computers

Article

Combining Log Files and Monitoring Data to Detect Anomaly
Patterns in a Data Center

Laura Viola 1@, Elisabetta Ronchieri 1%*

check for
updates

Citation: Viola, L.; Ronchieri, E.;
Cavallaro, C. Combining Log Files
and Monitoring Data to Detect
Anomaly Patterns in a Data Center.
Computers 2022, 11, 117. https://
doi.org/10.3390/computers11080117

Academic Editor: Leandros Maglaras

Received: 10 June 2022
Accepted: 22 July 2022
Published: 26 July 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Claudia Cavallaro 3*

Department of Statistical Sciences, University of Bologna, 40126 Bologna, Italy; laura.viola5@studio.unibo.it
INFN CNAF, 40126 Bologna, Italy

Department of Mathematics and Computer Science, University of Catania, 95124 Catania, Italy

* Correspondence: elisabetta.ronchieri@cnaf.infn.it (E.R.); claudia.cavallaro@unict.it (C.C.);

Tel.: +39-0512095072 (E.R.)

W N =

Abstract: Context—Anomaly detection in a data center is a challenging task, having to consider dif-
ferent services on various resources. Current literature shows the application of artificial intelligence
and machine learning techniques to either log files or monitoring data: the former created by services
at run time, while the latter produced by specific sensors directly on the physical or virtual machine.
Objectives—We propose a model that exploits information both in log files and monitoring data
to identify patterns and detect anomalies over time both at the service level and at the machine level.
Methods—The key idea is to construct a specific dictionary for each log file which helps to extract
anomalous n-grams in the feature matrix. Several techniques of Natural Language Processing, such
as wordclouds and Topic modeling, have been used to enrich such dictionary. A clustering algo-
rithm was then applied to the feature matrix to identify and group the various types of anomalies.
On the other side, time series anomaly detection technique has been applied to sensors data in order
to combine problems found in the log files with problems stored in the monitoring data. Several
services (i.e., log files) running on the same machine have been grouped together with the monitoring
metrics. Results—We have tested our approach on a real data center equipped with log files and
monitoring data that can characterize the behaviour of physical and virtual resources in production.
The data have been provided by the National Institute for Nuclear Physics in Italy. We have observed
a correspondence between anomalies in log files and monitoring data, e.g., a decrease in memory
usage or an increase in machine load. The results are extremely promising. Conclusions—Important
outcomes have emerged thanks to the integration between these two types of data. Our model
requires to integrate site administrators’ expertise in order to consider all critical scenarios in the data
center and understand results properly.

Keywords: log analysis; monitoring data; anomaly detection; natural language processing; topic
modeling; clustering technique; time series anomaly detection

1. Introduction

A data center usually handles a huge amount of different resources, where a plethora
of services can run, collecting information about computer systems and machine states. It is
quite common to have services that store their events in specific files, known as log files,
allowing site administrators to understand their current functioning and react proactively
in case of issues. Furthermore, data center monitors the physical and virtual machines,
tracing different devices readings (such as CPU load, memory, disk space and so on), infor-
mation about network traffic and bandwidth usage, in order to send alerts to administrators
if critical situations happen. Services produce log files, while monitoring sensors measure
different metrics with respect to the resource level they refer to.

Logs are created by a service and contain semi-structured texts that are appended
to a file with the .log extension. These files grow in size and can become very large, but

Computers 2022, 11, 117. https://doi.org/10.3390/computers11080117

https:/ /www.mdpi.com/journal /computers

https://doi.org/10.3390/computers11080117
https://doi.org/10.3390/computers11080117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0003-1913-6947
https://orcid.org/0000-0002-7341-6491
https://orcid.org/0000-0003-3938-0947
https://doi.org/10.3390/computers11080117
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11080117?type=check_update&version=2

Computers 2022, 11, 117

2 of 20

they tend to include similar texts over time that may cover various aspects of each service,
such as warnings, errors, activity information and so on. This leads to develop solutions
that automate the processing of logs and support system administrators while analyzing
systems’ health. Log files usually do not contain the same type of information, e.g.,: syslog
event logs a system activity, crond event logs the CRON entries that show up in syslog, and
virtlog event logs virtualization-related operations. Each file tends to describe a partial view
of the whole machine. The stored information can contain: the time and date of specific
event to log exactly what happened; the process name and process identifier; the machine
hostname and its internet protocol address. The services can use different keywords
to express normal or erroneous behaviour.

Monitoring data are created by sensors that run on the machine, containing e.g.,
a timestamp expressed in epoch time, metric’s name, metric’s value, and the machine
hostname. These measurements cover all the running state of the machine, therefore site
administrators can decide to store them with different frequency. An alarming email can
be sent to the site administrators when a data center-based threshold is exceeded, such
as when the used memory of a machine has reached 95% of the total memory.

Some studies have proposed approaches to handle the error problems from manual
operation to automated operation [1]. They define pipelines that include the transformation
of log files into a more readable format understandable by analysis tools, such as .csv and
.json, the classification of observations with respect to the threshold values, and the extrac-
tion of any suspicious information, like the anomaly term. Quite often it is not feasible just
selecting the file and retyping the file extension as .csv or .json, because the transformed
file could be wrongly reformatted, e.g., containing multiple rows of heading variables.
Furthermore, the file usually contains daily service information, so the number of data
can be over 60-120 K rows, penalizing the usage of some analysis tools. Before starting
any analysis, it is essential to decide which variables have to be included in the resultant
data sets. Spreading the data across multiple columns is another aspect to consider in or-
der to organise your data set into a manageable format. The resultant files can be used
to identify trends and unusual activities that are beneficial for both short- and long-term
data center management.

In our previous work [2] we have just considered log files to identify anomaly de-
tection patterns by using natural language processing (NLP), autoencoder and invariant
mining techniques. In this new study we have combined the knowledge present in moni-
toring information and log files in order to improve our analysis. Artificial intelligence and
machine learning techniques are promising solutions to automatically identify anomaly
detection patterns and predict failures in a machine. Different methodologies have been de-
veloped to separately identify anomalies in the two data sources. All the phases are aimed
at identifying anomalous messages in the logs. The core of our methodology lies in the cre-
ation of an anomaly dictionary for each log file. This dictionary allowed us to generate
a feature matrix closely related to the semantic areas of anomalies in that particular service.
Log files contain a considerable amount of texts, therefore NLP methods, such as word-
clouds, topic modeling, exploring the list of unique n-grams, are needed to enrich the dic-
tionary. Starting from the matrix of the features created, it will then be possible to apply
a clustering algorithm to not only distinguish anomalous messages from non-anomalous
ones, but also to differentiate the different types of anomalous events. The proposed
approach is repeatable in other contexts and domains. With minimum setup effort and
the usage of artificial intelligence and statistical tools, it is possible to create an effective
anomaly dictionary. For monitoring data we decided to apply JumpStarter technique [3]
in order to obtain the anomaly score associated with each temporal instances based on mul-
tiple time series. We have decided to aggregate the two data sources at machine level by
considering all the log files for the running services and the measurements of machine
sensors in order to determine the variation of values nearby an anomaly.

