of their considered methods have 0 or low dependency
between each other.
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Answering RQ1: The results reported in Tables 4 and 5 show that the β value (which
reflects the overall quality in terms of cohesion and coupling) of the extracted classes are
higher than the β value of the Blobs. In addition, the average cohesion of the extracted
classes is higher than the cohesion of the original Blobs. Therefore, it can be stated that
the proposed approach extract classes from real Blobs with better overall quality than the
quality of the Blobs.

Answering RQ2: Tables 6 and 7 show the refactoring solutions resulting from the
application of the variation approach (that considers only the cohesion) on the considered
Blobs. As it can be seen, the refactoring solutions in Table 6 and 7 for some Blobs are different
than the refactoring solutions suggested by the proposed approach (given in Tables 4 and 5).
For a case, the proposed approach suggests partitioning the Blob DeferredDocumentImpl
into three classes (i.e., the extracted classes) whereas the variation approach suggests
partitioning the Blob into 4 classes. Although the average cohesion of the extracted classes
suggested by the variation approach is higher in the case of DeferredDocumentImpl than
the average cohesion of the extracted classes suggested by the proposed approach, the β
value (which indicates the overall quality in terms of cohesion and coupling) of the extracted
classes suggested by the variation approach is lower than the β value of the extracted classes
suggested by the proposed approach. Thus, it can be claimed that the extracted classes
suggested by the proposed approach for the Blob DeferredDocumentImpl have better
overall quality than the classes suggested by the variation approach. In other cases, (e.g.,
the case of XIncludeHandler and GanttProject) the extracted classes suggested by the
proposed approach have higher average cohesion than the extracted classes suggested by
the variation approach. Most importantly, when comparing all the refactoring solutions
of proposed approach that are different than the refactoring solutions of the variation
approach, the β values of the extracted classes suggested by the proposed approach are
higher than the β values of the extracted classes suggested by the variation approach.
Based on these observations, it can be stated that considering both the cohesion and
coupling during ECR can extract classes with better overall quality than considering only
the cohesion.

Comparing the results with literature: Tables 8 and 9 compare the results of the
proposed approach with the results published in [12] based on the number NEC and the
average value of LCOM2 of the extracted classes for the considered Blobs from Xerces2 and
GanttProject, respectively. The reason why the results of this study are compared with the
results in [12] is that the Blobs used in this study were also used in the empirical evaluation
in [12]. In addition, the study in [12] is well-known in the literature and is highly cited.
LCOM2 is an inverse cohesion metric that measures the lack of cohesion for a given class. It
is calculated by subtracting the number of method pairs in the class that does not share any
attribute from the number of method pairs that share at least one attribute. If the result of
the subtraction is negative, then the value of LCOM2 is set to 0. Thus, the value of LCOM2
ranges from 0 to +∞ where a smaller value of LCOM2 indicates better quality in terms
of cohesion and vice versa. LCOM2 was selected as a criterion of comparison because
the LCOM2 was reported for the extracted classes suggested by the approach in [12]. In
addition, the metric has been used as a quality indicator in many empirical studies in the
literature. The Python tool (see Section 4.3) that implements the proposed ECR approach
was extended to calculate the average of LCOM2 of the extracted classes suggested by
the proposed approach. The average of LCOM2 of the extracted classes suggested by the
approach in [12] was calculated manually based on results reported in [12]. For example,
the average of LCOM2 of the extracted classes suggested by the approach in [12] from the
Blob DeferredDocumentImpl is 20.5 because the approach extracted two classes from the
Blob with LCOM2 values of 0 and 41 as reported in [12]. It can be seen from the results
given in Tables 8 and 9 that the proposed approach suggests to extract higher number of
classes that have smaller average of LCOM2 compared to the approach in [12]. There are
two main reasons behind this. First, the proposed approach considers only one type of
dependency between the methods which is the structural dependency (see Equation (1))
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that exists between two methods when they share common attributes. The same type
of dependency is used in LCOM2 as the metric calculates the cohesion of a class based
on the dependency resulting from sharing at least one common attribute between the
methods of the class. On the other hand, the approach in [12] considers structural and
semantic dependency between the methods of the class. Thus, the approach in [12] may
suggest extracting a class with methods that are semantically dependent on each other
but they do not share any attribute. Such a class would have a high value of LCOM2 and
would be considered poorly cohesive when evaluated using LCOM2 as a quality indicator.
The second reason is that the proposed approach excludes the setters and getters, and
the methods that do not access any attributes in the class which was not excluded in the
approach in [12]. LCOM2 is badly affected by these methods because they usually will not
share attributes with most of the methods in the class which will lead to higher values of the
metric. A further note regarding the semantic dependency, it is challenging to calculate the
semantic dependency between the methods of the class automatically. It was calculated in
the approach in [12] using the Latent Semantic Indexing based on the text-similarity of the
methods. A major drawback of this approach is that the semantic similarity or dependency
between the methods is greatly affected by the volume of the text (e.g., comments) in the
methods and by the naming convention which varies from one programmer to another.
This drawback may lead to poor refactoring solutions when considering the semantic
dependency in ECR.

