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Abstract: Short-term electric power load forecasting is a critical and essential task for utilities in the
electric power industry for proper energy trading, which enables the independent system operator to
operate the network without any technical and economical issues. From an electric power distribution
system point of view, accurate load forecasting is essential for proper planning and operation. In order
to build most robust machine learning model to forecast the load with a good accuracy irrespective of
weather condition and type of day, features such as the season, temperature, humidity and day-status
are incorporated into the data. In this paper, a machine learning model, namely a regression tree, is
used to forecast the active power load an hour and one day ahead. Real-time active power load data
to train and test the machine learning models are collected from a 33/11 kV substation located in
Telangana State, India. Based on the simulation results, it is observed that the regression tree model
is able to forecast the load with less error.

Keywords: load forecasting; regression tree; hour-ahead market; day-ahead market; machine learning

1. Introduction

An electric power distribution substation takes the power from one or more trans-
mission or subtransmission lines and delivers this power to residential, commercial, and
industrial customers through multiple feeders. Short-term load forecasting at the distribu-
tion level estimates the active power load on a substation in a time horizon ranging from
30 min to 1 week [1]. The load forecasting of a distribution system gives advance alarms to
the operator about the overloading of feeders and substations. Load forecasting helps the
distribution substation operator to schedule and dispatch the storage batteries to shave the
peak load in a smart grid environment [2]. Electrical power load forecasting is classified
as very short term, short term, medium term and long term based on the length of the
prediction horizon [3–5]. Due to deregulated power system structure and more liberal-
ization in energy markets, electric power load forecasting has become more essential [6].
Long-term load forecasting is generally used for planning and investment profitability
analysis, determining upcoming sites, or acquiring fuel sources for production plants.
Medium-term load forecasting is usually preferred for risk management, balance sheet cal-
culations, and derivatives pricing [7]. An accurate short-term load forecasting will help an
electric power distribution utility to optimize the power grid load and strengthen reliability,
reduce the electricity consumption cost and emphasize electric energy trading possibilities.

Forecasting the distribution-level load is far more challenging than forecasting the
system-level load, such as the Telangana State’s electric power demand, due to the intricate
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load characteristics, huge number of nodes, and probable switching actions in distribution
systems. Since the end-user behaviour has a far greater influence on distribution systems
than it does on transmission systems, the load profiles of distribution systems will have
more stochastically abrupt departures. Operating an independent distribution system suc-
cessfully necessitates significantly more precise and high-resolution load forecasting than
today’s approach can deliver [8]. Load estimates over a vast region are highly accurate be-
cause the aggregated load is steady and consistent. The distribution-level load, on the other
hand, may be dominated by a few major clients, such as industrial businesses or schools,
and the load pattern may not be as regular as that of a vast region. Furthermore, due to
reconfigurations caused by switching activities, the load may be temporarily moved from
one feeder to another, causing significant changes in distribution-level load profiles and
affecting the trend at a given time. The main challenge in electric power load forecasting is
data loss. Some works are available in the literature to deal with data loss, e.g., by designing
a voltage hierarchical controller against communication delay and data loss [9]. The com-
munication delay was treated using delay-tolerant power compensation control (DTPCC)
in [10]. PCC uses normal PCC for effective operation when the communication delay is
within the maximum tolerable communication delay, or switches to predictive PCC under
abnormal communication delay conditions. However, in that paper, the authors collected
historical data from the distribution company not through any communication channels.

Four general categories are identified for short-term load forecasting, i.e., similar
day, variable selection, hierarchical forecasting, and weather station selection [11]. The
similar-day technique identifies the load data as a set of related daily load profiles, whereas
the variable selection method assumes that the load data act as a series of variables that are
either correlated or independent of one another. The hierarchical technique, on the other
hand, treats data as an aggregated load that is extremely variable due to changes in the
load at the lower levels of the hierarchy. Finally, weather station selection is a strategy for
determining which weather data are best fitted into the load model [12]. Load forecasting
is regarded as one of the most critical duties for power system operators in the demand
management system (DMS) as shown in Figure 1.

Figure 1. Main functions of a distribution management system.

Many researchers have been working on short-term load forecasting of distribution
systems. An ANN-based methodology was developed in [13] to forecast the load on a
33/11 kV substation near Kakatiya University in Warangal, Telangana State. In that study,
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the authors used the load from the previous three hours and the load at the same time
but in the previous four days as input features. Load forecasting on an electric power
distribution system using various regression models was proposed in [14] by considering
the load from the previous three hours and the load at the same time but on the previous
day as input features. Short-term load forecasting on an electric power distribution system
using factor analysis and long short-term memory was proposed in [15] by considering the
load from the previous three hours, the load at the same time but in the previous three days,
and the load at the same time but in the previous three weeks as input features. Electric
power load forecasting at the distribution level using a random forest and gated recurrent
unit was proposed in [16], by considering previous three hours load, load at same time
but previous three days and load at same time but previous three weeks as input features.
Electric power load forecasting at the distribution level using a correlation concept and
an ANN was proposed in [17] by considering the load from the previous two hours and
the load at the same time but in the previous three days as input features. Similarly, the
active power demand on a 33/11 kV electric power distribution system using principal
component analysis and a recurrent neural network was proposed in [18], by considering
the load from the previous three hours, the load at the same time but in previous three days
and the load at the same time but in previous three weeks as input features.

Electric power load forecasting on a medium voltage level based on regression models
and ANN was proposed in [19] using time series DSO telemetry data and weather records
from the Portuguese Institute of Sea and Atmosphere, and applied to the urban area of
Évora, one of Portugal’s first smart cities. A new top-down algorithm based on a similar
day-type method to compute an accurate short-term distribution loads forecast, using
only SCADA data from transmission grid substations was proposed in [20]. That study
was evaluated on the RBTS test system with real power consumption data to demonstrate
its accuracy. A convolutional-neural-network-based load forecasting methodology was
proposed in [21]. Electric demand forecasting with a jellyfish search extreme learning
machine, a Harris hawks extreme learning machine, and a flower pollination extreme
learning machine was discussed in [22]. Electric power load forecasting using gated
recurrent units with multisource data was discussed in [23]. Short-term load forecasting
using a niche immunity lion algorithm and convolutional neural network was studied
in [24]. Electricity demand forecasting using a dynamic adaptive entropy-based weighting
was discussed in [25]. A demand-side management technique by identifying and mitigating
the peak load of a building was studied in [26]. Electric power demand forecasting using a
vector autoregressive state-space model was discussed in [27].

