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Abstract: The application of machine learning (ML) has made an unprecedented change in the field
of medicine, showing a significant potential to automate tasks and to achieve objectives that are
closer to human cognitive capabilities. Human gait, in particular, is a series of continuous metabolic
interactions specific for humans. The need for an intelligent recognition of dynamic changes of gait
enables physicians in clinical practice to early identify impaired gait and to reach proper decision
making. Because of the underlying complexity of the biological system, it can be difficult to create an
accurate detection and analysis of imbalanced gait. This paper proposes a novel Criticality Analysis
(CA) methodology as a feasible method to extract the dynamic interactions involved in human
gait. This allows a useful scale-free representation of multivariate dynamic data in a nonlinear
representation space. To quantify the effectiveness of the CA methodology, a Support Vector Machine
(SVM) algorithm is implemented in order to identify the nonlinear relationships and high-order
interactions between multiple gait data variables. The gait features extracted from the CA method
were used for training and testing the SVM algorithm. The simulation results of this paper show
that the implemented SVM model with the support of the CA method increases the accuracy and
enhances the efficiency of gait analysis to extremely high levels. Therefore, it can perform as a robust
classification tool for detection of dynamic disturbances of biological data patterns and creates a
tremendous opportunity for clinical diagnosis and rehabilitation.

Keywords: human gait; criticality analysis; support vector machine

1. Introduction

The human gait is a central feature for humans [1], consisting of structured spatiotem-
poral interacting states that readily generate from variations in its dynamic initial state
as a result of being externally or internally perturbed. When medical professionals want
to obtain a rough estimate of the behaviour of human gait for better diagnosis, they just
ask their patients to walk through for several steps and monitor the pattern of their walk.
With this simple clinical examination, they can obtain valuable information from the way
the person walks, which can help them detect the gait disturbances caused by casual defi-
ciencies, such as dystonia, tremor, gait disorder, or other abnormal movement involved in
the functional neurological system. These continuous disturbing interactions of gait have
an impact on the global stability state of the biosystem. When the biosystem is exposed
to such perturbation events, it exhibits an extreme sensitivity to its initial conditions and
causes its behaviour to diverge exponentially from that of the unperturbed system and to
operate in a chaotic behaviour that might be difficult to control. This opens the thinking
horizons on how to control this chaos, which acts as external perturbations to the main
biosystem, in order to maintain the global stability state to its overall function. How can
these these external disturbances possibly be useful to detect abnormality in the motor
system of human gait? This is what this paper aims at answering.
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To begin with, it is imperative to understand the biological system function in terms
of such a mathematical model, but unfortunately, some simplified or reduced models
represented by a set of ordinary differential equations in the time domain prove to not suf-
ficiently comprise the required complexity to characterise how the control mechanism that
is responsible for translating the network behaviour into spatial outcomes in a biological
system maintains global stable and controlled states. Regardless of the used representative
biological model, the Rate Control of Chaos (RCC) [2] is considered as a robust bio-inspired
metabolic feedback control mechanism that allows small perturbations to grow exponen-
tially to perturb the biosystem, allowing it to stabilise any of the unstable periodic states
that are involved inherently in it. The unstable periodic chaotic response, for example, can
be suitably stabilised into a stabilised controlled periodic of oscillations by perturbing the
operating conditions of the biosystem itself. Controlling the spatiotemporal changes or
disturbances of gait patterns, on a smaller scale, requires tuning the biosystem parameters
in both time and space. One of the best advantages of using the RCC concept is that it can
be applied without prior knowledge of a specific mechanism of the biosystem but requires
some instantaneous knowledge of some of the variables of the perturbed system, unlike
the other control methods that require an accurate model to describe the biosystem in order
to retain it into a stabilisation mode.

In this way, it is always possible, depending on the degree of applied disturbances,
to guide chaotic gait disturbances into different nonlinear oscillatory controlled stable
orbits. The interrelation between the biosystem perturbations and the amplitude of con-
trolled chaotic orbits shows power-law and exponential relations. This also provides a
structured representation at the edge of chaos of various biological properties such as those
interconnected with the motor system of human gait, which can remotely reflect deep
understanding of the underlying complex processes and their corresponding functionali-
ties. This is what the proposed methodology of the Criticality Analysis (CA) does in this
research paper. The CA technique allows nonlinear representation of the extracted human
gait features that perturbed the biological function and accommodates them into a reduced
lower-dimensional space. With the help of machine learning classification and categorisa-
tion models, it is possible to detect these disturbances of human gait. Due to the dynamics
and nonlinearity of CA extracted features, a supervised machine learning algorithm based
on the kernalised property of the Support Vector Machine (SVM) is implemented. The CA
methodology interestingly proves its ability as a beneficial automation tool in the early
diagnosis and detection of various pathological gait disorders and other unknown diseases
associated with the biosystem.

The paper is organised as follows: Section 2 includes a description of human gait as
a biological control system. In Section 3, the mathematical modelling of human gait is
presented. Section 4 outlines the CA from machine learning perspectives and highlights
the state-of-the-art work related to the SVM theory. In Section 5, the methodology of our
MoRES dataset is discussed, including data collection, data analysis and feature extraction,
criticality analysis as a data representation tool, the statistical analysis, the spatiotemporal
analysis, the histogram analysis of CA data, and the SVM implementation mechanism that
is followed by the confusion matrix as a performance measure. Section 6 discusses the ex-
perimental results of the MoRES dataset, focusing on the Receiver Operating Characteristic
(ROC) Curve and the Area Under the Curve (AUC) as the most indicative performance
measure metrics. Section 7 reflects on the experimental results obtained in Section 6. Lastly,
Section 8 concludes the main findings of this research paper.

2. Human Gait as a Critical Control System

The motor system in humans, which is partially a subset of the global biosystem, is
biologically complex, and no mathematical models are available to accurately describe its
dynamics in both time and space domains. When such a disturbance occurs to a normal
gait, the entire dynamic state of the biosystem chaotically drifts to a more critical state due
to an excessive increase in the biosystem kinetic energy, and the behaviour may exhibit near
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power-law and exponential relations. The interactions of the biosystem function within
these disturbances create a very complex phenomenon, which thereby can be monitored just
as the concentration of metabolic reactions in the biosystem was observed. The fluctuations
in dynamics of the biosystem, which can hardly be interpreted as the nonlinear mechanism
of local control of the motor system, can be controlled, but it also needs to be analytically
modelled. The RCC method, which is proven recently as a robust technique to stabilise
the nonlinear chaotic disturbance of a dynamic system, regulates the evolution rate of a
nonlinear system such that the exponential growth of such an unstable chaotic oscillator
is controlled into stable trajectories. The control is established using the rate of growth of
some of the variables in proportion to the total embedded phase space of those variables.
This is then used as an input variable to an exponential control function, which allows the
rate of change of the variable to be controlled to accelerate or decelerate. When there is
no control applied or the system is not exponentially changing, the proportional rate of
change is unity.

Inspired by the traditional biochemical enzyme control concept that adjusts the reac-
tion control [3], the RCC method is considered as a novel technique that can control the
disturbances caused to the biosystem that could affect the other biological functions.