Table 4. The ECR solutions suggested by the proposed approach for the Blobs from Xerces2.

Pre-Refactoring Post-Refactoring

Class NCM β NEC NM β Ave. Cohesion

DeferredDocumentImpl 34 0.44 3 27, 4, 3 0.77 0.80
XIncludeHandler 77 0.1 13 15, 10, 8, 8, 5, 5, 4, 4, 4,

4, 4, 3, 3
0.5 0.55

CoreDocumentImpl 40 0.17 7 14, 8, 5, 4, 3, 3, 3 0.71 0.84
AbstractDOMParser 34 0.21 3 19, 12, 3 0.32 0.43
DOMNormalizer 16 0.16 3 5, 4, 7 0.52 0.55
BaseMarkupSerializer 50 0.24 10 8, 8, 6, 5, 4, 4, 4, 4, 4, 3 0.57 0.80
DurationImpl 22 0.33 3 13, 6, 3 0.66 0.73
AbstractSAXParser 30 0.15 6 12, 5, 4, 3, 3, 3 0.61 0.68

Table 5. The ECR solutions suggested by the proposed approach for the Blobs from GanttProject.

Pre-Refactoring Post-Refactoring

Class NCM β NEC NM β Ave. Cohesion

GanttTaskPropertiesBean 12 0.08 2 9, 3 0.20 0.26
GanttTree 23 0.28 4 8, 7, 5, 3 0.36 0.57
GanttProject 52 0.35 5 20, 12, 9, 8, 3 0.38 0.62
GanttGraphicArea 26 0.20 4 10, 10, 3, 3 0.36 0.49
ResourceLoadGraphicArea 17 0.17 3 10, 4, 3 0.35 0.39
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Table 6. The ECR solutions suggested by the variation approach (which only considers the cohesion)
for the Blobs from Xerces2.

Class NEC NM β Ave. Cohesion

DeferredDocumentImpl 4 24, 4, 3, 3 0.72 0.82
XIncludeHandler 14 15, 10, 8, 5, 5, 4, 4, 4, 4, 4, 4, 4, 3, 3 0.47 0.52
CoreDocumentImpl 8 13, 6, 4, 4, 4, 3, 3, 3 0.66 0.84
AbstractDOMParser 3 19, 12, 3 0.32 0.43
DOMNormalizer 4 5, 5, 6 0.46 0.49
BaseMarkupSerializer 10 8, 8, 6, 5, 4, 4, 4, 4, 4, 3 0.57 0.80
DurationImpl 2 19, 3 0.63 0.70
AbstractSAXParser 6 12, 5, 4, 3, 3, 3 0.61 0.68

Table 7. The ECR solutions suggested by the variation approach (which only considers the cohesion)
for the Blobs from GanttProject.

Class NEC NM β Ave. Cohesion

GanttTaskPropertiesBean 2 9, 3 0.20 0.26
GanttTree 4 8, 7, 5, 3 0.36 0.57
GanttProject 6 17, 9, 9, 8, 6, 3 0.35 0.58
GanttGraphicArea 4 13, 6, 4, 3 0.36 0.53
ResourceLoadGraphicArea 3 10, 4, 3 0.35 0.39

Table 8. Comparison between the ECR solutions suggested by the proposed approach and the ECR
solutions suggested by the approach given in [12] for the Blobs from Xerces2.

The Proposed Approach The Approach Given in [12]

Class NEC Ave. LCOM2 NEC Ave. LCOM2

DeferredDocumentImpl 3 0 2 20.5
XIncludeHandler 13 2 4 223.75
CoreDocumentImpl 7 8.71 3 1218.33
AbstractDOMParser 3 0 2 0
DOMNormalizer 3 1.5 2 108
BaseMarkupSerializer 10 0 2 192.5
DurationImpl 3 1 2 283
AbstractSAXParser 6 1.67 2 24.5

Table 9. Comparison between the ECR solutions suggested by the proposed approach and the ECR
solutions suggested by the approach given in [12] for the Blobs from GanttProject.