Electric power load forecasting using a random forest model was discussed in [28].
In that study, authors considered wind speed, wind direction, humidity, temperature, air
pressure, and irradiance as input features. Electric power load forecasting using a group
method of data handling and support vector regression was discussed in [29]. The electric
power load prediction at the building and district levels for day-ahead energy management
using a genetic algorithm (GA) and artificial neural network (ANN) power predictions
was discussed in [30]. Short-term electric power load forecasting using feature engineering,
Bayesian optimization algorithms with a Bayesian neural network was discussed in [31].
Active power load forecasting using a sparrow search algorithm (ISSA), Cauchy mutation,
and opposition-based learning (OBL) and the long short-term memory (LSTM) network
was studied in [32]. A new hybrid model was proposed in [33] based on CNN, LSTM,
CNN_LSTM, and MLP for electric power load forecasting. All these methodologies pro-
vided valuable contributions towards the load forecasting problem, but these studies did
not include the weather impact, season and day status in load forecasting.

The main contributions of this paper are as follows:

• A new active power load dataset is developed to work on load forecasting problem
by collecting the data from a 33/11 kV distribution substation in Godishala (village),
Telangana State, India and available at https://data.mendeley.com/datasets/tj54nv4
6hj/1, accessed on 1 May 2022.

https://data.mendeley.com/datasets/tj54nv46hj/1
https://data.mendeley.com/datasets/tj54nv46hj/1
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• A machine learning model, i.e., a regression tree model is used to forecast the load on
a 33/11 kV distribution substation in Godishala.

• The active power load on a 33/11 kV substation is forecast one hour ahead based on
input features L(T-1), L(T-2), L(T-24), L(T-48), day, season, temperature, and humidity.

• The active power load on a 33/11 kV substation is forecast one day ahead based on
input features L(T-24), L(T-48), day, season, temperature, and humidity.

• A web application is developed based on a regression tree model to forecast the load
on a 33/11 kV distribution substation in Godishala.

• The impact of weather and days on short-term load forecasting is analysed by incor-
porating the season and day-status (weekday/weekend) in the data.

• A practical implementation of the system in a prototype web application, where a
regression tree model is deployed and execute the forecasts on a daily and hourly basis.

2. Methodology

This section presents the active power load data that are used to train and test the
machine learning models. Furthermore, we discuss about the regression tree model that is
used for electric power load forecasting on a 33/11 kV distribution substation in Godishala.
This substation has four feeders: the first feeder (F1) supplies load to Godishala (town), the
second feeder supplies load to Bommakal, the third feeder supplies load to the Godishala
(village), and the fourth feeder (F4) supplies load to Raikal. The complete pipeline to
develop the web application for short-term load forecasting using a regression model is
presented in Figure 2.

2.1. Active Power Load Data Analysis

To train and test the machine learning model, active power load data are required.
Hourly data consisting of voltage (V), current (I) and power factor (cos(φ)) from a 33/11 kV
distribution substation in Godishala were collected from 1 January 2021 to 31 December
2021. Based on these data, the hourly active power load was calculated using Equation (1)
and the sample load data are presented Table 1.

P =
√
(3)VIcos(φ) (1)

Table 1. Sample load data for first 5 h on 1 January 2021 at the 33/11 kV substation in Godishala.

TIME VOLTAGE (kV) CURRENT (A) cos(φ) POWER (kW)

01-00 11.6 102 0.96 1967
02-00 11.6 102 0.96 1967
03-00 11.6 102 0.96 1967
04-00 11.3 130 0.96 2443
05-00 11.2 148 0.96 2756

2.2. Features Information and Data Preparation

In this paper, the load at a particular time of the day “L(T)” was predicted based on
the last two hours of load data, i.e., L(T-1), L(T-2), the load at the same time but in the
last two days, i.e., L(T-24), L(T-48), the temperature, the humidity, the season, and the
day. Hence, data that were prepared based on collected information from the 33/11 kV
substation were rearranged as shown in Table 2. This was the approach used for hour-ahead
forecasting, whereas for day-ahead forecasting, the load at a particular time of the day
“L(T)” was predicted based on the load at the same time but in the last two days, i.e., L(T-24),
L(T-48), the temperature, the humidity, the season, and the day as presented in Table 3. The
dataset for hour-ahead forecasting had 8712 samples, 8 input features and 1 output feature.
Similarly, the dataset for day-ahead forecasting had 8712 samples, 6 input features and one
output feature.
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Table 2. First 6 samples from the dataset which was used to train and test the machine learning
models for hour-ahead forecasting.

Sample L(T-1) L(T-2) L(T-24) L(T-48) DAY SEASON Temperature Humidity L(T)

0 2175.941 446.5747 1828.916 1967.388 1 1 65 92 2236.757
1 2236.757 2175.941 1828.916 1967.388 1 1 65 92 2236.757
2 2236.757 2236.757 1828.916 1967.388 1 1 65 92 2354.481
3 2354.481 2236.757 1892.266 2442.607 1 1 77 52 2511.446
4 2511.446 2354.481 2532.345 2756.206 1 1 77 52 2805.756
5 2805.756 2511.446 3012.158 3203.158 1 1 77 52 3212.469

Table 3. First 6 samples from the dataset which was used to train and test the machine learning
models for day-ahead forecasting.

Sample L(T-24) L(T-48) DAY SEASON Temperature Humidity L(T)

0 1828.916 1967.388 1 1 65 92 2236.757
1 1828.916 1967.388 1 1 65 92 2236.757
2 1828.916 1967.388 1 1 65 92 2354.481
3 1892.266 2442.607 1 1 77 52 2511.446
4 2532.345 2756.206 1 1 77 52 2805.756
5 3012.158 3203.158 1 1 77 52 3212.469

2.3. Machine Learning Models

In this paper, a regression tree model was used to forecast the load on a 33/11 kV
substation one hour ahead and one day ahead. The problem discussed here is a regression
problem. Models need to predict the load on the substation based on input features such
as L(T-1), L(T-2), L(T-24), L(T-48), day, season, temperature, and humidity in the case of
hour-ahead forecasting, and based on input features such as L(T-24), L(T-48), day, season,
temperature, and humidity in the case of day-ahead forecasting. The performance of each
machine learning model for electric power load forecasting on a 33/11 kV substation was
observed in terms of the MSE as shown in Equation (2)

Training MSE =
1
ns

ns

∑
1
(La(T)− L(T))2

Testing MSE =
1
nt

nt

∑
1
(La(T)− L(T))2

(2)

Regression Tree

A regression tree is basically a decision tree model that is used for the task of regression,
which can be used to predict continuous valued output. In this paper, a regression tree
was used to forecast the load. For a regression problem, a tree is constructed by splitting
the input features such that the mean squared error shown in Equation (3) is minimum. A
step-by-step procedure to construct the regression tree with sample data is explained in
Appendix B, as mentioned in Algorithm 1. The performance of the regression tree model
on short-term load forecasting problem for Godishala substation was measured in terms of
error metrics such as the MSE [34], RMSE [35–37], and MAE [38]. A decision tree can also
used for classification problems [39–41].