Through experiments, we illustrate the potential benefits of our approach by answering
our research questions that can be summarized as follows:

Computers 2022, 11, 117

3 0f20

RQ1.Can we get service anomalies by considering log messages?

RQ2. Are there NLP techniques that can automatically provide information on the state
of a service?

RQ3.Can we get machine’s state by looking at monitoring metrics” data?

RQ4.Can we relate log and monitoring data to determine anomalous behaviour at machine
level?

The remainder of this paper is as follows. Section 2 talks about related work. Section 3
provides information about data that we have considered for this study. Then, section 4
introduces the rationale of our approach. Section 5 talks about anomaly detection method-
ologies used for log files, while Section 6 talks about those for monitoring metrics. Section 7
provides some results at machine level by combining the two types of data. Section 8
concludes the paper discussing the presented work.

2. Related Works

The existing literature on anomaly detection is vast. The main approaches both exploit
NLP techniques on top of log files, produced by services running on a given machine, and
use numerical data coming from monitoring system.

2.1. Log Data

Log files are extremely important and useful sources of information for a specific
service. There exist different types of messages, such as INFO messages that aim at giving
some knowledge about the state of a service. There are other types of messages that include
warnings, alerts, fatal errors, failures, alarms, debugs. Some of these messages can be
more serious than others but not blocking the current running service (e.g., warnings and
debugs), while others do not allow the service to work (e.g., alerts, fatal and errors).

Log messages are string objects, therefore NLP techniques represent solutions to pre-
process them. All the studies related to NLP include a preprocessing phase to extract
relevant information from the data. Authors, who work with log messages, have devel-
oped their models by using Word2Vec and other techniques for the preprocessing phase.
Bertero et al. [4] have developed three models—a Neural Network, a Gaussian Naive Bayes
and a Random Forest Classifier—feeding them with log data vectorized through Word2Vec.
Wang et al. [5] have fed their models with vectorized data determined with Word2Vec and
Term Frequency-Inverse Document Frequency (TF-IDF), to develop a Gradient Boosting
Decision Tree, a Naive Bayes, and a Recurrent Neural Network (a Long Short Term Memory
model, LSTM) to exploit the ability of LSTM to deal with sequential data. Lukas et al. [6]
have developed a Recurrent Neural Network too and they also started from Word2Vec.

All the mentioned studies have used labelled data and supervised learning solutions.
However, log data are usually characterized by having imbalanced class distribution,
because anomalies are not requested to appear often in the log files. TF-IDF alone is not
a valuable technique for log analysis, because it does not allow to consider the relevance
of a word in a message. Furthermore, in anomaly detection it is often the case that labelled
data are not available and unsupervised solutions are required. Zeufack et al. [7] and Bursic
et al. [8] have adopted an OPTICS clustering algorithm (density-based clustering) and
an Autoencoder Neural Network respectively to solve the problem of anomalies.

If the number of clusters set in input is too large, the algorithm will return false results,
failing to correctly distinguish the anomalous instances [9].

2.2. Monitoring Data

These data usually derive from the monitoring service that has been setup in a data center.
They represent another important source of information in order to understand the health state
of machines. The measure typically depends on time. Therefore time series anomaly techniques
can be used to discriminate between normal and abnormal systems’ behaviours.

Computers 2022, 11, 117

4 0f 20

Huang et al. [10] have taken into analysis voltage time series, current time series, and
temperature time series and employed a simple effective technique aimed at identifying
thresholds for normal and anomalous behaviors based on mean and variance values.

Gabel et al. [11] have adopted the Tukey method, where observations occurring around
a certain central value are recognised as normal and the more they move from this central
value the higher the probability they represent an anomalous event. The authors have
also used some other geometry-based techniques, such as the Sign Test and the Local
Outlier Factor test. Wang et al. [12] have developed an anomaly detection method based
on the Tukey test, but they also developed a framework of anomaly recognition based
on multivariate goodness-of-fit: a normal behavior distribution is given and compared
to other time series to check for anomalies through a likelihood ratio test.

Decker et al. [13] have defined threshold starting from mean and standard deviation
values. However, they have not focused on the whole time series but they have proceed by
segments, called sliding windows, for a more precise computation. Moreover, they have
also developed an Evolving Gaussian Fuzzy Classifier to cluster without any prior knowl-
edge different segments, based on their distribution through an adaptive discriminative
algorithm which is able to update its rules based on new observed values.

Ma et al. [3] have proposed a jumpstarting multivariate time series anomaly detection
approach based on the compressed sensing technique for a short initialization time.

2.3. Multi-Sources Data

Literature where log data and monitoring data are combined is not much developed,
in particular for anomaly detection.

Nti et al. [14] have developed a very effective model where text data and numeric data,
after proper preprocessing, have been combined together to develop a model for stock
price prediction. On the other hand, Lee et al. [15] have developed a model to estimate
the risk of bidding projects in urban engineering by combining numerical metrics and
textual reviews. However, in both of these two studies we have observed that the data
fusion process was not very problematic: in the first work the availability of finance-related
textual data is enough to be able to look for data in the required moment in time, while
in the second study every textual information has been clearly assigned.

3. Source Data

Our work has started with dataset selection. In this work we have considered the same
set of log files used in the previous study [2]. The log files are related to a set of services
running on machines at INFN Tier-1 data center [16] that are used by the large hadron
collider experiments [17]. Figure 1 shows four categories of resources which make up
the TIER-1 infrastructure and cooperate with each other: Storage includes disk and tape
storage services, and data transfer services; Farming handles the computational resources;
Network is responsible for security rules and access to the various resources in the infras-
tructure; User Support handles identification and resolution of problems, authentication
and authorization problems, creation of accounts and resource configuration.

Each log mainly belongs to Linux system services, such as the software utility crond,
the free and open-source main transfer agent postfix and the standard for message logging
syslog. Table 1 summarizes the first 30 log filenames according to their frequency, that
is the number of times a value of an unique filename occurs. The overall log suffix-
type frequencies is 3,562,759. However, on the Linux machine other suffix-types of files
(containing log entries) are available, such as .gz and .txt respectively with 10,869 and
2 frequencies. The .gz files are used for large log files, while the .txt files are for small
log files.

Computers 2022, 11, 117

50f 20

Farming

Storage Network -

Infrastructures

Figure 1. The categories of resources making up the Tier-1 infrastructure at CNAF-INFN.

Table 1. The top 30 log files per frequency.