The Proposed Approach The Approach Given in [12]

Class NEC Ave. LCOM2 NEC Ave. LCOM2

GanttTaskPropertiesBean 2 0 2 28
GanttTree 4 0.5 2 254
GanttProject 5 0 3 411
GanttGraphicArea 4 5.75 2 257.5
ResourceLoadGraphicArea 3 1.33 2 104.5

4.5. Threats to Validity

Several issues may pose threats to the validity of this empirical evaluation and limit
the generality of its reported results. The first issue is that the sets of attributes accessed
by methods were extracted automatically from the source code of the considered Blobs
using a Java tool develop based on JavaParser [47]. These sets were not manually validated
for all the methods of each Blob. However, two methods from each Blob were randomly
selected, and the sets of their accessed attributes extracted by the Java tool were manually
validated and they were found to be correct. In addition, the Java tool used in this study is
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an extension of a tool that was developed in [41] and extensively tested to automatically
calculate a set of cohesion metrics from the source code of a set of Java projects consisting
of a large number of classes.

The second issue that may cause a threat to the validity of this empirical evaluation is
the removal of the methods that do not access any of the attributes of the Blobs. Although
it might seem to be a bad design, a class can have methods that implement some features
of the class without accessing the local attributes of the class such as the methods that
implement user interface functionality [48]. Nevertheless, including them in this study
could have affected the results of the proposed approach because the cohesion and coupling
were measured in the proposed approach based on the dependency resulting from sharing
common attributes by the methods of the class. Each of these methods would end up
alone in a separate extracted class after the execution of Algorithm1 1. Then they would
be merged with other extracted classes with which they have 0 dependencies after the
execution of Algorithm 3 to avoid the extraction of small classes which would decrease
the average cohesion and the overall quality of the extracted classes. This issue can be
mitigated by considering conceptual (or semantic) dependency between the methods of
the class (which is out of the scope of this study) besides the dependency considered in the
proposed approach.

The last issue is that the refactoring solutions suggested by the proposed approach and
its variation were not evaluated by software practitioners. Although the extracted classes
from the considered Blobs were evaluated based on the cohesion and coupling and were
shown to have better overall qualities than the original Blobs, these refactoring solutions
might not be useful to some software practitioners. However, the literature has proven the
importance of the cohesion and coupling and how they have an impact on other quality
characteristics that are important in the software industry such as maintainability and
testability. In addition, many of the refactoring approaches that were previously introduced
in the literature have been evaluated using cohesion and coupling metrics.

5. Conclusions and Future Work

ECR improves the software quality, but it takes much time and effort when carried
out manually. This paper introduced a novel ECR approach that automatically suggests a
set of classes to be extracted from a large class. The proposed approach considers ECR as
an optimization problem that should be solved by striking a balance between the cohesion
and coupling of the extracted classes to avoid the extraction of classes with tight coupling
or loose cohesion. Therefore, a new combined measure of the cohesion and coupling for
a set of classes that can be extracted from a large class was defined in the paper for the
purpose of evaluating the overall quality of the extracted classes in terms of their cohesion
and coupling. The novelty of the proposed approach lies in using the combined measure of
the cohesion and coupling to identify the set of the classes to be extracted from the large
class in question. An empirical evaluation was conducted to assess the performance of the
proposed approach based on real Blobs taken from two open-source Java systems. The
findings of the empirical evaluation showed the following: (1) The proposed approach
was able to extract classes from the Blobs with better overall quality than the original
Blobs. (2) Considering the combined measure of the cohesion and coupling in the proposed
approach is better than considering only the cohesion with respect to the overall quality
of extracted classes in terms of the cohesion and coupling. This is an important finding
because most of the existing ECR approaches in the literature aimed to improve only the
cohesion of extracted classes without paying attention to the coupling between them. (3)
The proposed approach extracted classes that have a lower average of LCOM2 compared to
the results of a well-known study in the literature where lower values of LCOM2 indicate
better quality.

The cohesion and coupling of the classes were measured in the proposed approach
based only on the structural dependency between the methods which occurs between the
methods when they share attributes. A future study can extend the proposed approach by



Computers 2022, 11, 123 19 of 21

considering the semantic (or conceptual) dependency between the methods of the classes
when measuring cohesion and coupling. Methods of the class can be semantically related
to each other even if they do not share attributes. The semantic dependency between the
methods can be calculated using information retrieval techniques such as Latent Semantic
Indexing. In addition, ECR is considered to be an optimization problem. Thus, further
research should be conducted in future to try to identify optimal solutions for the problem
using algorithmic techniques such as dynamic programming and linear programming.
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NCM number considered methods
NM number of methods
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