MSE =
1
ns

(La(T)− Lp(T))2 (3)
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Algorithm 1 Regression tree model formulation

1: Read data, initialize max-depth.
2: for Depth ε range(max-depth) do
3: for Feature ε data table do
4: for Value ε feature do
5: Find the MSE for each unique split of the feature
6: Find the best split among all feature values based on the minimum MSE
7: Split the data table based on the feature corresponding to the best split
8: Start building tree by identifying the root/decision node among all features
9: end for

10: end for
11: end for

Figure 2. Workflow to develop web application.

3. Result Analysis

All the machine learning models were developed based on the data available in [42] us-
ing Google Colab. this section presents the data analysis, training and testing performance
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of machine learning models, and the web application developed to predict the load. Out
of 8712 samples, 95% of samples were used for training and the remaining 5% of samples
were used for testing. The data processing techniques for observing the data distribution
and outliers and for data normalization were used before using these data to train and
test the regression model. A stochastic gradient descent optimizer was used to train the
regression models.

3.1. Regression Tree Model

The performance of the regression tree model that was developed to forecast the load
L(T) based on features L(T-1), L(T-2), L(T-24), L(T-48), day and season status, temperature,
and humidity was observed based on training and testing errors for hour-ahead load
forecasting (HALF). The training and testing error metrics of the regression tree model
are presented in Table 4 for HALF. From Table 4, it is observed that the regression model
with a depth “5” had lowest testing MSE, i.e., 0.005 and was also well fitted without much
difference between training and testing errors. Hence, the regression tree with a depth
“5” was considered as the optimal model to deploy in a web application for hour-ahead
forecasting. The complete architecture of the regression tree with a depth “5” for day-ahead
load forecasting is shown in Figure 3.

Table 4. Training and testing errors of regression tree model for HALF.

Depth Error Metrics Training Testing Depth Error Metrics Training Testing

5 MSE 0.004 0.005 25 MSE 0.000 0.008
RMSE 0.066 0.072 RMSE 0.001 0.090
MAE 0.039 0.044 MAE 0.000 0.049

10 MSE 0.001 0.006 30 MSE 0.000 0.008
RMSE 0.037 0.080 RMSE 0.001 0.089
MAE 0.021 0.043 MAE 0.000 0.048

15 MSE 0.000 0.008 34 MSE 0.000 0.008
RMSE 0.011 0.087 RMSE 0.001 0.087
MAE 0.006 0.047 MAE 0.000 0.048

Similarly, for day-ahead forecasting (DALF), the performance of the regression tree
model that was developed to forecast the load L(T) based on features L(T-24), L(T-48), day
and season status, temperature, and humidity was observed based on training and testing
errors. The training and testing error metrics of the regression tree model are presented in
Table 5 for DALF. From Table 5, it is observed that regression model with a depth “6” had
lowest testing MSE, i.e., 0.00869 and was also well fitted without much difference between
training and testing errors. Hence, the regression tree with a depth “6” was considered as
the optimal model to deploy in a web application for day-ahead forecasting. The complete
architecture of the regression tree with a depth “6” for day-ahead load forecasting is shown
in Figure 4.

Table 5. Training and testing errors of regression tree model for DALF.

Depth Error Metrics Training Testing Depth Error Metrics Training Testing

6 MSE 0.00650 0.00869 24 MSE 0.00001 0.01419
RMSE 0.08063 0.09322 RMSE 0.00436 0.11911
MAE 0.04931 0.05647 MAE 0.00068 0.06984

12 MSE 0.00209 0.01201 30 MSE 0.00001 0.01367
RMSE 0.04569 0.10959 RMSE 0.00320 0.11692
MAE 0.02621 0.06301 MAE 0.00025 0.06930

18 MSE 0.00019 0.01358 36 MSE 0.00001 0.01387
RMSE 0.01390 0.11655 RMSE 0.00319 0.11776
MAE 0.00547 0.06793 MAE 0.00024 0.06933
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Figure 3. Regression tree architecture for HALF.

Figure 4. Regression tree architecture for DALF.
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The distribution of the predicted load with the regression tree model having a training
MSE of 0.004 and a testing MSE of 0.005 was compared with actual load samples for the
training and testing data for HALF and is presented in Figure 5. Similarly, the distribution
of the predicted load with the regression tree model having a training MSE of 0.0065 and a
testing MSE of 0.00869 was compared with actual load samples for the training and testing
data for DALF and is presented in Figure 6. From Figures 5 and 6, it is observed that most
of the predicted and actual load samples are overlapping each other.

(a) (b)
Figure 5. Distribution of predicted and actual load samples with regression tree model for HALF.
(a) Hour-ahead load forecasting: predicted load vs. actual load for training data. (b) Hour-ahead
load forecasting: predicted load vs. actual load for testing data.

(a) (b)
Figure 6. Distribution of predicted and actual load samples with regression tree model for DALF.
(a) Day-ahead load forecasting: predicted load vs. actual load for training data, (b) Day-ahead load
forecasting: predicted load vs. actual load for testing data.

The predicted load using the regression tree model was compared with the actual
load on 31 December 2021 and presented in Figure 7. From Figure 7, it is observed that the
predicted load using the regression tree model is almost following the actual load curve
during night time but has more differences during day time, and also that the predicted load
is slightly further away from the actual load curve in the case of DALF in comparison with
HALF. As in the first case, the load was predicted one day earlier, i.e., a 24 h time horizon.
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(a) HALF: predicted load vs. actual load

(b) DALF: predicted load vs. actual load

Figure 7. Distribution of predicted and actual load samples with regression tree model on 31
December 2021.