Filename Frequency Filename Frequency Filename Frequency

sudo.log 378,781 systemd.log 107,700 userhelper.log 21,380

puppet-agent.log 368,530 mmfs.log 72,620 nsled.log 20,544
run-parts.log 365,734 rsyslogd.log 70,210 neutron_linuxbridge.log 8572
crontab.log 348,896 kernel.log 65,938 runuser.log 6859
crond.log 347,708 logrotate.log 62,531 cvmfs_x509_validator.log 6031
sshd.log 303,919 syslog.log 47,330 cvimfs_x509_helper.log 5399
anacron.log 287,419 yum.log 43,301 srp_daemon.log 4938
postfix.log 175,558 fusinv-agent.log 42,125 edg-mkgridmap.log 4083
auditd.log 120,473 root.log 37,345 libvirtd.log 3328
smartd.log 109,441 gpfs.log 31,000 dbus.log 3301

Each machine can run different services and it is usually characterized by a certain
amount of memory and disk space. To check each machine status, the data center ex-
ploits a monitoring system that is able to measure various metrics, show them through
the graphana service and store them through an influxd service [18].

On the basis of site administrators’ feedback, in this study we have considered a sub-
set of metrics grouped in three categories as shown in Table 2: load average that refers
to the average system load on a server for a specific period of time; memory that provides
information about the consumption of memory; iostat average that captures the status
of the device.

Load averages are usually three numbers, showing the average load in the last minute,
in the last five minutes, and in the last fifteen minutes: if the one minute average is higher
than the five or fifteen minute averages, then load is increasing; if the five minute average
is lower than the five or fifteen minute averages, then load is decreasing. The memory
category provides information about the normal and swap memory: when the swap
memory is used, then it means that the normal memory is full. The used memory is one
of the memory metrics for which a warning message is automatically sent by email to site
administrators when its value exceeds 95% of total memory; iostat averages give input and
output devices utilization.

Computers 2022, 11, 117 6 of 20
Table 2. Monitoring metrics.
Category Metrics Category Metrics Category Metrics
Linux load average 1 min Memory swap free iostat average cpu pct iowait
Linux load average = 5 min Memory swap total iostat average cpu pct nice
Linux load average ~ 15min Memory swap used iostat average cpu pct steal
Memory available iostat average cpu pct system
Memory buffers iostat average cpu pct user
Memory cached iostat average cpu pct idle
Memory dirty
Memory free
Memory used
Memory total

3.1. Log Files

Each of these log files contains a different amount of lines. They contain numerical and
textual data that describe system states and run time information. Each log entry includes
a message that contains a natural-language text (i.e., a list of words) describing some events.
Logs are generally generated by logging statements inserted, either by software developers
in source code or by system administrators in configuration files, to record particular events
and software behaviour. Figures 2 and 3 show two different log entry samples composed
of a log header and a log message: the former is generally composed of a timestamp, a custom-
configuration information (such as the hostname in Figure 2, where the service runs and a log
level verbosity in Figure 3) and the name of the service the message is associated to; the latter
is just the message that contains information of the logged event. The log header structure is
relatively different in both figures: this is one of the reasons for which the application of a non
service-specific solution when parsing log files is a hard task.

Log header

Dec 31 00:43:20 xs-503 puppet-agent[132049]: (/Stage[main]/Storage_utils/Exec[psutil]/returns) executed successfully

Timestamp Host Service
name[process ID]

Log message

Figure 2. A log entry sample from the puppet-agent service.

Log header Log message

I Il |

Jun 12 05:58:32 XXX.YYY.ZZZ.WW INFO CLI_MAIN *UCC: SETTINGS LINES=0.

Timestamp

IP address Level

Figure 3. A log entry sample from the puppet-agent service.

Figures 4 and 5 show two examples of the log message of a log entry, characterized
by a natural-language text whose interpretation is difficult because there is not an official
standard defining the message format. The text is usually composed of different fields
called dynamic and static: a dynamic field is a string or a set of strings that are assigned
at run time; a static field does not change during events. Such fields can be delimited by
different separators, such as a comma, a white space or a parenthesis. Logging practice is
scarcely well documented.

Computers 2022, 11, 117

7 of 20

Log message

(/Stage[main]/Storage utils/Exec[psutil]/returns) executed successfully

Dynamic field Static field

Figure 4. A log message fields with just one dynamic field and static field.

Log message

1

CLI_MAIN *UCC: SETTINGS LINES=0.

| | —

SF DF SF DF

Figure 5. A log message fields with a sequence of dynamic and static fields.

This activity mainly depends on human expertise [19]. They often have to analyze
a large volume of information that may be unrelated to the problematic scenarios and lead
to overwhelming messages [20]. It’s important to mention that not all log entries of a log
file have the same static field. Despite this, it is extremely common to find different log
messages sharing the same static field.

3.2. Monitoring Metric Files

Each of these files contains a different amount of lines. They contain numerical and
textual data that describe machine state for a specific metric over time. Each file includes
the hostname of the machine, epoch time and measurements. They are produced by using
the influx client that queries a specific database (defined for a set of machines) to extract
a given metric in a certain period of time, and dumps values into a .csv file. Below it is
reported an example of the query performed by command line:

$ influx -host=<service hostname> -port=<port number> \
-username=°‘‘<user>‘‘ -password=‘‘<password>‘‘ \
-database=°¢‘<database>‘‘ \

-execute=°‘SELECT * FROM \‘‘all_data\‘‘.\‘‘load_avg.five\‘‘ \
WHERE time > now()---<number of~days> GROUP BY \‘‘host\‘¢¢‘ \
-format=csv > one_week.csv

4. Methodology Overview

In our previous work we have applied word2vec, autoencoder and invariant mining
techniques [2] to identify anomaly patterns from log files. The autoencoder was used
to learn a more efficient representation of data, while minimizing the corresponding
error. The invariant mining was used to collect error messages that generate a problem
in a physical or virtual machine at INFN Tier-1 data center. The main objective of this study
has been the development and validation of an anomaly detection model by considering
a data center use case. A generalized workflow is shown in Figure 6, which schematizes
the steps that have been undertaken to implement this model.

Computers 2022, 11, 117

8 of 20

Domain-Specific

DEfE =] Dictionary =

Feat Matri i
eature Matrix Clustering

raw log files II

1. preprocessing Definition Creation Algorithm
At service level
2 roaw DeiE > Anomaly Score At machine level
. monitoring preprocessing v
Metrics
Preprocessed + Preprocessed At machine level
3 . log files with monitoring metrics

word anomalies with anomaly scores

Figure 6. General methodology overview.

Once data has been collected both at service level and machine level respectively
with a set of log files and monitoring metrics’ values, we have dedicated effort to develop
algorithms in order to identify anomalies in these two data sources separately.

On the two types of data we have applied different techniques. NLP techniques have
been applied to log messages to extract relevant information from the data. Time series
anomaly technique has been applied to monitoring data to discriminate between normal
and abnormal systems’ variations.

Furthermore, in our study, log data and monitoring metrics are generated by two
different systems, that can cause a deep time discrepancy. Therefore, one of the main
challenges, we have tried to deal with, has been to find a suitable, reliable and consistent
way of putting into relation these two kind of data, avoiding the serious risk of relating data
which are actually unrelated. In this study, the behavior of the metrics in correspondence
with anomalies in the logs is observed graphically. Future studies will further investigate
how to integrate this data into a single model.