Controlling the reaction rate of biochemical reactions on the basis of the local infor-
mation allows the biosystem to operate under a broad spectrum of certain conditions.
This certainly can be extended further to control spatiotemporal chaos to achieve stability,
such as the underlying dynamics of human gait. The stability of the overall biosystem
trajectories must meet the Lyapunov stability, such that the biosystem can return to its
equilibrium region of its phase space-controlled dynamics. The RCC has the ability to
restore the perturbed biosystem to its normal stable state by applying localised control
to some of its variables; however, it does not entirely suppress the underlying nonlinear
behaviour of the biosystem, as it still contains some nonlinear properties, enabling it to
respond to perturbations, and it can be less chaotic. Therefore, the RCC method does
not eliminate entirely the chaotic properties of the underlying nonlinear system, but it
applies limited localised control to the system to maintain an apparently stable system. The
controlled system still has many properties of the nonlinear system, which can respond
nonlinearly to weakly chaotic perturbations.

3. Mathematical Modelling of Human Gait

In this paper, the nonlinear biochemical enzyme control model by Berry [3] is being
extended to describe the human gait function and the effect of its disturbance to the
overall biosystem. Using the RCC method, the model, described by (4)–(7), has been
proven to be controllable. The model applied a control to allow the stabilisation of the
external perturbations to the motor system by calibrating the amount of enzyme taken
into consideration for the concentration amount of one of the variables f . This model
represents the control process of two enzymes that governs the formation of extracellular
matrix m from soluble filaments f . The proteinase p alters the matrix into filaments, and
the transglutaminase g brings back the filaments into matrix. The extracellular matrix
m is generated by adjacent cells rim at a constant rate, and each protein breaks down in
catalytic processes proportional to p. The bifurcation parameter rim acts as an external
turbulent input to the control model, for which the biosystem loses its stability and resides
in a chaotic state. The RCC is defined by the soluble filaments f given in (1) and the rate of
change of the production of both enzymes p and g, which are described in (2) and (3). The
output of this controlled model is described as a time series of the main varying parameters
f and m or as a phase space plot, where f (x-axis) and m (y-axis).

δ f =
f

f + η f
(1)

Θp(δ f ) = fpe(ξpδ f ) (2)
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Θg(δ f ) = fge(ξgδ f ) (3)

dm
dt

= kg
f g

KG + f
− mp

1 + m
+ rim (4)

d f
dt

= −kg
f g

KG + f
+

mp
1 + m

− f p
1 + f

(5)

dp
dt

= Θp(δ f )γ
f n

KR
n + f n − ka p2 (6)

dg
dt

= Θg(δ f )β
f l

KS
l + f l

− kdeg
gp

Kdeg + g
(7)

The extended Berry model parameters are as follows: γ = 0.026, β = 0.00075, KR = 4.5,

KS = 1, KG = 0.1, Kdeg = 1.1, kg = kdeg = 0.05, ka =
kdeg
Kdeg

= 0.0455, and the Hill numbers
n = l = 4. The rim bifurcation parameter exhibits a wide spectrum of dynamic behaviours,
including periodic stable limited cycles, bistability, and chaos. This parameter remains
constant for all oscillators within the chaotic domain. In this extended model, an external
input used as perturbations is applied to this rim parameter as presented in (8). This
parameter links different oscillators together by using a relative scale contribution from all
other oscillators. In addition, the RCC control parameters shown in (1)–(3) ( fp = fg = 1,
ξp = ξg = −1, and η f = 2) remain constant throughout the experiment simulations in this
paper, although they can have different values that enable the local oscillator to change its
oscillatory orbits.

rim
i =

n

∑
j=1,j 6=i

wjmj + ε (8)

where wj represents the connectivity strength between various oscillators, which can be
either 0.00011, 0.00012, or 0.00025. The ε is the uniform Gaussian distribution of the external
perturbations applied to each oscillator, which is scaled over the domain [−1, 1].

Moreover, the perturbation is observed graphically over a range of evolution steps
used for the system to explore various perturbation values that result in different oscillatory
cycles. In this paper, the connectivity strength value wj = 0.0002 has been selected from the
chaotic domain of the underlying oscillators. For each oscillator, this value may change to
only affect the dynamics but not the overall stability.

The implemented RCC controlled method of the extended Berry model has been
shown to stabilise the local nonlinear spatiotemporal patterns of the human gait. The RCC
method performs effectively when the response of the underlying system is chaotic. This
method enhances the stability of nonlinear systems into stabilised periodic limited cycles
according to the local dynamic behaviour of each dynamic oscillator.

In this paper, the network of nonlinear models consists of 16 oscillators, such that
each individual oscillator can adjust its local dynamics to accommodate the external per-
turbations by their adjacent neighbours. The total model is simulated by EuNeurone
software [4] using Fehlberg-RK as an Ordinary Differential Equation (ODE) fixed step
integration method. The total unweighted dynamics M and F as in (9) and (10) is measured
by the net sum of the individual oscillators that could be seen by a remote observer whose
individual oscillators are invisible.

M =
n

∑
i=1

mi (9)

F =
n

∑
i=1

fi (10)
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The biochemical enzymes control of the Berry model is recognisably applicable for
several types of control needed for biological control processes, such as the motor system of
the human gait. The RCC method has mainly been used to control many different models,
including Rossler, Lorenz, and Grey–Scott models [5,6] to analytically model biological
patterns of the release process of insulin in critical systems.

4. Related Work
4.1. Criticality Analysis: from Machine Learning Perspectives

The main objective of the research work in this paper is to provide a novel data
representation methodology for human gait that has the ability to accommodate high-
dimensional nonlinear data points in a reduced features space; thereby, the machine
learning automation techniques can be applied for detection and categorisation purposes.
It has been shown that the RCC-controlled Berry model stabilises the external disturbances
that perturb its system into periodic stable trajectories.

In a technical way, the total response of the RCC-controlled Berry model represents
the extracted dynamics involved in human gait patterns in terms of the extracellular matrix
variable m from the soluble filaments variable f , and this is the basis of the novel Criticality
Analysis (CA) methodology. The CA is a feasible method that allows a useful scale-free
representation of multivariate dynamic data in a nonlinear representation space. In this
method, each data sample is characterised by a unique orbit, resulting from the original data
samples perturbing the underlying critical system. Such a critical system is composed of a
network of nonlinear controlled oscillators. The scale-free network of orbits is a quantitative
measure of a non-scale-free interacting set of patterns or attributes that arise from the whole
complex biological function, and it reveals organised features of the structure of dynamic
properties interconnected with human gait.

To the best of our knowledge, there is no research work that considers the CA tech-
nique, based on the RCC method, as a biological feature extraction technique. This research
paper is the first to formulate an RCC-controlled biological mathematical model for human
gait based on the Berry model that analyses the dynamic interactions and detects gait
disturbances, affecting the normal walking in humans.

Based on the developed CA technique, this paper focuses on providing a unique reli-
able solution using one of the robust supervised machine learning algorithms, e.g., Support
Vector Machines (SVM) in identifying nonlinear relationships and high-order interactions
between multiple gait data variables that may be challenging for traditional statistics.

The Algorithm 1 proposed in this paper uses the advanced kernelised feature of the
SVM that increases the accuracy and enhances the efficiency of gait analysis to extremely
high levels. My original algorithm was applied on the Movement, Occupational and
Rehabilitation Sciences (MoRES) Dataset: a collected real-time experiment by the Faculty
of Health and Life Sciences at Oxford Brookes University.