A web application was developed using the optimal regression tree models to pre-
dict the load one hour ahead and one day ahead for a real-time usage as a prototype
and is shown in Figure 8. This web application is accessible through the link https:
//loadforecasting-godishala-rt.herokuapp.com/, accessed on 1 May 2022 or through the
QR code shown in Figure 8.

https://loadforecasting-godishala-rt.herokuapp.com/
https://loadforecasting-godishala-rt.herokuapp.com/
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(a) Hour-ahead load forecasting

(b) Day-ahead load forecasting

(c) About page of the application

(d) QR code to access the web application

Figure 8. Web application to predict active power load on a 33/11 kV substation in Godishala,
Telangana State, India, developed using a regression tree model.
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3.2. Impact of Season and Day on Regression Model Prediction

The forecasting performance of the trained machine learning model for HALF on
various seasons, i.e., rainy, winter, and summer, is presented in Figure 9. From Figure 9,
it is observed that the developed regression tree model is able to forecast the load with
almost the same level of error (with very minor changes in error) for all seasons.

Figure 9. Regression tree performance with respect to various seasons for HALF.

The forecasting performance of the trained machine learning model for HALF on
various seasons, i.e., rainy, winter, and summer, is presented in Figure 10. From Figure 10,
it is observed that the developed regression tree model is able to forecast the load with
almost the same level of error irrespective of whether it is weekday or weekend.

Figure 10. Regression tree performance with respect to various day status for HALF.

3.3. Comparative Analysis

The performance of the machine learning model, i.e., the regression tree model, was
compared with a linear regression model in terms of training and testing mean squared
error for both HALF and DALF and presented in Figure 11. From Figure 11, it is observed
that the regression tree model is forecasting the load with less error in comparison with the
linear regression model for both HALF and DALF. In case of DALF, the model is forecasting
the load with more error than HALF, as the latter one forecast the load just one hour ahead.
The regression tree model is well fitted without much difference between training and
testing errors.
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(a) Performance comparison for HALF (b) Performance comparison for DALF

Figure 11. Machine learning models performance comparison in terms of training and testing mean
squared errors.

4. Conclusions

Electric power load forecasting one hour ahead and one day ahead are required for
utilities to place a bid successfully in hour-ahead energy markets and day-ahead energy
markets. In this paper, the active power on a 33/11 kV substation was predicted one hour
ahead based on the load available in the last two hours and last two days at the time of
prediction, and the day status, season status, temperature, and humidity. Similarly, the
load was predicted one day ahead based on the load available in the last two days at the
time of prediction, and the day status, season status, temperature, and humidity. A robust
machine learning model was developed to forecast the load with good accuracy irrespective
of the weather conditions and types of the day by incorporating features such as season,
temperature, humidity, and day-status.

In this work, a machine learning model, i.e., a regression tree model was developed to
predict the active power load on a 33/11 kV substation located in the Godishala village
in Telangana State, India. Based on the results, it was observed that the regression tree
model predicted the load one hour and one day ahead with less mean squared error in
comparison with the linear regression model.

This work can be further extended by considering deep neural networks, sequence
models, and conventional time series data prediction models. In this paper, the temperature
and humidity data at the time of prediction were considered from an open-source website.
However, we are currently further extending the model by integrating temperature and
humidity forecasting models with the current load forecasting models.
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Abbreviations
The following abbreviations are used in this manuscript:

L(T-1) Active power load one hour before the time of prediction
L(T-2) Active power load two hours before the time of prediction
L(T-24) Active power load one day before the time of prediction
L(T-48) Active power load two days before the time of prediction
L(T) Active power load at hour “T”
MSE Mean squared error
HALF Hour-ahead load forecasting
DALF Day-ahead load forecasting
RMSE Root-mean-square error
MSE Mean absolute error
La(T) Actual load at hour “T”
Lp(T) Predicted load at hour “T”
ns Number of training samples
nt Number of testing samples

Appendix A. Conversion of Continuous Data into Categorical Data

In this section, the step-by-step procedure that was used to build the regression tree
model is presented. For this purpose, a sample dataset that was built from a few samples
of the original dataset is shown in Table A1.

Table A1. Sample data to build the regression tree.

L(T-24) L(T-48) DAY SEASON TEMP HUMIDITY L(T)

2176 412 1 1 67 88 432
2354 1829 0 1 68 88 2260
2777 2647 0 2 70 83 2681
3112 3203 1 2 75 67 3343
1663 1549 1 0 75 73 1579
1010 1027 0 0 71 93 1018

To convert continuous features into categorical features, multiple subtables were
formed from Table A1. Each subtable consisted of one input feature and one target feature.
We sorted each subtable in ascending order of input feature in that table. We calculated
the average between every two continuous input feature values. We converted continuous
input features into categorical features based on their average value. We found the mean
squared value for each average and the average value that gave lowest “MSE” were treated
as threshold for that feature.

• Prepare the subtable for input feature L(T-24) and output feature L(T) as shown in
Table A2.

Table A2. Sorted subtable—L(T-24) vs. L(T).

L(T-24) L(T)

1010 1018
1663 1579
2176 432
2354 2260
2777 2681
3112 3343
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• Calculate the average between every two continuous input feature values for L(T-24)
and the average values are [1336, 1919, 2265, 2566, 2945].

• Convert the continuous input feature L(T-24) into a categorical feature based on the
average value 1336 and Table A2, as shown in Table A3. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A3. Categorical subtable—L(T-24) vs. L(T).

L(T-24) L(T) LP(T)

<1336 1018 1018
≥1336 1579 1579+432+2260+2681+3343

5 = 2059
≥1336 432 2059
≥1336 2260 2059
≥1336 2681 2059
≥1336 3343 2059

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A3 and presented below

(1018−1018)2+(1579−2059)2+(432−2059)2+(2260−2059)2+(2681−2059)2+(3343−2059)2

6 = 825,622.

• Convert the continuous input feature L(T-24) into a categorical feature based on the
average value 1919 and Table A2, as shown in Table A4. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A4. Categorical subtable—L(T-24) vs. L(T) with average value 1919.

L(T-24) L(T) LP(T)

<1919 1018 1298
<1919 1579 1298
≥1919 432 432+2260+2681+3343

4 = 2179
≥1919 2260 2179
≥1919 2681 2179
≥1919 3343 2179

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A4 and presented below

(1018−1298)2+(1579−1298)2+(432−2179)2+(2260−2179)2+(2681−2179)2+(3343−2179)2

6 = 803,903.

• Convert the continuous input feature L(T-24) into a categorical feature based on the
average value 2265 and Table A2, as shown in Table A5. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A5. Categorical subtable—L(T-24) vs. L(T) with average value 2265.