Project Implementation

To implement this study we have used Python libraries and Jupyter notebook with
Python version >= 3.8, uploading code, images, and results in GitLab project, that will be
made available when the project will be properly documented.

To preprocess data, we have used the nltk library [21] that provides methods to clean
data. We have also used ToktokTokenizer() from nltk to tokenize one sentence per line.
To convert text documents to a matrix of token counts, we preferred to use CountVector-
izer() [22] from sklearn as it fits better with the type of clustering algorithm used later.
CountVectorizer() has been used in two ways. Firstly, we use it to determine the whole list
of unique n-grams in every log gile. Secondly, we use CountVectorizer() to build the feature
matrix by considering n-grams included in the dictionary: the number of times one n-gram
value is in the message. To apply TF-IDf, we have used TfidfTransformer() from sklearn.

To apply LDA, we have used pyLDAvis [23], that is able to represent the topics
in a topic model that has been fit to a corpus of text data. The package uses LDA to inform
an interactive web-based visualization..

5. Log Anomaly Detection

The main phases that led to the identification of the log anomalies are divided as fol-
lows: data preprocessing, exploration of messages and creation of the dictionary, creation
of the feature matrix and clustering algorithm.

Computers 2022, 11, 117

9 of 20

5.1. Data Preprocessing

During the data preprocessing we have first changed the format of log files, which
have turned into .csv files by applying service-specific procedure, because we have had
to take into consideration different log header structures (as shown in Figures 2 and 3),
one per service. This procedure is able to manage each entry of the log file, performing
at least the following operations: adding e.g., either internet protocol (ip) address or host-
name when they are missing, service name when it is missing; splitting service name and
process identifier (id); and getting component name. When the log file is turned into .csv
format, the entry in the .csv file contains the log message (msg) and a set of other variables
(see Figure 7 for a graphical representation), such as: date, time, timestamp, hostname, ip
address, service name, id, component name. The hostname and ip couples are not always
both available, especially when the service runs on a virtual machine. Each file is related
to a particular service that runs on a well-known machine in the data center. Its location is
obtained by a local database and included into the resulting file.

Log entry

Log header Log message

Dec 31 00:43:20 xs-503 puppet-agent[132049]: (/Stage[main]/Storage_utils/Exec[psutil]/returns) executed successfully

Timestamp Host Service
name[process ID]

CSV entry
date, time, timestamp, hostname, ip, service name, id, component name, msg

Figure 7. An example of log header transformed into CSV header.

In this phase we have tackled some site administration peculiarities: the same service
is called either in lower or capital letters; the process identifier is included in the service
logging file; the service name is included (or not) in the log message; the process identifier is
included (or not) in the log message; the logging filename includes typo error. We have also
identified some typo errors in the log messages. Before performing any cleaning operations,
we have excluded meaningless services’ log files, especially those with a small number
of events. In the remaining logs, the following changes have been applied in the message
field: the removal of unwanted texts, such as punctuation, non-alphanumeric characters,
and any other kind of characters that are not part of the language by involving regular
expressions; the exclusion of non-English characters; the stopwords removal, that is frequent
general words (like of, are, the, it, is) with a low meaning. For stopwords, we have decided
to keep negative terms, and other words that may refer to a problem, such as up, again, too, ok,
out, yet, and more. Each letter has been converted to lowercase to avoid case-sensitivity problems.

5.2. Creation of the Anomaly Dictionary

The messages in the logs are characterized by a rich and technical vocabulary.
Although very numerous, the number of static fields observable within a log files is limited.
Until now, log anomaly detection methodologies have not used a dictionary to better
filter patterns related to the semantic area of anomalies. After the cleaning step, a feature
extraction techniques, such as Word2Vec and TF-IDF, is usually applied. Going into detail,
TF-IDF is often used to find the important words in a collection of documents: TF stands
for term frequency matrix, measuring the association of a word with respect to a given
document; while IDF stands for inverse document frequency, representing the importance
of one word [24]. If a word appears in many log files, the importance of this word will be
decreased. This approach could not be necessarily capable of providing useful information
for the identification of anomalies if applied alone, because the search for features is not
strictly connected to the search for patterns belonging to the semantic area of anomalies.

Computers 2022, 11, 117

10 of 20

In addition, the feature matrix may have high dimension since each unique n-gram in all
messages will compose a column of such matrix. This is a problem not to be underesti-
mated in the case of massive log files typically recorded in a data center. Each message is
composed by various dynamic fields; therefore, we have used several n-grams withn <=5
to rebuild anomalous message, omitting dynamic fields. The n value selection depends
on messages included in the log files.

Our main idea is to reduce the number of columns generated, restricting only to those
n-grams that can be associated with anomalies or that better describe an anomalous mes-
sage. To do this it was decided to create a dictionary. The dictionary is nothing more than
a set of words or sequences of words related to the semantic area of anomalies for that
particular log file. For each log files it makes sense to build a different dictionary as the mes-
sage structure and the type of anomalies are different between services. Doing so, we
have been able to identify relevant terms to a global dictionary. An important contribution
in the creation of the dictionary could have been made by the experts of the data center.
The following anomalies have been suggested by programmers: abort, aborted, aborting,
alert, cannot, can’t, couldn’t, deprecated, deprecate, disabled, error, exception, fail, fails, failure,
failed, failing, fatality, fatal, invalid, impossible, huped, misconfiguration, problem, sslerror, sup-
pressed, suppressing, suspended, suspend, suspending, suspension, stopped, stopping, stop, unable,
unsupported, warning, warn, warned.

To create an effective dictionary it is necessary to extensively explore the log mes-
sages. In this phase we have started to trace the types of log events, such as abort, fail
and invalid, and to identify anomaly key terms that can be used to classify the reason
of the problems in the service. This part of the study has been applied to all the set of files
examined contributing to a better understanding of the variation in the machine status.
However, Table 3 summarizes a couple of message lines that describe a wrong service be-
haviour.

Table 3. Examples of message lines for the crond log file.

Log Event msg Log Event Type Anomaly Key Term
.. reset error counters error reset
.. failed create session connection time out fail time out

To enrich the dictionary, several NLP solutions were used. It might be useful to explore
the complete list of unique n-grams starting from the texts and insert those who refers
to anomalies in the dictionary. We have used the whole list of terms and sequences provided
by n-grams. We have considered the least frequent, mainly because a service is built to work,
therefore anomaly terms have a lower frequency. n-grams of medium frequency have also
been considered. We have decided to consider n € [3, 5] because they are able to rebuild
the meaning of each message better than with n equal to 2. For simple and small log file,
whenever possible we have performed a first handson check of the list of unique n-grams,
and added them to anomaly dictionary.