4.2. Support Vector Machine (SVM)
4.2.1. Overview of SVM

SVM is a powerful machine learning technique that is used mainly for learning from
data, in particular, for performing binary classification and regression estimation tasks [7–9],
such as disease diagnosis, image classification, face recognition, etc. Due to the nonlinear
structure of data and the complexity of classification problems, the SVM is developed to
form a nonlinear class decision boundary by means of a kernel technique. The SVM aims
at establishing an optimal separating hyperplane (OSH) and thereby maximises the margin
between various classes. Through the kernel technique, the fundamental bases of SVM input
data are to transform input data into a high-dimensional space and then to create an OSH
to classify various data labels in the transformed feature space. The linear OSH leads to
the formulation of a nonlinear boundary in the original data input space. The data vectors
closest to the OSH in the transformed space are called the support vectors, which contain
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deep knowledge about the OSH. In most real-time applications, the selection of the kernel is
crucial, as it has an impact on the classification’s accuracy.

4.2.2. Basic Theory of SVM

Given that a training dataset Ω = {(xi, yi)}N
i=1 is drawn independently from a probability

distribution on (X ,Y), with X ∈ Rm as the input features and Y ∈ {−1,+1} as a classification
output. The SVM model achieves for linearly separable patterns in m dimensional space
an optimal separating kernel generated decision function wTφ(xi) + b = 0 by minimising
an adequate trade-off between the structural empirical risk and the model complexity of its
optimisation problems. The w◦ is the optimal adjustable weight vector and b◦ is the optimal
bias of the decision function, where both of those values are defined when the feature vectors xi
maximised. For any two arbitrary classes {−1,+1}, the SVM finds two parallel hyperplanes
that correctly classify all training data points and maximise the distance 2

‖w‖ or minimise the

margin 1
2‖w‖2 between them. For each linearly separable case, the SVM standard classification

optimisation problem can be expressed mathematically as:

min
w,b

1
2
‖w‖2

subject to yi(wT φ(xi) + b) ≥ 1
(11)

The resulting SVM classifier yi = sign(wT φ(xi) + b) determines each class on either
side of the hyperplane. Both min(wT φ(xi) + b) = 1 and the max(wT φ(xi) + b) = −1 hold
when yi = +1 and yi = −1 satisfy the conditions, respectively. In most real-life practical
scenarios, the data points can either be within the margin space or even on the wrong side
of the decision boundary, which makes the classification problem more challenging and
complex. In this case, a soft margin approach based on the slack variables ξi is introduced
to solve this problem of non-separable data in a simple and effective manner. The primal
form of the SVM in (11) can be re-written as:

min
w,b,ξ

1
2
‖w‖2 + C

n

∑
i=1

ξi

subject to yi(wT φ(xi) + b) ≥ 1− ξi

ξi ≥ 0

(12)

where C is the user-supplied regularisation parameter, which controls the trade-off between the
maximum margin and loss. In (12), either yi(wTφ(xi) + b) ≥ 1 and ξi = 0 as before in (11), or
yi(wTφ(xi) + b) < 1, and then ξi > 0 takes the value satisfying yi(wTφ(xi) + b) = 1− ξi.

The SVM uses the Hinge loss function to measure the empirical risk of the given train-
ing data points satisfying yi(wT φ(xi) + b) < 1. These data points that lie near the boundary
of the separating hyperplane can be noisy, which can mislead the resulting separating hy-
perplane. For minimizing the model complexity, the SVM minimises a regularization term
in their optimization problem. Ideally, the standard form of (12) becomes:

min
w,b

1
2
‖w‖2 + C

n

∑
i=1

θ
(

yi(wT φ(xi) + b)
)

(13)

with the Hinge loss function θ:

θ(α) = (1− α) =

{
1− α, 1− α > 0
0 otherwise

The optimisation problem of (12) incorporated with (13) can be mapped to a con-
strained optimisation problem with linear constraints and global minimum. The details
of evaluating the optimal values of w◦ and b◦ can be found in [7,10]. For simplicity, the
bias or the offset parameter b can be ignored, and the output of the prediction function f
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can be parameterised by w as f (x) = 〈w, φ(xi)〉. Therefore, the SVM model in (13) aims at
solving the optimisation problem:

min
w∈H

1
2
‖w‖2 + C

n

∑
i=1

θ(yi, 〈wT , φ(xi)〉) (14)

where H is a Reproducing Kernel Hilbert space (RKHS) induced by a kernel function
κ(φ(x), φ(z)) with a feature mapping function φ : Rm 7→ H. For nonlinear problems, the
SVM model of (14) cannot be solved efficiently due to the fact that φ(·) is always a high-
dimensional and even infinite mapping function. By using the representer theorem [11],
there exists a vector β∗ ∈ Rm such that the solution of (14) holds w∗ = ∑m

i=1 β∗i φ(xi).
By substituting w = ∑m

i=1 βiφ(xi) in (14), the equivalent finite dimensional optimisation
problem can be presented as follows:

min
β∈Rm

1
2
‖w‖2 + C

n

∑
i=1

θ(yi, Kiβi) (15)

where K is the kernel matrix that satisfies Ki,j = κ(xi, xj) and Ki is the k−th row of K. The
coefficient βi is bounded [10], as 0 6 βi 6 C.

The Gaussian kernel function is commonly used in the capacity control and regularisa-
tion of radial basis function (RBF) networks [12], which takes the form Ki,j = κ(xi, xj) =

exp
(−‖xi−xj‖2

2σ2

)
, whose function space is based on the norm in RKHS. When the data points

xi move away from the centre xj, the function monotonically decreases. The width parame-
ter σ controls the rate at which the RBF function decreases and is inversely proportional to
its norm [13].

5. Methodology

This section outlines the proposed methodology framework, consisting of data collec-
tion, data processing, features extraction technique and the implementation of the SVM
classifier. The flowchart of the methodology is shown in Figure 1.

MoRES Data CollectionStart

3D Accelerometer Measurements

Criticality Analysis (CA)Applying Statistics

SVM Classification

Prediction

Performance Measure of SVM End

Figure 1. The flowchart of the proposed methodology.
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5.1. Data Collection

Participants who are at the adult age and with healthy normal walk together with
disturbed walk known as strapped walk and attended the Movement, Occupational and
Rehabilitation Sciences (MoRES) centre at the Faculty of Health and Life Sciences at Oxford
Brookes University in the UK were offered participation in a provisional clinical study
to support the Criticality Analysis of Gait in Adults (CAGA) project. All participants
provided informed consent prior to participation. The critical pathology characteristics of
participants were psychologically measured by a medical professional prior to and during
the walking exercise in order to (1) measure their ability to walk independently as a primary
means of mobility and (2) determine the underlying causes of their health conditions as
well as their level of motivation to follow the program during the clinical study. A healthy
group of individuals, who are free from peripheral injury or other conditions preventing
their mobility without assistive devices, was also recruited to participate in the trial.

For a feasible outcome of the clinical experiment, the participants consisting of five
individuals were asked to walk back and forth on a flat surface over a period of 6 s.
Critical changes in walking control, stride frequency, and length of steps were observed as
individuals change speed, effectively stressing their mobility.