L(T-24) L(T) LP(T)

<2265 1018 1018+1579+432
3 = 1010

<2265 1579 1010
<2265 432 1010
≥2265 2260 2260+2681+3343

3 = 2761
≥2265 2681 2761
≥2265 3343 2761

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A5 and presented below
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(1018−1010)2+(1579−1010)2+(432−1010)2+(2260−2761)2+(2681−2761)2+(3343−2761)2

6 = 209,064.

• Convert the continuous input feature L(T-24) into a categorical feature based on the
average value 2566 and Table A2, as shown in Table A6. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A6. Categorical subtable—L(T-24) vs. L(T) with average value 2566.

L(T-24) L(T) LP(T)

<2566 1018 1018+1579+432+2260
4 = 1322

<2566 1579 1322
<2566 432 1322
<2566 2260 1322
≥2566 2681 2681+3343

2 = 3012
≥2566 3343 3012

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A6 and presented below

(1018−1322)2+(1579−1322)2+(432−1322)2+(2260−1322)2+(2681−3012)2+(3343−3012)2

6 = 341,675.

• Convert the continuous input feature L(T-24) into a categorical feature based on the
average value 2945 and Table A2, as shown in Table A7. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A7. Categorical subtable—L(T-24) vs. L(T) with average value 2945.

L(T-24) L(T) LP(T)

<2945 1018 1018+1579+432+2260+2681
5 = 1594

<2945 1579 1594
<2945 432 1594
<2945 2260 1594
<2945 2681 1594
≥2945 3343 3343

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A7 and presented below

(1018−1594)2+(1579−1594)2+(432−1594)2+(2260−1594)2+(2681−1594)2+(3343−3343)2

6 = 551,591.

• Prepare subtable for input feature L(T-48) and output feature L(T) as shown in
Table A8.

Table A8. Sorted subtable—L(T-48) vs. L(T).

L(T-48) L(T)

412 432
1027 1018
1549 1579
1829 2260
2647 2681
3203 3343

• Calculate the average between every two continuous input feature values for L(T-48)
and the average values are [720, 1288, 1689, 2238, 2925].
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• Convert the continuous input feature L(T-48) into a categorical feature based on the
average value 720 and Table A8, as shown in Table A9. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A9. Categorical subtable—L(T-48) vs. L(T).

L(T-48) L(T) LP(T)

<720 432 432
≥720 1018 1018+1579+2260+2681+3343

5 = 2176.2
≥720 1579 2176.2
≥720 2260 2176.2
≥720 2681 2176.2
≥720 3343 2176.2

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A9 and presented below

(432−432)2+(1018−2176.2)2+(1579−2176.2)2+(2260−2176.2)2+(2681−2176.2)2+(3343−2176.2)2

6 = 553,557.1333.

• Convert the continuous input feature L(T-48) into a categorical feature based on the
average value 1288 and Table A8, shown in Table A10. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A10. Categorical subtable—L(T-48) vs. L(T).

L(T-48) L(T) LP(T)

<1288 432 432+1018
2 = 725

<1288 1018 725
≥1288 1579 1579+2260+2681+3343

4 = 2465.75
≥1288 2260 2465.75
≥1288 2681 2465.75
≥1288 3343 2465.75

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A10 and presented below

(432−725)2+(1018−725)2+(1579−2465.75)2+(2260−2465.75)2+(2681−2465.75)2+(3343−2465.75)2

6 = 302,709.4583.

• Convert the continuous input feature L(T-48) into a categorical feature based on the
average value 1689 and Table A8, as shown in Table A11. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A11. Categorical subtable—L(T-48) vs. L(T).

L(T-48) L(T) LP(T)

<1689 432 432+1018+1579
3 = 1009.666667

<1689 1018 1009.666667
<1689 1579 1009.666667
≥1689 2260 2260+2681+3343

3 = 2761.333333
≥1689 2681 2761.333333
≥1689 3343 2761.333333

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A11 and presented below

(432−1009.67)2+(1018−1009.67)2+(1579−1009.67)2+(2260−2761.33)2+(2681−2761.33)2+(3343−2761.33)2

6 = 209,005.5556.
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• Convert the continuous input feature L(T-48) into a categorical feature based on the
average value 2238 and Table A8, as shown in Table A12. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A12. Categorical subtable—L(T-48) vs. L(T).

L(T-48) L(T) LP(T)

<2238 432 432+1018+1579+2260
4 = 1322.25

<2238 1018 1322.257
<2238 1579 1322.25
<2238 2260 1322.25
≥2238 2681 2681+3343

2 = 3012
≥2238 3343 3012

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A12 and presented below

(432−1322.25)2+(1018−1322.25)2+(1579−1322.25)2+(2260−1322.25)2+(2681−3012)2+(3343−3012)2

6 = 341,588.4583.

• Convert the continuous input feature L(T-48) into a categorical feature based on the
average value 2925 and Table A8, as shown in Table A13. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A13. Categorical subtable—L(T-48) vs. L(T).

L(T-48) L(T) LP(T)

<2925 432 432+1018+1579+2260+2681
5 = 1594

<2925 1018 1594
<2925 1579 1594
<2925 2260 1594
<2925 2681 1594
≥2925 3343 3343

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A13 and presented below

(432−1594)2+(1018−1594)2+(1579−1594)2+(2260−1594)2+(2681−1594)2+(3343−3343)2

6 = 551,228.3333.

• Prepare subtable for input feature L(TEMP) and output feature L(T) and shown in
Table A14

Table A14. Sorted subtable—L(TEMP) vs. L(T).

L(TEMP) L(T)

67 432
68 2260
70 2681
71 1018
75 3343
75 1579

• Calculate average between every two continuous input feature values for L(TEMP)
and the average values are [67.5, 69, 70.5, 73, 75].

• Convert the continuous input feature L(TEMP) into a categorical feature based on the
average value 67.5 and Table A14, as shown in Table A15. The predicted value against
each category of input feature is the average of all output variables for that category.
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Table A15. Categorical subtable—L(TEMP) vs. L(T).

L(TEMP) L(T) LP(T)

<67.5 432 432
≥67.5 2260 2260+2681+1018+3343+1579

5 = 2176.2
≥67.5 2681 2176.2
≥67.5 1018 2176.2
≥67.5 3343 2176.2
≥67.5 1579 2176.2

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A15 and presented below

(432−432)2+(2260−2176.2)2+(2681−2176.2)2+(1018−2176.2)2+(3343−2176.2)2+(1579−2176.2)2

6 = 553,557.

• Convert the continuous input feature L(TEMP) into a categorical feature based on the
average value 69 and Table A14, as shown in Table A16. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A16. Categorical subtable—L(TEMP) vs. L(T).