Furthermore, representing the most frequent and least frequent words via word cloud
can be useful for bringing out anomalous patterns in the case of large log files, especially rare
words. Figure 8 shows two word cloud of the first (and last) thirty subsequences of length
3 from audit log messages sequences [25]. For example, in the wordcloud in Figure 8
the anomalous “suspending logging” pattern appears among the less frequent tri-grams.
Analyzing the list of the various n-grams, we have seen that some messages containing
“suspending logging” continue with “due previously mentioned write error”. Consequently,
in addition to “suspending logging”, “previously mentioned write error” has also been
added to the dictionary. This will be essential to add information and to track anomalies
in order to create groups of different types of anomalies.

Computers 2022, 11, 117

11 of 20

30 most frequent trigrams in auditd 30 least frequent trigrams in auditd
dispatcher /sbin/audispd pid
‘ .

rotating log file

started dispatcher /sbin/audispd

startup state enable

listening events startup
auditd listening events

mentioned write error

on susper

started dlspatcher /sbin(audispd

audit daemc

Figure 8. Word cloud for the auditd service.

Topic modeling can be another useful technique to find latent topics in mostly un-
structured collections of log messages, and to identify word structures and anomalies that
belong to specific topic. We do not identify any latent topic. In this study we applied
Latent Dirichlet Allocation (LDA). LDA assumes that documents are a mixture of topics,
while topics are a distribution of words [26]. The optimal number of topics was determined
by maximizing the difference between the overall topic coherence and the average topic
overlap, calculated as the mean of the ‘Jaccard Similarity” values between topics. LDA has
been used to deeply explore each message. In this study we have considered single terms
for topic modeling due to the service specific knowledge included in each message (i.e., url,
process name and so on).

Figures 9 and 10 show how terms are distributed in the different topics for the screen
and virtlogd services. In both figures we can observe that during the preprocessing activity
we have cleaned log messages keeping meaningful information, such as the function
name, the name of the machine, users’ names (that for privacy reason we have omitted),
and potential problems. For example, Figure 9 Topic 2 shows words like auth, failure,
authentication, screen and pam_ldap, that can indicate a screen authentication failure. We have
included in the dictionary construction, anomaly patterns resulting from LDA. For example,
according to Figure 9, we have definitely added words failure and authentication failure
from Topic 2; fails, failed authentication from Topic 0; unknown from Topic 3. Instead we have
omitted Topic 1 that contains verified and authentication that can indicate no problem.

Topic 0 Topic 1 Topic 2

euid

. user
fails failed auth "
check ;
pam_krb fallgre -
authentication authentication
i i screen
cr.cnaf.infn.it am lda
integrity decrypt pam_ P
Topic 3 Topic 4 Topic 5
tokens) o Ui
code L. uid P
unknown °Pt3NINE guthentication success
am—krb logname
got error logname”“ authentication

failu

Figure 9. Identified topics for the screen service.

Computers 2022, 11, 117

12 of 20

Topic O Topic 1

virloghandlerdomainopenlogfile
log busy

open error

cannot)
device

resource

Topic 2 Topic 3

virrotatingfilewriterappend

stale .
write

handle unable
error

file ,LS?TLL@T@Tf;QW

Figure 10. Identified topics for the virtlogd service.

5.3. Feature Matrix

Once the dictionary has been built, for each log file a feature matrix will be generated.
By inserting such dictionary among the parameters of the TF-IDF function or more simply
of a Count Vectorizer, it is possible to have a feature matrix strictly connected with the se-
mantic area of the anomalies and able to detect if any log entry contains these patterns
or not. The matrix will have as many rows as there are log messages and as many columns
as there are elements that make up the dictionary (see Table 4). The elements of the array,
on the other hand, indicate the number of times that the element y of the dictionary is
contained in the message x. The matrix thus created has three main advantages: it is
strictly connected to what was observed anomalous in that particular service; the matrix
has a reduced dimension as it consider a smaller number of n-grams (i.e., n lower than
6) and is able to trace other parts of the message that better explain the type of anomaly.
We again used CountVectorizer() to perform vectorization.

Table 4. Examples of message strings split up in single words for the crond log file.

Log Event msg ... Error . Failed .. Connection Time

.. reset error counters . 1 . 0 . 0
.. failed create session connection time 0 1 1
- . .

5.4. Clustering Algorithm

Each row of the feature matrix corresponds to a different log message. From how
the feature matrix was built, each message is associated with a row vector, which contains
count values. Consequently, starting from the feature matrix, those messages that had
equal row vectors were grouped. An ad hoc clustering algorithm was built that would
group log entries that had equal rows in the feature matrix. Lines that contain null val-
ues mean that no anomalous patterns have been found for that particular log message.
These messages were grouped in ‘Cluster 0’. Each cluster, excluding the Cluster 0, consti-
tutes an anomalous message prototype common to one or more log entries.

Computers 2022, 11, 117

13 of 20

Figures 11 and 12 show key terms, included in the dictionary, which constitute such
prototypes for the screen and virtlogd services.

Cluster 0 Cluster 1 Cluster 2
failure
authentication failure
Cluster 3 Cluster 4

Figure 11. Grouping messages for the screen service.

Cluster 0 Cluster 1
error
unable write file

Cluster 2 u n a b l e

Cluster 3

Figure 12. Grouping messages for the virtlogd service.

In Table 5 we report some log messages included in the screen log file. In the messages,
“username” was written in place of the real usernames for privacy reasons. This table is
useful to understand how our methodology was actually useful to identify anomalous and
non-anomalous messages and to distinguish the different types. It is possible to notice
the correspondence of the labels with the wordclouds in the Figure 11, which reports only
the n-grams associated with the semantic area of anomalies and consequently included
in the dictionary.

Through this clustering algorithm it is possible to identify anomalous messages,
excluding those in ‘Cluster 0". In addition, the various types of anomalous messages were
grouped into different clusters. According to the words and sequences of words identified
as anomalies with the usage of NLP techniques, we have counted almost 499,110 thousand
anomalies in all the log files over 3620 thousand observations. Once a new observation
occurs, simply transform it into a count vector in the same way the feature matrix is created
and compare it with the other rows in order to assign it a label. Although the dictionary
creation part requires time and exploration of the text, the result is extremely reliable and
adaptable to all types of log files. Also, a peculiarity of data center services is that they
change over time. A supervised approach not only requires the parameters to be optimized
and the model trained for each log file, but this process should be iterated with each change
to the service. On the contrary, our unsupervised approach is more flexible and it would be
enough to include further elements in the dictionary thanks to the help of the programmers
who manage the changes in the logs. Thanks to the methodology used, it was possible
to answer affirmatively to RQ1. Regarding RQ2, we believe that at the moment there are

Computers 2022, 11, 117

14 of 20

no NLP techniques that automatically manage to understand if certain words or word
sequences identify an anomaly in the particular context and without having any label.
For this reason, a minimal human contribution is necessary and we believe that building
a dictionary and our methodology are good contributions on how to proceed.

Table 5. Some log messages of the screen service and their cluster membership.