The assessment is based on the use of a movement sensor, which is placed on the
fourth lumbar vertebra that is located on the top left of the anatomical position of lumbar
spine, acting as the body Centre of Mass (CoM). It is designed to be incredibly flexible,
providing for mobility in many different planes including flexion, extension, side bending,
and rotation. The single built-in Inertial Measurement Unit (IMU) sensor helps determine
the motion, orientation and heading of the body motor function [14]. The participants
were provided with with a wrist-worn Axivity AX3 triaxial accelerometer, which measures
linear acceleration from +/− 2 g to +/− 16 g range along three orthogonal axes known as z
(upward and downward), y (left and right) and x (forward and backward), to record and
track their physical activity. The dynamics of their walking activity during the assessment
is monitored using the Polar Team tracking system [15].

The operating procedures of the data collection are as follows:

(1) The IMU movement sensor unit is used to collect the gait data for each participant,
and the wrist-worn Axivity AX3 accelerometer, which is worn on the non-dominant
wrist, is utilised to record the participant’s physical activity.

(2) The AX3 accelerometer is connected to a laptop USB hub using a Micro USB cable for
data transfer, and then, the collected data are internally stored on a one Terabyte (1TB)
memory size as a raw binary file.

(3) The collected data can be read by using the AX3 OMGUI software, which is installed
on a laptop. Details on how to install the software together with the configuration
setup of data recording are documented in [16].

(4) The Movement, Occupational and Rehabilitation Sciences centre at the Faculty of
Health and Life Sciences at Oxford Brookes University supervised the entire process
of data collection and the collected data had been named as the MoRES dataset in
recognition of their contribution as a data provider centre.

(5) Under the rules of General Data Protection Regulation (GDPR), the collected MoRES
dataset has been anonymised and shared via a secured Google drive folder with
the School of Engineering, Computing and Mathematics (ECM) at Oxford Brookes
University for research purposes, where it underwent official approval procedures by
the University Research Ethics Committee (UREC).

(6) The MoRES dataset contains the raw collected data from the 3D IMU sensory unit.
For each participant, there are two groups of measurements: normal walk patterns
(well-apparent gait subjects) and strapped walk patterns (ill-apparent gait subjects).
Each group of data is used as an input to the CA methodology described by (4)–(7)
for multivariate data representation, such that the measurements of the 3D IMU
features can be reduced to only two represented features. Details on this are discussed
in Section 5.2.
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5.2. Data Analysis and Feature Extraction

The MoRES dataset, which is collected by using a single three-dimensional accelerom-
eter, gyroscope and magnetometer IMU sensor, was analysed using the RCC Berry model
described by (4)–(7), which is developed in EuNeurone software [4]. The criticality analysis
dominant features f (x-axis) and m (y-axis), associated with each walk pattern for each
individual gait, were extracted and used for the classification task in this paper. The ad-
vantage of using those spatiotemporal parameters f and m is to describe the development
of human gait dynamic patterns, represented by the phase space portrait analysis, which
allows the discovery of variability of different gait patterns structure.

5.3. Criticality Analysis as a Data Representation Method

The Criticality Analysis method shows that a controlled self-organised critical system
can be constructed from RCC-controlled networks of oscillators. These can then be used to
uniquely represent arbitrary data in a nonlinear representation space that allows readily
classification without training. Each data sample is characterised by a unique orbit. This
orbit is the result of the data samples perturbing the underlying critical system. The system
is critical due to the fact that it is made by a network of nonlinear controlled oscillators.
The critical property is emergent from this network, such that any small change in any of
the input causes a change of state in the orbit of the total network, yet it will not become
unstable. The resulting orbit is therefore a scale-free representation of the original data
and can then be used to show that a specific set of attributes that represents the gait of
an individual patient or control is similar to the matching category of the sample versus
the other data members [17]. The representation helps reduce the dimensionality of the
dynamic data.

Figures 2–6, the phase space plots of the CA data representation for each categorised
group of participants, are shown, respectively. The phase plot shown in Figure 7 represents
each walk category for all individuals, where the normal walk behaviour is characterised
by more variability in the phase space in comparison to that of strapped walk patterns.
This means that the individual’s healthy normal gait is free from disturbances and there has
been no effort made to complete the cycle of walk. The strapped gait of individuals shown
in Figure 7 has extreme overlapped walk patterns, which makes it complex to understand
and to extract useful information. Figures 2–7 illustrate that the healthy and affected gait
patterns can be detectable and classifiable in a time domain, even without machine learning
training. The dynamic representation of individual data samples can then be used to
compare between categories and even to monitor the progression of data over time. These
properties of CA are used in this paper to show how normal walk patterns differ from their
counterparts of strapped walk patterns. This normal gait is shown to have a large variability
and more structured patterns that underpin the ability of individuals with normal gait to
move without physical restrictions as is characterised by their changing behaviour among
the participants. Strapped walk behaviour is more restricted in their ability to vary their
gait, which is not normally recognisable from the data, as this is highly nonlinear.

It is noticeably shown in the normal phase plots, visualised on the left side of
Figures 2–7, that the external perturbations to the network of coupled oscillators can boost
or reduce the gait behaviour patterns due to the scaled additive connectivity strength to the
external perturbations, ensuring that the perturbed input to each oscillator is not heavily
great to obtain the response of the system out of the controlled domain.
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Figure 2. This figure shows the phase space plots for each walk pattern that correspond to individual
of p1. On the left is the normal walk patterns portrait, while the strapped patterns are on the right
side of Figure 2.

Figure 3. This figure shows the phase space plots for each walk pattern that correspond to individual
of p2. On the left is the normal walk patterns portrait, while the strapped patterns are on the right
side of Figure 3.

Figure 4. This figure shows the phase space plots for each walk pattern that correspond to individual
of p3. On the left is the normal walk patterns portrait, while the strapped patterns are on the right
side of Figure 4.
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Figure 5. This figure shows the phase space plots for each walk pattern that correspond to individual
of p4. On the left is the normal walk patterns portrait, while the strapped patterns are on the right
side of Figure 5.

Figure 6. This figure shows the phase space plots for each walk pattern that correspond to individual
of p5. On the left is the normal walk patterns portrait, while the strapped patterns are on the right
side of Figure 6.

Figure 7. This figure shows the phase space plots for each walk pattern for all individuals of the same
category. On the left is the normal walk patterns portrait, while the strapped patterns are on the right
side of Figure 7.

5.4. Statistical Analysis of CA Data
5.4.1. Scatter Analysis

The distribution of CA data representation for each individual walk pattern is shown
in Figures 8–13, which interprets the figures depicted in Figures 2–7. Each plot describes
the variability of continuous or successive gait interaction events over time the individual
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takes. Since CA data show a degree of association between the two dominant extracted
features in the 2D space, the Pearson’s correlation coefficient ρ, bounded by 0 ≤ ρ ≤ 1,
quantitatively measures both the direction and strength of the dependency of extracted
features on each other. The average of ρ for the normal walk patterns of all individuals is
shown to be highly stronger and positive than the strapped patterns. In other words, the
effect of ρ of the strapped features decreases steadily by 0.28% on average more than that
of the normal patterns.

Figure 8. This figure shows the scatter plots for each walk pattern that correspond to the individual
p1. On the left is the normal walk patterns distribution, while the strapped patterns distribution is on
the right side of Figure 8.

Figure 9. This figure shows the scatter plots for each walk pattern that correspond to the individual
p2. On the left is the normal walk patterns distribution, while the strapped patterns distribution is on
the right side of Figure 9.