L(TEMP) L(T) LP(T)

<69 432 432+2260
2 = 1346

<69 2260 1346
≥69 2681 2681+1018+3343+1579

4 = 2155.25
≥69 1018 2155.25
≥69 3343 2155.25
≥69 1579 2155.25

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A16 and presented below

(432−1346)2+(2260−1346)2+(2681−2155.25)2+(1018−2155.25)2+(3343−2155.25)2+(1579−2155.25)2

6 = 830,559.

• Convert the continuous input feature L(TEMP) into a categorical feature based on the
average value 70.5 and Table A14, as shown in Table A17. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A17. Categorical subtable—L(TEMP) vs. L(T).

L(TEMP) L(T) LP(T)

<70.5 432 432+2260+2681
3 = 1791

<70.5 2260 1791
<70.5 2681 1791
≥70.5 1018 1018+3343+1579

3 = 1980
≥70.5 3343 1980
≥70.5 1579 1980

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A17 and presented below

(432−1791)2+(2260−1791)2+(2681−1791)2+(1018−1980)2+(3343−1980)2+(1579−1980)2

6 = 967,159.

• Convert the continuous input feature L(TEMP) into a categorical feature based on the
average value 73 and Table A14, as shown in Table A18. The predicted value against
each category of input feature is the average of all output variables for that category.
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Table A18. Categorical subtable—L(TEMP) vs. L(T).

L(TEMP) L(T) LP(T)

<73 432 432+2260+2681+1018
4 = 1597.75

<73 2260 1597.75
<73 2681 1597.75
<73 1018 1597.75
≥73 3343 3343+1579

2 = 2461
≥73 1579 2461

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A18 and presented below

(432−1597.75)2+(2260−1597.75)2+(2681−1597.75)2+(1018−1597.75)2+(3343−2461)2+(1579−2461)2

6 = 810,489.

• Convert the continuous input feature L(TEMP) into a categorical feature based on the
average value 75 and Table A14, as shown in Table A19. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A19. Categorical subtable—L(TEMP) vs. L(T).

L(TEMP) L(T) LP(T)

<75 432 432+2260+2681+1018+3343
5 = 1946.8

<75 2260 1946.8
<75 2681 1946.8
<75 1018 1946.8
<75 3343 1946.8
≥75 1579 1579

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A19 and presented below

(432−1946.8)2+(2260−1946.8)2+(2681−1946.8)2+(1018−1946.8)2+(3343−1946.8)2+(1579−1579)2

6 = 957,301.

• Prepare subtable for input feature Humidity and output feature L(T) and shown in
Table A20

Table A20. Sorted subtable—Humidity vs. L(T).

Humidity L(T)

67 3343
73 1579
83 2681
88 432
88 2260
93 1018

• Calculate average between every two continuous input feature values for Humidity
and the average values are [70, 78, 85.5, 88, 90.5].

• Convert the continuous input feature Humidity into a categorical feature based on the
average value 70 and Table A20, as shown in Table A21. The predicted value against
each category of input feature is the average of all output variables for that category.
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Table A21. Categorical subtable—Humidity vs. L(T).

Humidity L(T) LP(T)

<70 3343 3343
≥70 1579 432+2260+1018+3343+1579

5 = 1594
≥70 2681 1594
≥70 432 1594
≥70 2260 1594
≥70 1018 1594

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A21 and presented below

(3343−3343)2+(1579−1594)2+(2681−1594)2+(432−1594)2+(2260−1594)2+(1018−1594)2

6 = 551,228.

• Convert the continuous input feature Humidity into a categorical feature based on the
average value 78 and Table A20, as shown in Table A22. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A22. Categorical subtable—Humidity vs. L(T).

Humidity L(T) LP(T)

<78 3343 3343+1579
2 = 2461

<78 1579 2461
≥78 2681 2681+432+2260+1018

4 = 1597.75
≥78 432 1597.75
≥78 2260 1597.75
≥78 1018 1597.75

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A22 and presented below

(3343−2461)2+(1579−2461)2+(2681−1597.75)2+(432−1597.75)2+(2260−1597.75)2+(1018−1597.75)2

6 = 810,489.

• Convert the continuous input feature Humidity into a categorical feature based on the
average value 85.5 and Table A20, as shown in Table A23. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A23. Categorical subtable—Humidity vs. L(T).

Humidity L(T) LP(T)

<85.5 3343 3343+1579+2681
3 = 2534.33

<85.5 1579 2534.33
<85.5 2681 2534.33
≥85.5 432 432+2260+1018

3 = 1236.67
≥85.5 2260 1236.67
≥85.5 1018 1236.67

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A23 and presented below

(3343−2534.33)2+(1579−2534.33)2+(2681−2534.33)2+(432−1236.67)2+(2260−1236.67)2+(1018−1236.67)2

6 = 555,105

• Convert the continuous input feature Humidity into a categorical feature based on the
average value 88 and Table A20, as shown in Table A24. The predicted value against
each category of input feature is the average of all output variables for that category.
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Table A24. Categorical subtable—Humidity vs. L(T).

Humidity L(T) LP(T)

<88 3343 3343+1579+2681+432
4 = 2008.75

<88 1579 2008.75
<88 2681 2008.75
<88 432 2008.75
≥88 2260 2260+1018

2 = 1639
≥88 1018 1639

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A24 and presented below

(3343−2008.75)2+(1579−2008.75)2+(2681−2008.75)2+(432−2008.75)2+(2260−1639)2+(1018−1639)2

6 = 945,708

• Convert the continuous input feature Humidity into a categorical feature based on the
average value 90.5 and Table A20, as shown in Table A25. The predicted value against
each category of input feature is the average of all output variables for that category.

Table A25. Categorical subtable—Humidity vs. L(T).

Humidity L(T) LP(T)

<90.5 3343 3343+1579+2681+432+2260
5 = 2059

<90.5 1579 2059
<90.5 2681 2059
<90.5 432 2059
<90.5 2260 2059
≥90.5 1018 1018

• Calculate the mean squared error based on the actual and predicted load values shown
in Table A25 and presented below

(3343−2059)2+(1579−2059)2+(2681−2059)2+(432−2059)2+(2260−2059)2+(1018−1018)2

6 = 825,578
From all the above calculations, the minimum MSE value for the feature “T-24” is

209,064 for the split ≥2265, the minimum MSE value for the feature “T-48” is 209,006 for
the split ≥1689, the minimum MSE value for the feature “Temperature” is 553,557 for the
split ≥67.5, the minimum MSE value for the feature “Humidity” is 551,228 for the split ≥70.
Hence, these splits against each feature were used to convert the continuous data shown in
Table A1 into categorical data, as shown in Table A26. Furthermore, the MSE value for the
day with categories (1 and 0) is 965,922 and the MSE value for the season with categories
(0, 1, and 2) is 747157. All the MSE values are presented in Table A1 with bold font.