Date Time Hostname Process_Name msg Cluster
21 January 2021~ 09:12:53 ui-tierl screen pam_krb5[19197]: TGT verified 0
21January 2021 09:12:53 ui-tierl screen pam_krb5[21445]: got error -1 (Unknown code ____ 255) 4
while obtaining tokens for infn.it
21January 2021 09:12:53 ui-tierl screen pam_krb5[19197]: authentication succeeds for "username’ 0
(username@CR.CNAF.INFNL.IT)
6 August 2020 12:27:22 ‘1;111%2(; screen pam_unix(screen:auth): authentication failure 1
. ui02- pam_krb5[24018]: authentication fails for “username’
6 August 2020 12:27:22 virgo screen (username@CR.CNAF.INFENL.IT): Authentication failure
(Decrypt integrity check failed)
6 August 2020 12:27:22 ;1111%2(; screen pam_ldap(screen:auth): Authentication failure 1
- ui02- pam_krb5[24018]: authentication fails for “username’
6 August 2020 12:27:34 virgo screen (username@CR.CNAFINFNL.IT): Authentication failure 2
(Decrypt integrity check failed)
6 August 2020 12:27:34 :111%2(; screen pam_ldap(screen:auth): Authentication failure 1
- ui02- pam_krb5[24018]: error reading keytab
6 August 2020 12:27:50 virgo screen FILE: /etc/krb5 keytab’ 3
6 August 2020 12:27:50 u.iOZ- screen pam_krb5[25026]: got error -1 (Unknown code 255) 4
Virgo while obtaining tokens for infn.it

6. Anomaly Detection on Monitoring Metrics

The monitoring files are created with multiple headings, therefore we have removed
some rows from the files before performing any analysis.

Some metrics show a noisy behavior, making the graphs unreadable and difficult to extract
essential information about trends and large-scale deviations. At this moment of the study we
have not applied any smooth functions to better identify trends in the metrics.

Figure 13 shows load average metrics at 1 min, 5 min and 15 min for a certain machine
over time. The trends of the three metrics are very similar. The grey rectangle in the bottom
plot is zoomed in the top plot. The plot on the top shows load average values below 0.1:
they are between 0 and 0.02 except the end of December 2020 and the end of March 2021
where we observe an increase of 33% due to the usage of core in the machine. However,
the measured values for these three metrics do not concern us.

Anomaly Scores Resulting from JumpStarter

Concerning the monitoring data, we have applied the JumpStarter solution [3], a mul-
tivariate time series anomaly detection based on compressed sensing to determine anomaly
score and use it to label observations. This methodology is also completely unsupervised
and calculates the anomaly score for each time instance, by comparing the original time
series with the one reconstructed by the model. JumpStarter requires an input data matrix
that has the metrics as columns and the instants in time in which the values were recorded
by row. Since our monitoring observations were all recorded every hour of the analyzed
period, it was not a problem to create such a matrix. Figure 14 shows the JumpStarter
anomaly score resulting from memory metrics. In the same plot we have reported with
vertical lines the anomalies checked in four log files for their corresponding services, such
as audit, haproxy, journal and sensu-service. The plot on the top shows the anomaly score
in the zoomed period where anomalies in the logs were found. The bottom plot shows

Computers 2022, 11,117

15 of 20

the trend of the anomaly score throughout the entire analysis period. It is noted that
the graph is flat almost throughout the period, except for some small variations, but that
the score increases in the period in which errors occur in the logs.

0.1
— load_avg_fifteen
008] load_avg_five
load_avg_one
0.06 M
] i
004 |
0.02 ‘
Ty ks AU Wt W AAAAAD W U\
oJV V¥ IRIAARR AL AN A A", g\ ! A R I VWY VUWUWNK " WY
A t t t t
12/28 1/01 1/04 1/07
t t t — t T t
7/2020 9/2020 11/2020 1/2021 3/2021 52021 7/2021

Figure 13. Comparison of load average metrics.

Jump Starting with memory metrics: Anomaly score over time Log events with errors
auditd_tb_cloud_net01
haproxy_tb_cloud_net01

0.15 3journal_tb_cloud_net01

4] sensuserv_tb_cloud_net01
8
iz
3 ot
3 i
5
<
<
©
=
T 0051
04 Pt
t t t t t t t
4/01 4/15 5/01 5/15 6/01 6/15 701
l /-——M
T t t t t v t
712020 912020 1112020 112021 312021 5/2021 712021

Figure 14. JumpStarter anomaly scores for the memory metrics on the tb-cloud01-net machine.

Figure 15 shows the JumpStarter anomaly score resulting from load metrics.
Unlike the memory metrics, the trend of the anomaly scores for the load metrics is not flat
but is characterized by fairly regular peaks just like the load metrics, see the Figure 16.

Jump Starting with load metrics: Anomaly score over time Log events with errors
05 4 auditd_tb_cloud _net01

] haproxy_tb_cloud_net01
] M3 journal_tb_cloud_net01
04 7 sensuserv_tb_cloud_net01
03]

02 |

Value: Anomaly score

Wl MJNW

t T T T 1 T 1
712020 9/2020 11/2020 172021 3/2021 5/2021 712021

Figure 15. JumpStarter anomaly scores for the load metrics on the tb-cloud01-net machine.

Computers 2022, 11, 117

16 of 20

"load_avg_fifteen" in "tb-cloud-net01" over time Log events with errors
auditd_tb_cloud_net01
haproxy_tb_cloud_net01
0.08 @ journal_tb_cloud_net01
sensuserv_tb_cloud_net01

value: 5.667e-2
date: 2021-05-09 06:00

=)

=3

3
|

<

=3

4
|

Valueload_avy_fifteen

=3

=3

]
|

T T T T T T T
7/2020 9/2020 11/2020 172021 3/2021 5/2021 712021

Figure 16. Overlapping log files and load averages at 15 min for the tb-cloud01-net machine.

The reason is that JumpStarter is a methodology that emphasizes sudden peaks
in time series as anomalous, although these do not vary much from the “normal” situation.
This methodology therefore requires more in-depth analysis by the experts. Future works
could also think about smoothing out sudden peaks before applying the JumpStarter
methodology and comparing it with other unsupervised methodologies.

7. Combining Anomalies at Machine Level

In this section, we are going to present results at machine level, combining what
we have obtained during the log analysis and time series of monitoring data. We have
produced a huge quantity of results, therefore we have decided to show what we consider
the most suitable to explain our study. The considered machine is called tb-cloud-net01
where the audit, haproxy, journal and sensu-service services run. The analyzed period goes
from 6 June 2020 up to 21 July 2021.

Figures 16-18 show the time series of load, memory and iostat metrics respectively for the tb-
cloud-net01 machine, reporting anomalies of the considered services. The colored vertical lines
represent anomalies identified in the log files of the selected services. Furthermore, each figure
shows a grey rectangle in the bottom plot that is zoomed in the top plot.

Figure 16 shows load average metrics at 15 min. The plot on the top shows load
average values below 0.1: they are mainly between 0 and 0.02, but there are some peaks
due to the usage of cores in the machine. However, the values measured for these three
metrics do not cause concerns.