The right hand side of Figures 8–13, which corresponds to the strapped gait, show
that there is an observable intensity of data points over the data space range or even
irregularities in the spread of data samples, which make them different to the normal walk,
as in the case in Figure 10.
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Figure 10. This figure shows the scatter plots for each walk pattern that correspond to the individual
p3. On the left is the normal walk patterns distribution, while the strapped patterns distribution is on
the right side of Figure 10.

Figure 11. This figure shows the scatter plots for each walk pattern that correspond to the individual
p4. On the left is the normal walk patterns distribution, while the strapped patterns distribution is on
the right side of Figure 11.

Figure 12. This figure shows the scatter plots for each walk pattern that correspond to the individual
p5. On the left is the normal walk patterns distribution, while the strapped patterns distribution is on
the right side of Figure 12.
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Figure 13. This figure shows the scatter plots for each walk pattern for all individuals of the same
category. On the left is the normal walk patterns distribution, while the strapped patterns distribution
is on the right side of Figure 13.

The values of ρ of different walk patterns for each individual and for all individuals
from the same category are summarised in Tables 1 and 2, respectively, as follows:

Table 1. The correlation coefficient ρ of p1, p2, p3, p4 and p5.

Category
Correlation Coefficient (ρ)

p1 p2 p3 p4 p5

Normal Walk 0.815 0.846 0.832 0.84 0.847

Strapped
Walk 0.86 0.819 0.871 0.838 0.778

Table 2. The correlation coefficient ρ of all individuals.

Category
Correlation Coefficient (ρ)

All Individuals

Normal Walk Patterns 0.8337

Strapped Walk Patterns 0.8255

Each gait category whether it is normal or strapped has two dominant features,
which are extracted from the RCC Berry model presented in Equations (4)–(7), where f of
Equation (5) represents (x-axis) and m of Equation (4) is on the y-axis.

5.4.2. Spatiotemporal Analysis

Figure 14, which compares the normal gait dynamic patterns to strapped patterns,
graphically shows that the gait dynamic disturbances have a significant effect on the
progression of gait. It particularly illustrates and detects the location and variations of gait
patterns between individuals suffering from certain gait abnormalities. The middle line
of each categorical box represents the median. The amount of difference in the variability
of data between each category for each individual measures the degree of dispersion and
skewness of the CA data. Table 3 describes the median values of CA data for each category.
The measurements indicated that the median of the CA data of the strapped walk patterns
is decreased by 55.58% compared with that of the normal walk patterns. Furthermore, there
are parallel lines, known as whiskers, which depict the variability of data outside the limits
of the quartiles interval. It also appeared that most CA data are free of the outliers except
that of the strapped patterns of the individual p3.
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Figure 14. This figure shows the spatiotemporal plots for each walk pattern that correspond to each
individual and to all individuals from the same category.

Table 3. The median of p1, p2, p3, p4 and p5.

Category
Median

p1 p2 p3 p4 p5

Normal Walk 21.804 22.252 22.709 21.869 23.029
Strapped

Walk 19.99 24.645 21.527 22.085 20.637

Table 4 displays the median values of all individuals for each gait category. It shows
that the median of individuals with strapped gait is lower than that of those with healthy
walk patterns, and this is because of the existence of outliers in their data, as expected in
the bottom right graph of Figure 14.
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Table 4. The median of all individuals.

Category
Median

All Individuals

Normal Walk 22.253
Strapped Walk 20.130

5.4.3. Histogram Analysis

Figures 15–19 visually show the histogram of individual features and their respective
frequencies that describe the unique statistical characteristics of the distribution of CA data.
The average mean shown in Table 5 of the strapped walk distribution is much higher than
the normal walk distribution. In addition, it is obvious that the CA data distribution for the
strapped walk category is somehow skewed to the right, as can be expected for individuals
p1, p2, p4 and p5, whilst the distribution of p3 is almost skewed to the left. The higher the
skewness, the increased variability. The effect of the lower bound of data features on almost
one side of the distribution is a major cause of the outlier occurrence, resulting from an
unintentional change in experiment settings that affects the direction of distribution.

Figure 15. This figure shows the histogram plots for each walk pattern that correspond to the
individual p1.

Figure 16. This figure shows the histogram plots for each walk pattern that correspond to the
individual p2.
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Figure 17. This figure shows the histogram plots for each walk pattern that correspond to the
individual p3.

Figure 18. This figure shows the histogram plots for each walk pattern that correspond to the
individual p4.

Figure 19. This figure shows the histogram plots for each walk pattern that correspond to the
individual p5.

Table 5. The mean of p1, p2, p3, p4 and p5.

Category
Mean

p1 p2 p3 p4 p5

Normal Walk 24.483 22.803 23.522 24.257 24.287

Strapped
Walk 22.497 25.99 22.124 23.914 25.835
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Figure 20 shows the distribution of data samples for each walk pattern of individuals
from the same gait category, and Table 6 displays the mean values of all individuals for
each gait category. It also illustrates that the mean values of individuals with strapped
walk patterns are slightly lower than those with healthy walk patterns, and this is because
of the existence of outliers associated with their data, as expected in the bottom right graph
of Figure 20.

Figure 20. This figure shows the histogram plots for each walk pattern of individuals from the same
gait category.

Table 6. The mean of all individuals.

Category
Mean

All Individuals

Normal Walk 23.838
Strapped Walk 23.198

5.5. SVM Classifier

The proposed SVM model is based on the use of the kernel property discussed in
Section 4.2. The most dominant extracted gait features ( f of Equation (5) on the x-axis and
m of Equation (4) on the y-axis) by the RCC Berry model seems to be highly correlated and
nonlinear. The Kernel SVM is capable of handling and transforming the nonlinear dynamic
gait data samples into a new feature space in order to facilitate the classification process of
various data subjects. The extracted features by the controlled CA model were used as input
to the SVM algorithm for training and for testing the classification performance of various
models. The SVM classifier is trained and tested on the nonlinear CA extracted features for
each individual of various gait subjects, where the two-dimensional normal and strapped
walk subjects are used for training and testing, respectively. The scenario is repeated to
train the Kernel SVM on all individuals data, where the normal patterns were used for
training and the strapped ones were utilised for testing in order to reduce the number of
parameters that could produce an unnecessary overfitting dilemma in training the gait data.
The main reason for performing these two experiments is to evaluate the performance of
the SVM and to examine its ability in terms of classifying various dynamic gait subjects and
how it can detect the disturbances associated with individual walk behaviour. Algorithm 1
describes the implementation procedures of the proposed SVM algorithm.

5.6. SVM Model Training

There are 3000 data points in total for each gait subject (normal or strapped) and
distributed equally among the five participants, so the net sum is 6000 data samples for
both subjects that corresponds to both input CA extracted features. Each individual per gait
category has 600 data samples. The splitting ratio used in training and testing the Kernel
SVM is set to 50%. All the CA gait features were normalised using the z-score to settle
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the data samples at a zero mean and unity standard deviation prior to the SVM algorithm
training process. The Kernel SVM algorithm is implemented in MATLAB, including the
statistical analysis of gait data and for developing various Kernel SVM models to examine
the behaviour of the Kernel characteristics (regularisation parameter C and control width σ)
on the classification performance of gait data. The generalisation performance of the
trained Kernel SVM was evaluated by recording the prediction accuracy for each model,
the confusion matrix, the Receiver Operating Characteristics (ROC) curve, and the area
under the ROC curve. Details on this are discussed in the next following sections.