Table A26. Sample categorical data to build regression tree.

L(T-24) L(T-48) DAY SEASON TEMP HUMIDITY L(T)

<2265 <1689 1 1 <67.5 ≥70 432
≥2265 ≥1689 0 1 ≥67.5 ≥70 2260
≥2265 ≥1689 0 2 ≥67.5 ≥70 2681
≥2265 ≥1689 1 2 ≥67.5 <70 3343
<2265 <1689 1 0 ≥67.5 ≥70 1579
<2265 <1689 0 0 ≥67.5 ≥70 1018

209,064 209,006 965,922 747,157 553,557 551,228 –

Appendix B. Regression Tree Model Formulation

From Table A26, we observe that L(T-48) has a minimum MSE value, i.e., 209,006 in
comparison with all the remaining features. Hence, the input feature L(T-48) is considered
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as a root node for the regression tree and that node has two branches ≥1689 and <1689.
In order to identify the decision node under each branch, Table A26 is divided into two
subtables, presented in Tables A27 and A28.

Table A27. Subtable: L(T-48) < 1689.

L(T-24) DAY SEASON TEMP HUMIDITY T

<2265 1 1 <67.5 ≥70 432
<2265 1 0 ≥67.5 ≥70 1579
<2265 0 0 ≥67.5 ≥70 1018

Table A28. Subtable: L(T-48) ≥ 1689.

L(T-24) DAY SEASON TEMP HUMIDITY T

≥2265 0 1 ≥67.5 ≥70 2260
≥2265 0 2 ≥67.5 ≥70 2681
≥2265 1 2 ≥67.5 <70 3343

• In order to identify the decision node among L(T-24), day, season, temperature, and
humidity under branch < 1689 Table A28 is further divided into multiple subtables
based on each input feature.

• A subtable based on input feature L(T-24) and target variable L(T) is presented in
Table A29. From Table A29, it is observed that input feature L(T-24) has an MSE value
of 219,303.

Table A29. L(T-24) vs. L(T) for L(T-48) < 1689.

L(T-24) L(T) Prediction Squared Error MSE

<2265 432 1010 333,699
<2265 1579 1010 324,140 219,303
<2265 1018 1010 69

• A subtable based on input feature day and target variable L(T) is presented in Ta-
ble A30. From Table A30, it is observed that input feature day has an MSE value
of 219,268.

Table A30. Day vs. L(T) for L(T-48) < 1689.

Day L(T) Prediction Squared Error MSE

1 432 1005.5 328,902.25
1 1579 1005.5 328,902.25 219,268
0 1018 1018 0

• A subtable based on input feature season and target variable L(T) is presented in
Table A31. From Table A31, it is observed that input feature season has an MSE value
of 52,454.

Table A31. Season vs. L(T) for L(T-48) < 1689.

Season L(T) Prediction Squared Error MSE

1 432 432 0
0 1579 1298.5 78,680.25 52,454
0 1018 1298.5 78,680.25
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• A subtable based on input feature temperature and target variable L(T) is presented in
Table A32. From Table A32, it is observed that input feature temperature has an MSE
value of 52,454.

Table A32. Temperature vs. L(T) for L(T-48) < 1689.

Temperature L(T) Prediction Squared Error MSE

<67.5 432 432 0
≥67.5 1579 1298.5 78,680.25 52454
≥67.5 1018 1298.5 78,680.25

• A subtable based on input feature humidity and target variable L(T) is presented in
Table A33. From Table A33, it is observed that input feature humidity has an MSE
value of 219,303 .

Table A33. Humidity vs. L(T) for L(T-48) < 1689.

Humidity L(T) Prediction Squared Error MSE

≥70 432 1009.67 333,698.78
≥70 1579 1009.67 324,140.44 219,303
≥70 1018 1009.67 69.44

It is observed from the above calculations that season and temperature have a min-
imum MSE, i.e., 52,454. Here, season is considered as a decision node under branch
L(T-48) < 1689. Now, the node season has two branches, i.e., season “1” and “0”. In order
to identify the decision/leaf node under each branch, Table A27 is divided into two sub-
tables, presented in Tables A34 and A35. From Table A34, it is observed that the branch
corresponding to season “1” has a leaf node with value 432.

Table A34. Subtable: L(T-48) < 1689 and season = “1”.

T-24 DAY TEMP HUMIDITY T

<2265 1 <67.5 ≥70 432

Table A35. Subtable: L(T-48) < 1689 and season = “0”.

T-24 DAY TEMP HUMIDITY T

<2265 1 ≥67.5 ≥70 1579
<2265 0 ≥67.5 ≥70 1018

In order to identify the decision node among L(T-24), day, temperature, and humidity
under branch season “0”, Table A35 is divided into multiple subtables with respect to
each feature.

• A subtable based on input feature L(T-24) and target variable L(T) is presented in
Table A36. From Table A36, it is observed that input feature L(T-24) has an MSE value
of 78,680.

Table A36. L(T-24) vs. L(T) for L(T-48) < 1689 and season “0”.

L(T-24) L(T) Prediction Squared Error MSE

<2265 1579 1298.5 78,680 78,680
<2265 1018 1298.5 78,680
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• A subtable based on input feature day and target variable L(T) is presented in Ta-
ble A37. From Table A37, it is observed that input feature day has an MSE value
of 0.

Table A37. Day vs. L(T) for L(T-48) < 1689 and season “0”.

Day L(T) Prediction Squared Error MSE

1 1579 1579 0 0
0 1018 1018 0

• A subtable based on input feature temperature and target variable L(T) is presented in
Table A38. From Table A38, it is observed that input feature temperature has an MSE
value of 78,680.

Table A38. Temperature vs. L(T) for L(T-48) < 1689 and season “0”.

Temperature L(T) Prediction Squared Error MSE

≥67.5 1579 1298.5 78,680 78,680
≥67.5 1018 1298.5 78,680

• A subtable based on input feature humidity and target variable L(T) is presented in
Table A39. From Table A39, it is observed that input feature humidity has an MSE
value of 78,680.

Table A39. Humidity vs. L(T) for L(T-48) < 1689 and season “0”.