Figure 17 shows the memory used average metric. The plot on the top shows the per-
centage of memory used compared to the total. The two plots highlight the variation
in the metric after an intervention in one of the listed services, particularly a decrease
in memory usage. The data center adopts the infrastructure policy to send a warning
message when the metric’s value excesses 95% of total memory as threshold. In this case
this limit is not reached.

Figure 18 shows the iostat average for the cpu pct_iostat metric. The values do not
cause concerns and the peaks are due to the cpu utilization.

The anomalies represented with the vertical lines in the previous figures are listed
in Tables 6-8: they summarize what we have identified in the auditd, journal and sensu-
service services respectively in the tb-cloud-net01 machine from the 6 May 2021 at 15:00
to the 8 May 2021 at 03:00. In the same tables the cluster number each log message belongs
to is reported.

Computers 2022, 11, 117

17 of 20

“Memory_used_pct” in "thb-cloud-net01” over time Log events with errors

auditd_tb_cloud_net01

haproxy_tb_cloud_net01
@3 journal_tb_cloud_net01
sensuserv_tb_cloud_net01

@ @
S &
| |

n
a
)

Value: memory_used_pct
o B
I L

)\

712020 9/2020 11/2020 172021 312021 52021 712021

T T T T T A4 T
772020 9/2020 1172020 172021 3/2021 5/2021 712021

Figure 17. Overlapping log files and memory used values for the tb-cloud01-net machine.

"jostat_avg_cpu_pct_iowait" in "tb-cloud-net01" over time Log events with errors.

3 auditd_tb_cloud_net01
< 257 haproxy_tb_cloud_net01
% 53 @ journal_tb_cloud_net01
=] sensuserv_tb_cloud_net01
8 257
o
& 2
g
KE‘ 154
E
8 13
<
=
£ 05 E

o3 Jlh, l

1 T T T T T T T

712020 9/2020 11/2020 1/2021 3/2021 512021 712021
t t t t t t t
712020 9/2020 11/2020 1/2021 312021 5/2021 712021

Figure 18. Overlapping log files and iostat average cpu pct_iowait values for the tb-cloud01-net machine.

Table 6. Anomalies recorded in tb-cloud-netO1 in the auditd service.

Date Time Host_Name Process_Name msg Cluster
7 May 2021 17:33:50 tb-cloud-net01 auditd Audit daemon is suspending logging due 1
to previously mentioned write error
6 May 2021 17:33:50 tb-cloud-net01 auditd Audit daemon is suspending logging due 1
to previously mentioned write error
Table 7. Anomalies recorded in tb-cloud-net01 in the journal service.
Index Date Time Host_Name Process_Name msg Cluster
0 7 May 2021 23:32:51 tb-cloud-net01 journal Suppressed 18,739 2
messages from /
1 7 May 2021 23:53:56 tb-cloud-net01 journal Suppressed 5738 2
messages from /
2 7 May 2021 23:53:56 tb-cloud-net01 journal Suppressed 5672 messages from 2
/system.slice/boot.mount
3 7 May 2021 23:53:51 tb-cloud-net01 journal Suppressed 19,279 2
messages from /
229 6 May 2021 23:32:26 tb-cloud-net01 journal Suppressed 5640 messages from 2

/system.slice/boot.mount

Computers 2022, 11, 117

18 of 20

Table 8. Anomalies recorded in tb-cloud-netO1 in the sensu-service.

Index Date Time Host_Name Process_Name msg Cluster
0 7 May 23:54:30 tb-cloud- sensu-service {“level”:"error”,“message”:“log file is not writable”, 11
2021 net01 “log_file”:” /var/log/sensu/sensu-client.log”}
1 7 May 23:54:30 tb-cloud- sensu-service {“level”:“warn”,“message”:“config file does not exist or is not readable”, 12
2021 net01 “file”: / etc/sensu/ configjson”}
2 721\/12?1 93:54:30 tb-cloud- sensu-service {“;evel“:“warn”,“message’j:”ignoring config file”, 13
0 net01 “file”:" /etc/sensu/config.json”}
3 7 May 23:54:30 tb-cloud- sensu-service {“level”:“warn”,”message”:“loading config files from directory”, 14
2021 net01 “directory”:”/etc/sensu/conf.d”}
4 7 May 23:54:30 tb-cloud- sensu-service {“level”:“warn”,”message”:“loading config file”, 15
2021 net01 “file”:” /etc/sensu/conf.d /smart.json”}
2881 7 May 02:53:44 tb-cloud- sensu-service {“level“:“warn”,“message”:“loading config file”, 15
2021 net01 “file”:” / etc/sensu/conf.d/subscription_smartctl-os.json”}
2882 7 May 02:53:44 tb-cloud- sensu-service {“level”:“warn”,”message”:“config file applied changes”, 16
2021 net01 “file”:” /etc/sensu/conf.d/subscription_smartctl-osjson”,”changes”:{}}

Answering to RQ3 and RQ4, not only is it possible to obtain the status of a machine by
observing the monitoring metrics, but at the same time the anomalies found in the services
provide additional information. Looking at the above tables with anomalies and the graph
on the percentage of memory used, there is a correspondence between the occurrence
of some anomalies in the logs and the sudden drop in the metric recorded in the period
from 6 May 2021 to 7 May 2021. The percentage of memory used reached values below
5% in the same period in which anomalies, such as “suspending logging due to previously
mentioned write error”, “log file is not writable”,”config file does not exist or is not
readable”, occurred in the services. Extremely similar results were found for other machines.
For this reason we suggest to combine the information obtained from the two data sources

mentioned in this article.

8. Conclusions

In this paper we have discussed the specific findings from our study. The results
include the data extraction, the exploration of server logs on physical and virtual resources,
the investigation of monitoring metrics” data. They have been obtained applying natural
language processing solutions on log files, clustering technique on log files and JumpStarter
technique on monitoring data.

The data extraction has been challenging, having access to a huge amount of data.
It has been hard to identify the proper use cases selecting log files and monitoring data
on a given machine.

Up to now we have observed interesting outcomes thanks to the integration between
log files and monitoring data. We have been able to map log anomalies into machines’
metrics time series, noticing strange variation on monitoring data in the same period
of time. Our model requires to integrate site administrators” expertise in order to consider
all critical scenarios in the data center and understand results properly.

Furthermore, we also have to deeply investigate results obtained with the applica-
tion of time series anomaly techniques, such as JumpStarter. A better understanding
of the monitoring data may definitely boost this part.

With the collected information it will be easy to label both monitoring data and log
data observation to predict anomalies.

Author Contributions: For Conceptualization, L.V. and E.R.; methodology, L.V. and E.R.; software,
L.V. and E.R; formal analysis, L.V.; investigation, L.V., E.R. and C.C.; resources, E.R.; data curation,
L.V. and E.R.; writing—original draft preparation, E.R.; writing—review and editing, L.V, E.R. and
C.C,; visualization, L.V., ER. and C.C.; supervision, E.R.; project administration, E.R. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the EU H2020 IoTwins Innovation Action project
(g.a. 857191).