Algorithm 1 Pseudocode of SVM Implementation

1: Input: Given a training set Ω = (xi, yi) : xi ∈ Rm, yi ∈ {−1,+1}, i = {1, 2, . . . , N} and
testing dataset x ∈ Rm.

2: Output: Predict subjects label for testing data x.
3: Select a regularisation parameter C such that C > 0 and choose an appropriate kernel

width control variable σ for validation.

4: Compute Gaussian Kernel RBF κ(xi, xj) = exp
(−‖xi−xj‖2

2σ2

)
.

5: Solve the kernalised optimisation problem in Equation (15) using CVX optimisation
solver [18] in MATLAB.

6: Obtain optimal value of β in Equation (15) and the bias b in Equation (13).
7: Predict labels for testing data x.
8: Obtain performance measure (confusion matrix, accuracy, Receiver Operating Charac-

teristics (ROC) Curve.

5.7. Confusion Matrix

In such a binary classification problem, the dataset labels can be either positive or neg-
ative, in which the decision made by the SVM classifier can be represented by a structured
contingency table known as a confusion matrix. The confusion matrix is a collection of
actual and predicted binary classification information and can be used to check for the
ability of the classification algorithm in distinguishing between various categories (normal
or strapped). It has four main characteristics [19]:

• True Positive (TP): refers to the number of positive data samples (participants of
normal walk) that are correctly classified and detected as positive (normal).

• False Positive (FP): refers to the number of negative data samples (participants of
strapped walk) that are incorrectly classified as positive (normal).

• True Negative (TN): refers to the number of negative data samples (participants of
strapped walk) that are correctly classified as negative (strapped).

• False Negative (FN): refers to the number of positive data samples (participants of
normal walk) that are incorrectly classified as negative (strapped).

The other performance metrics of a classifier are accuracy, precision, F1−Score, Recall
or Sensitivity or True Positive Rate (TPR), Specificity or True Negative Rate (TNR), and
False Positive Rate (FPR), which are evaluated on the basis of the above-stated TP, FP,
TN, and FN numbers. Their definitions are as follows:

• Accuracy: represents the overall success rate of correct predictions. It is mathemati-
cally expressed as the ratio between the correctly classified labels (TP + TN) and the
total number of data samples (TP + TN + FP + TN). It is given by:

Accuracy =
TP + TN

TP + TN + FP + TN
.

• Precision: is the ratio of correctly predicted positive labels with normal walk status
to the total labels predicted to have a normal walk condition. It is measured by the
following expression:

Precision =
TP

TP + FP
.



Computers 2022, 11, 120 20 of 32

• Recall (TPR): is defined as the proportion of correctly predicted positive labels with
normal walk status among all normal walk data samples. It is measured by the
following expression:

Recall =
TP

TP + FN
.

• F1-Score: is known as the F measure, which preserves the equilibrium between the
precision and the recall. It is measured as:

F1-Score =
2× Precision

Precision + Recall
.

• True Negative Rate (TNR): is defined as the proportion of correctly predicted negative
labels with strapped walk conditions among all strapped walk data samples. It is
formulated as:

TNR =
TN

TN + FP
.

• False Positive Rate (FPR): is measured as the proportion of the strapped walk samples
mislabeled as normal walk data among all the strapped data samples. It is given as:

FPR =
FP

FP + TN
.

The purpose of the above outlined metrics is to test the capability of the proposed
SVM algorithm to detect the irregular gait patterns associated with different individuals.
Appendix A summarises the performance metrics of the SVM classifier for each individual
at certain values of regularisation parameters C = (0.1, 1, 10), respectively. Therefore, the
main validation metric measure that gives insight into the details of the overall performance
of the SVM classifier is the accuracy. The accuracy of the classifier depends on the value of
σ and C. Overall, the best performance was achieved when σ = 0.1 and 1.

6. Results

To better evaluate the effectiveness of the proposed methodology outlined above, the
following performance measures are followed:

6.1. Receiver Operating Characteristic (ROC) Curve

The ROC plot provides an extra step towards evaluating the performance of the SVM
classifier. The ROC curve visualises representative plots of TPR or sensitivity versus the
(≈1− TNR) over a range of threshold levels that varies between 0 and 1. In Figures 21–26,
the ROC curves were plotted for the best pair of σ and C values that satisfy the highest
accuracy during the overall trial period for each individual and for all individuals (as
shown in Figure 26). It is shown that the Kernel SVM performed well in most of the cases
between detecting normal and strapped features per individual and also between the
different gait subjects of all individuals accordingly. Figure 27, which supports the results
obtained in the left graph of Figure 26, for instance, shows the decision boundary when the
SVM is trained on all individuals’ walk normal patterns versus those of that strapped one,
and this proves the robustness of the Kernel SVM as a universal model in detecting gait
dynamics or abnormalities apart away from normal patterns. The best performance of the
SVM model is well observed when σ = 0.1 and 1 for various values of C.
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Figure 21. ROC (Receiver Operating Characteristic) curves of p1 show the True Positive (Sensitivity)
and False Positive (1-Specificity) for the best different thresholds using kernel property of SVM.

Figure 22. ROC (Receiver Operating Characteristic) curves of p2 show the True Positive (Sensitivity)
and False Positive (1-Specificity) for the best different thresholds using kernel property of SVM.

Figure 23. ROC (Receiver Operating Characteristic) curves of p3 show the True Positive (Sensitivity)
and False Positive (1-Specificity) for the best different thresholds using kernel property of SVM.
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Figure 24. ROC (Receiver Operating Characteristic) curves of p4 show the True Positive (Sensitivity)
and False Positive (1-Specificity) for the best different thresholds using kernel property of SVM.

Figure 25. ROC (Receiver Operating Characteristic) curves of p5 show the True Positive (Sensitivity)
and False Positive (1-Specificity) for the best different thresholds using kernel property of SVM.

Figure 26. ROC (Receiver Operating Characteristic) curves of all individuals’ gait subjects show the
True Positive (Sensitivity) and False Positive (1-Specificity) for the best different thresholds using
kernel property of SVM.
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Normal Walk

Strapped Walk

Misclassified Patterns from Normal Walk

Misclassified Patterns from Strapped Walk

(a) σ = 0.1 and C = 0.1

Normal Walk

Strapped Walk

Misclassified Patterns from Normal Walk

Misclassified Patterns from Strapped Walk

(b) σ = 0.1 and C = 1

Normal Walk

Strapped Walk

Misclassified Patterns from Normal Walk

Misclassified Patterns from Strapped Walk

(c) σ = 0.1 and C = 10

Figure 27. The decision boundary when the SVM model trained on all individuals’ normal walk
patterns versus that of the strapped one, when: (a) σ = 0.1 and C = 0.1, (b) σ = 0.1 and C = 1, and
(c) σ = 0.1 and C = 10.

6.2. The Area Under the Curve (AUC)

The Area Under the Curve (AUC) estimation or ROC area is chosen to represent the
degree of separability by the SVM classifier. Similarly, the higher the AUC, the better the
classifier is at detecting gait abnormalities of individuals. The ROC area of the Gaussian
kernel as a function of the regularisation parameter C for each individual walk is illustrated
in Figure 28. Knowingly, the C parameter can affect the performance of the SVM classifier,
and there is a certain value or range that can maintain a better efficiency among others.