Humidity L(T) Prediction Squared Error MSE

≥70 1579 1298.5 78,680 78,680
≥70 1018 1298.5 78,680

It is observed from the above calculations that feature “Day” has a minimum MSE,
i.e., 0. Here, “Day” is considered as decision node under the season “0” branch. Now, node
“Day” has two branches, i.e., day “0” and “1” as presented in Table A37. From Table A37, it
is observed that the branch corresponding to day “1” has a leaf node with value 1579 and
day “0” has a leaf node with value 1018.

• In order to identify the decision node among L(T-24), day, season, temperature,and
humidity under branch ≥1689, Table A40 is further divided into multiple subtables
based on each input feature.

• A subtable based on input feature L(T-24) and target variable L(T) is presented in
Table A40. From Table A40, it is observed that input feature L(T-24) has an MSE value
of 198,708.

Table A40. L(T-24) vs. L(T) for L(T-48) ≥ 1689.

L(T-24) L(T) Prediction Squared Error MSE

≥2265 2260 2761.33 251,335
≥2265 2681 2761.33 6453 198,708
≥2265 3343 2761.33 338,336

• A subtable based on input feature day and target variable L(T) is presented in Ta-
ble A41. From Table A41, it is observed that input feature day has an MSE value
of 29,540.
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Table A41. Day vs. L(T) for L(T-48) ≥ 1689.

Day L(T) Prediction Squared Error MSE

0 2260 2470.5 44310
0 2681 2470.5 44310 29,540
1 3343 3343 0

• A subtable based on input feature season and target variable L(T) is presented in
Table A42. From Table A42, it is observed that input feature season has an MSE value
of 73041.

Table A42. Season vs. L(T) for L(T-48) ≥ 1689.

Season L(T) Prediction Squared Error MSE

1 2260 2260 0
2 2681 3012 109,561 73,041
2 3343 3012 109,561

• A subtable based on input feature temperature and target variable L(T) is presented in
Table A43. From Table A43, it is observed that input feature temperature has an MSE
value of 198,708.

Table A43. Temperature vs. L(T) for L(T-48) ≥ 1689.

Temperature L(T) Prediction Squared Error MSE

≥67.5 2260 2761.33 251,335
≥67.5 2681 2761.33 6453 198,708
≥67.5 3343 2761.33 338,336

• A subtable based on input feature humidity and target variable L(T) is presented in
Table A44. From Table A44, it is observed that input feature humidity has an MSE
value of 219,303 .

Table A44. Humidity vs. L(T) for L(T-48) ≥ 1689.

Humidity L(T) Prediction Squared Error MSE

≥70 2260 2470.5 44310
≥70 2681 2470.5 44310 29,540
<67.5 3343 3343 0

It is observed from the above calculations that day and humidity have a minimum MSE,
i.e., 29,540. Here, day is considered as a decision node under branch L(T-48) ≥ 1689. Now,
the node day has two branches, i.e., day “1” and “0”. In order to identify the decision/leaf
node under each branch, Table A28 is divided into two subtables, as presented in Table A45
and in Table A46. From Table A45, it is observed that the branch corresponding to day “1”
has a leaf node with value 3343.

Table A45. Subtable: L(T-48) ≥ 1689 and day = “1”.

L(T-24) SEASON TEMP HUMIDITY L(T)

≥2265 2 ≥67.5 <70 3343
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Table A46. Subtable: L(T-48) ≥ 1689 and Day = “0”.

L(T-24) SEASON TEMP HUMIDITY L(T)

≥2265 1 ≥67.5 ≥70 2260
≥2265 2 ≥67.5 ≥70 2681

In order to identify the decision node among L(T-24), season, temperature, and hu-
midity under the branch day “0”, Table A46 is divided into multiple subtables with respect
to each feature.

• A subtable based on input feature L(T-24) and target variable L(T) is presented in
Table A47. From Table A47, it is observed that input feature L(T-24) has an MSE value
of 44,310.25 .

Table A47. L(T-24) vs. L(T) for L(T-48) ≥ 1689 and day “0”.

L(T-24) L(T) Prediction Squared Error MSE

≥2265 2260 2470.5 44,310.25 44,310.25
≥2265 2681 2470.5 44,310.25

• A subtable based on input feature deason and target variable L(T) is presented in
Table A48. From Table A48, it is observed that input feature season has an MSE value
of 0.

Table A48. season vs. L(T) for L(T-48) ≥ 1689 and day “0”.

Season L(T) Prediction Squared Error MSE

1 2260 2260 0 0
2 2681 2681 0

• A subtable based on input feature temperature and target variable L(T) is presented in
Table A49. From Table A49, it is observed that input feature temperature has an MSE
value of 44,310.25 .

Table A49. Temperature vs. L(T) for L(T-48) ≥ 1689 and day “0”.

Temperature L(T) Prediction Squared Error MSE

≥67.5 2260 2470.5 44,310.25 44,310.25
≥67.5 2681 2470.5 44,310.25

• A subtable based on input feature humidity and target variable L(T) is presented in
Table A50. From Table A50, it is observed that input feature humidity has an MSE
value of 44,310.25.

Table A50. Humidity vs. L(T) for L(T-48) ≥ 1689 and day “0”.

Humidity L(T) Prediction Squared Error MSE

≥70 2260 2470.5 44,310.25 44,310.25
≥70 2681 2470.5 44,310.25

It is observed from the above calculations that feature “Season” has a minimum MSE,
i.e., 0. Here, “Season” is considered as a decision node under branch day “0”. Now node
“Season” has two branches, i.e., season “1” and “2” as presented in Table A48. From
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Table A48, it is observed that the branch corresponding to season “1” has a leaf node
with value 2260 and season “2” has a leaf node with value 2681. Finally, the complete
decision tree to predict load L(T) based on the features, i.e., L(T-24), L(T-48), day, season,
temperature, and humidity is shown in Figure A1. The decision tree shown in Figure A1
was used to predict the load shown in Table A1 and the predicted load is shown in Table A51.
From Table A51, it is observed that both actual and predicted load values are equal.

Figure A1. Regression tree architecture with sample data.

Table A51. Predicted load from sample data using regression tree.

L(T-24) L(T-48) DAY SEASON TEMP HUMIDITY L(T) Lp(T)

2176 412 1 1 67 88 432 432
2354 1829 0 1 68 88 2260 2260
2777 2647 0 2 70 83 2681 2681
3112 3203 1 2 75 67 3343 3343
1663 1549 1 0 75 73 1579 1579
1010 1027 0 0 71 93 1018 1018
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