It is concluded from the performance measure shown in Tables A1–A6 of Appendix A
that the SVM classifier achieves the best results when σ = 0.1 and in some cases when
σ = 1, in comparison to other σ values. Based on that, the visualisation of Figure 28 is
produced, and as shown, for example, there is a range of C values that would produce an
optimum performance. It is also shown from Figure 28 that for some individuals, the higher
the sensitivity level, the larger the Area under the Curve and the better the performance
is. It is also evident from the SVM model measurements displayed in Appendix A that
the values of AUC and the accuracy are much closer to each other, which means that the
proposed SVM algorithm is highly efficient in classifying between normal and strapped
gait disturbances. The AUC was performed computationally using our algorithm software
routines developed in MATLAB. Figure 29 shows the average mean square error (MSE) rate
of the SVM model for the five individuals’ data. The average MSE for each individual was
computed using the average accuracy for each curve shown in Figure 28. The average MSE
of p1 and p4 was less than <6% with minimum variation rates, respectively, in classifying
the gait abnormalities patterns, whereas when compared with p2, p3 and p5 individuals,
the average MSE and the average standard deviation proved to be extremely high.
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Figure 28. The ROC area or Area under ROC curve (AROC) versus various values of the regularisation
parameter C when σ = 0.1 for each individual p1, p2, p3, p4, and p5, respectively.

Figure 29. This figure shows the average mean square error (MSE) (%) (on the left) and the average
standard deviation (%) (on the right) of the SVM classification performance for each individual piece
of data.
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7. Discussion

In this paper, a Support Vector Machine based on the novel proposed criticality
analysis technique is implemented to classify and to detect the dynamic abnormalities
and disturbance patterns associated with human gait. The results of this research paper
suggest that the gait features extracted from and represented by the criticality analysis
methodology provide valuable information regarding the characteristics of dynamics of
human walking behaviour such that these generated patterns can be used to train such a
machine learning model to automate and recognise the walking deviations from the normal
walk of individuals. Early detection of human gait disturbances using such a supervised
pattern recognition technique would enhance the chance to identify gait impairments and
to prevent gait injuries as well. Neural Networks (NNs) and fuzzy clustering techniques
have been used in previous research work on automated gait classification for diagnosing
pathological human gait [20–22]. Due to the superior gait classification performance as
shown in this paper, the SVM with the support of the CA method can perform as a robust
and reliable classification tool for the detection of dynamic disturbances of biological data
patterns and creates a tremendous opportunity for clinical diagnosis and rehabilitation.

In this research, the extracted data from the CA method have been used as inputs
to the SVM to represent various gait patterns. The reason for this is twofold; firstly, the
CA-extracted data provide a more realistic measure of the kinematic motor system and
describe a deep representation of the dynamics disturbing the individual gait, and secondly,
the kernalised nonlinear property of the SVM makes the classification process of the CA
data patterns, which are in fact nonlinear, more detectable and identifiable. Furthermore,
the CA methodology creates sufficient data samples so that their properties can lead to
a real analysis of human gait. An insufficient or limited number of gait samples due to
data measurements over a short period of time can deteriorate the distribution of data and
thus result in poor classification performance. To derive more controlled and stable CA
data patterns of human gait, the pre-processed raw data are recorded for a long walk cycle
period of 6 s to provide a reliable and useful statistical distribution of gait patterns.

The classification performance of the proposed Kernel SVM primarily relies on the
best selection of the regularisation parameter C, as depicted in Figure 28 and also in
Tables A1–A6 of Appendix A. C is used as a penalty parameter to compensate for the
misclassification accuracy, and it has to be engineered carefully in order to achieve maxi-
mum performance accuracy. When the classification performance was compared to three
different regularisation parameters C that mapped to three control width values of σ, the
performance of SVM is found to perform well when σ = 0.1, which is followed by σ = 1.
This is because the smaller the value of σ, the quicker is the rate of decline of the Kernel
Gaussian function. The use of the Kernel Gaussian function in the implementation of
the SVM was found to perform the best in detecting the abnormal disturbances of gait
data patterns. This was obvious from their recorded accuracy at these specific values. In
addition, Figure 28 shows that the optimal value of C changes according to individual
data patterns. The parameter C can be selected based on the trial and error method, and
one way to achieve this is to visualise the dependency of the classification performance on
C. The classification results of this research suggest that the proposed SVM models with
the support of the CA method can perform as a robust and reliable classification tool for
the detection of dynamic disturbances of human gait data patterns. The generalisation
performance of such a classification tool mainly depends on targeting the best features
that have great potential to result in a good performance. Interestingly, the CA method is
proposed in this research paper to not only select a few data features but to represent the
whole data samples of features without exclusion to some others. The results illustrated
in Figures 2–7 show that the gait disturbances and changes to the normal walk patterns
can be detectable and distinguishable by observation, and even without machine learning
training. Many research studies have been conducted on feature selection tools for better
choosing the most significant patterns that lead to an adequate performance such as the
mean absolute deviation extended serial fusion (MDeSF) approach [23] and sequential
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backward selection (SBS) approach [24], but none of these research studies ever consider the
representation of multivariate data patterns for more insightful performance. To the best
of our knowledge, this research paper is the only one which considered a novel criticality
analysis technique for multivariate data representation that opens the horizon to applied
machine learning theory.

The scatter and histogram plots of CA gait features extracted from the dynamic gait
were also instrumental and informative in differentiating between the normal and strapped
walk. This suggests that the dynamic gait changes with the condition or behaviour of
the individual gait are reflected from their visual patterns. The histogram plots shown in
Figures 15–20 provide statistical interpretation of the CA data distribution, whereas the
scatter plots illustrated in Figures 8–13 discuss the variability of the CA gait data in space.
In addition, these plots are useful in detecting the gait abnormalities and for observing
the individual walk progression as a result of treatment in clinical settings. The CA gait
features represented by the distribution and variability measures were the basis of the
classification process between the two distinct gait patterns.

The research introduced in this paper can be extended further in many ways. The
adoption of Graph Convolution Neural Networks (GCNNs) as a graph-based deep learning
method can be viewed as a powerful structure that operates over graphs to model and
to perform classification tasks to any various types of data, whether it is structured or
unstructured, such as human gait dynamic data. With the help of Graph Kernel (GK) that
can be used on pairs of graphs to map the similarity between two graphs of data subjects
by comparing their substructures or subgraphs, the GK can convert the human gait cycle
into graph signals with convenient graph structures and signal features used as input to the
GCNNs to detect the gait dynamics observable by humans and to enhance the classification
accuracy. This idea will be explored further in future research.

8. Conclusions

The implemented SVM model based on the proposed CA technique serves as a
dominant tool for classifying human gait patterns and detecting disturbances that affect
healthy walk in humans. The CA methodology is characterised by its ability to extract
and to represent the most useful gait features in a reduced two-dimensional space. The
improved performances of the SVM models were evident when data were trained with the
CA method and with the kernelised properties of the SVM models. The simulated results
of this research showed that the proposed SVM model with the support of the CA method
can perform as a robust and reliable classification candidate for the detection of dynamic
disturbances of biological data patterns and creates a tremendous opportunity for clinical
diagnosis and rehabilitation.
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Appendix A

Table A1. SVM Classification Results of p1 Walk Patterns.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 317 283 289
FP 34 7 5
FN 3 37 31
TN 246 273 275
FPR 0.121 0.025 0.017

Precision 0.903 0.975 0.982
Recall 0.990 0.884 0.903

F1-Score 0.944 0.927 0.941
Specificity 0.878 0.975 0.982

AROC 0.944 0.937 0.949
Accuracy(%) 93.83 92.67 94

Performance
σ = 1

C = 0.1 C = 1 C = 10

TP 316 320 320
FP 54 23 12
FN 4 0 0
TN 226 257 268
FPR 0.192 0.082 0.042

Precision 0.854 0.932 0.963
Recall 0.987 1 1

F1-Score 0.915 0.965 0.981
Specificity 0.807 0.917 0.957

AROC 0.902 0.962 0.981
Accuracy(%) 90.33 96.17 98

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 320 320 320
FP 280 280 280
FN 0 0 0
TN 0 0 0
FPR 1 1 1

Precision 0.533 0.533 0.533
Recall 1 1 1

F1-Score 0.695 0.695 0.695
Specificity 0 0 0

AROC 0.519 0.519 0.519
Accuracy(%) 53.33 53.33 53.33

Table A2. SVM Classification Results of p2 Walk Patterns.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 249 239 244
FP 10 2 1
FN 51 61 56
TN 290 298 299
FPR 0.033 0.006 0.003

Precision 0.961 0.991 0.995
Recall 0.83 0.796 0.813

F1-Score 0.89 0.883 0.895
Specificity 0.966 0.993 0.996

AROC 0.899 0.901 0.909
Accuracy(%) 98.83 89.5 90.5
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Table A2. Cont.

Performance
σ = 1

C = 0.1 C = 1 C = 10

TP 300 300 300
FP 97 74 42
FN 0 0 0
TN 203 226 258
FPR 0.323 0.246 0.14

Precision 0.755 0.802 0.877
Recall 1 1 1

F1-Score 0.86 0.89 0.934
Specificity 0.676 0.753 0.86

AROC 0.837 0.877 0.931
Accuracy(%) 83.83 87.67 93

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 300 300 300
FP 300 300 300
FN 0 0 0
TN 0 0 0
FPR 1 1 1

Precision 0.5 0.5 0.5
Recall 1 1 1

F1-Score 0.667 0.667 0.667
Specificity 0 0 0

AROC 0.504 0.504 0.504
Accuracy(%) 50 50 50

Table A3. SVM Classification Results of p3 Walk Patterns.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 265 244 247
FP 51 12 11
FN 66 87 84
TN 218 257 258
FPR 0.189 0.044 0.04

Precision 0.838 0.953 0.957
Recall 0.8 0.737 0.746

F1-Score 0.81 0.955 0.959
Specificity 0.81 0.955 0.959

AROC 0.815 0.848 0.854
Accuracy(%) 80.5 83.5 84.17

Performance
σ = 1

C = 0.1 C = 1 C = 10

TP 331 331 331
FP 212 195 184
FN 0 0 0
TN 57 74 85
FPR 0.788 0.724 0.684

Precision 0.609 0.629 0.642
Recall 1 1 1

F1-Score 0.757 0.772 0.782
Specificity 0.211 0.275 0.315

AROC 0.611 0.648 0.673
Accuracy(%) 64.67 67.5 69.33
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Table A3. Cont.

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 331 331 331
FP 269 269 269
FN 0 0 0
TN 0 0 0
FPR 1 1 1

Precision 0.551 0.551 0.551
Recall 1 1 1

F1-Score 0.711 0.711 0.711
Specificity 0 0 0

AROC 0.504 0.504 0.504
Accuracy(%) 55.17 55.17 55.17

Table A4. SVM Classification Results of p4 Walk Patterns.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 330 311 313
FP 27 1 1
FN 2 21 19
TN 241 267 267
FPR 0.1 0.003 0.003

Precision 0.924 0.996 0.996
Recall 0.993 0.936 0.942

F1-Score 0.957 0.965 0.969
Specificity 0.899 0.996 0.996

AROC 0.944 0.971 0.977
Accuracy(%) 95.17 96.33 96.67

Performance
σ = 1

C = 0.1 C = 1 C = 10

TP 330 331 331
FP 70 104 135
FN 2 1 1
TN 198 164 133
FPR 0.261 0.388 0.503

Precision 0.825 0.76 0.71
Recall 0.993 0.996 0.996

F1-Score 0.901 0.863 0.829
Specificity 0.738 0.611 0.496

AROC 0.871 0.81 0.738
Accuracy(%) 88 82.5 77.33

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 332 332 332
FP 268 268 268
FN 0 0 0
TN 0 0 0
FPR 1 1 1

Precision 0.553 0.553 0.553
Recall 1 1 1

F1-Score 0.712 0.712 0.712
Specificity 0 0 0

AROC 0.502 0.502 0.502
Accuracy(%) 55.33 55.33 55.33
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Table A5. SVM Classification Results of p5 Walk Patterns.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 268 264 266
FP 9 1 0
FN 30 34 32
TN 293 301 302
FPR 0.029 0.003 0

Precision 0.967 0.996 1
Recall 0.899 0.885 0.892

F1-Score 0.932 0.937 0.943
Specificity 0.97 0.996 1

AROC 0.931 0.941 0.943
Accuracy(%) 93.5 94.17 94.67

Performance
σ = 1

C = 0.1 C = 1 C = 10

TP 298 298 298
FP 134 66 45
FN 0 0 0
TN 168 236 257
FPR 0.443 0.218 0.149

Precision 0.689 0.818 0.868
Recall 1 1 1

F1-Score 0.816 0.9 0.929
Specificity 0.556 0.781 0.85

AROC 0.769 0.88 0.92
Accuracy(%) 77.67 89 92.5

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 298 298 298
FP 302 302 302
FN 0 0 0
TN 0 0 0
FPR 1 1 1

Precision 0.496 0.496 0.496
Recall 1 1 1

F1-Score 0.663 0.663 0.663
Specificity 0 0 0

AROC 0.495 0.495 0.495
Accuracy(%) 49.67 49.67 49.67

Table A6. SVM Classification Results of All Individuals Walk Patterns.

Performance
σ = 0.1

C = 0.1 C = 1 C = 10

TP 1480 1435 1507
FP 62 16 32
FN 139 184 112
TN 1319 1365 1349
FPR 0.044 0.011 0.023

Precision 0.959 0.988 0.979
Recall 0.914 0.886 0.930

F1-Score 0.936 0.934 0.954
Specificity 0.955 0.988 0.976

AROC 0.939 0.945 0.957
Accuracy(%) 93.3 93.33 95.2
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Table A6. Cont.

Performance
σ = 1

C = 0.1 C = 1 C = 10

TP 1618 1619 1619
FP 316 288 221
FN 1 0 0
TN 1065 1093 1160
FPR 0.228 0.208 0.16

Precision 0.836 0.848 0.879
Recall 0.999 1 1

F1-Score 0.91 0.918 0.936
Specificity 0.771 0.791 0.839

AROC 0.886 0.903 0.924
Accuracy(%) 89.43 90.4 92.63

Performance
σ = 10

C = 0.1 C = 1 C = 10

TP 1619 1619 1619
FP 1381 1381 1381
FN 0 0 0
TN 0 0 0
FPR 1 1 1

Precision 0.539 0.539 0.539
Recall 1 1 1

F1-Score 0.701 0.701 0.701
Specificity 0 0 0

AROC 0.50 0.50 0.50
Accuracy(%) 53.96 53.96 53.96
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