Computers 2022, 11, 117 19 of 20

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge INFN Tier-1 site administrators who pro-
vide log files.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Farshchi, M.; Schneider, J.G.; Weber, I.; Grundy,]. Experience report: Anomaly detection of cloud application operations using
log and cloud metric correlation analysis. In Proceedings of the 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE), Gaithersbury, MD, USA, 2-5 November 2015. [CrossRef]

Cavallaro, C.; Ronchieri, E. Identifying anomaly detection patterns from log files: A dynamic approach. In Computational Science
and Its Applications—ICCSA 2021; Gervasi, O., Murgante, B., Misra, S., Garau, C., Ble¢i¢, I, Taniar, D., Apduhan, B.O., Rocha,
AM.A,, Tarantino, E., Torre, C.M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 517-532.
Ma, M.; Zhang, S.; Chen, J.; Xu, J.; Li, H; Lin, Y.;; Nie, X.; Zhou, B.; Wang, Y.; Pei, D. Jump-starting multivariate time series
anomaly detection for online service systems. In Proceedings of the 2021 USENIX Annual Technical Conference (USENIX ATC
21), Virtual, 14-16 July 2021; pp. 413-426.

Bertero, C.; Roy, M.; Sauvanaud, C.; Trédan, G. Experience report: Log mining using natural language processing and application
to anomaly detection. In Proceedings of the 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE),
Toulouse, France, 23-26 October 2017; pp. 351-360.

Wang, M.; Xu, L.; Guo, L. Anomaly detection of system logs based on natural language processing and deep learning.
In Proceedings of the 2018 4th International Conference on Frontiers of Signal Processing (ICFSP), Poitiers, France, 24-27
September 2018; pp. 140-144.

Layer, L.; Abercrombie, D.R.; Bakhshiansohi, H.; Adelman-McCarthy, J.; Agarwal, S.; Hernandez, A.V; Si, W,
Vlimant, J.R. Automatic log analysis with NLP for the CMS workflow handling. In Proceedings of the 24th Interna-
tional Conference on Computing in High Energy and Nuclear Physics (CHEP 2019), Adelaide, Australia, 4-8 November 2020; 7p.
[CrossRef]

Zeufack, V.,; Kim, D.; Seo, D.; Lee, A. An unsupervised anomaly detection framework for detecting anomalies in real time through
network system’s log files analysis. High-Confid. Comput. 2021, 1, 100030. [CrossRef]

Bursic, S.; Cuculo, V.; D’Amelio, A. Anomaly detection from log files using unsupervised deep learning. In Proceedings of the
International Symposium on Formal Methods, Porto, Portugal, 7-11 October 2019; Springer: Berlin/Heidelberg, Germany, 2019;
pp- 200-207.

Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1-58. [CrossRef]
Huang, J.; Chai, Z.; Zhu, H. Detecting anomalies in data center physical infrastructures using statistical approaches. J. Phys. Conf.
Ser. Top Publ. 2019, 1176, 22056. [CrossRef]

Gabel, M.; Schuster, A.; Gilad-Bachrach, R. Unsupervised Anomaly Detection in Large Datacenters. Ph.D. Thesis, Computer
Science Department, Technion, Haifa, Israel, 2013.

Wang, C.; Viswanathan, K.; Choudur, L.; Talwar, V.; Satterfield, W.; Schwan, K. Statistical techniques for online anomaly detection
in data centers. In Proceedings of the 12th IFIP/IEEE International Symposium on Integrated Network Management (IM 2011)
and Workshops, Dublin, Ireland, 23-27 May 2011; pp. 385-392.

Decker, L.; Leite, D.; Giommi, L.; Bonacorsi, D. Real-time anomaly detection in data centers for log-based predictive maintenance
using an evolving fuzzy-rule-based approach. In Proceedings of the 2020 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE), Glasgow, UK, 19-24 July 2020; pp. 1-8.

Nti, LK.; Adekoya, A.F.; Weyori, B.A. A novel multi-source information-fusion predictive framework based on deep neural
networks for accuracy enhancement in stock market prediction. J. Big Data 2021, 8, 17. [CrossRef]

Lee, J.; Yi,].S. Predicting Project’s Uncertainty Risk in the Bidding Process by Integrating Unstructured Text Data and Structured
Numerical Data Using Text Mining. Appl. Sci. 2017, 7, 1141. [CrossRef]

dell’Agnello, L.; Boccali, T.; Cesini, D.; Chiarelli, L.; Chierici, A.; Dal Pra, S.; Girolamo, D.; Falabella, A.; Fattibene, E.; Maron, G.;
et al. INFN Tier-1: A distributed site. EP] Web Conf. 2019, 214, 8002. [CrossRef]

Breskin, R.V.A. The CERN Large Hadron Collider: Accelerator and Experiments Volume 2: CMS, LHCb, LHCf, and Totem; CERN:
Meyrin, Switzerland, 2009.

Bovina, S.; Michelotto, D. The evolution of monitoring system: The INFN-CNAF case study. J. Phys. Conf. Ser. 2017, 898, 92029.
[CrossRef]

He, P; Chen, Z; He, S.; Lyu, M.R. Characterizing the natural language descriptions in software logging statements. In Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering ASE, Rochester, MI, USA, 26 September-1
October 2018; pp. 178-189. [CrossRef]

http://doi.org/10.1109/ISSRE.2015.7381796
http://dx.doi.org/10.1051/epjconf/202024503006
http://dx.doi.org/10.1016/j.hcc.2021.100030
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1088/1742-6596/1176/2/022056
http://dx.doi.org/10.1186/s40537-020-00400-y
http://dx.doi.org/10.3390/app7111141
http://dx.doi.org/10.1051/epjconf/201921408002
http://dx.doi.org/10.1088/1742-6596/898/9/092029
http://dx.doi.org/10.1145/3238147.3238193

Computers 2022, 11, 117 20 of 20

20.

21.
22.

23.
24.

25.

26.

Chen, B; Jiang, Z.M.]. Characterizing and detecting anti-patterns in the logging code. In Proceedings of the IEEE/ACM 39th
International Conference on Software Engineering (ICSE), Buenos Aires, Argentina, 20-28 May 2017; pp. 71-81. [CrossRef]
NLP. Natural Language Toolkit. Available online: https://www.nltk.org/ (accessed on 16 July 2022).

Scikit Learn. CountVectorizer in Scilit Learn. Available online: https:/ /scikit-learn.org/stable/modules/generated /sklearn.
feature_extraction.text.CountVectorizer.html (accessed on 15 July 2022).

pyLDAvis. Available online: https://pyldavis.readthedocs.io/en/latest/readme.html (accessed on 16 July 2022).

Sandhu, A.; Mohammed, S. Detecting Anomalies in Logs by Combining NLP features with Embedding or TF-IDF. TechRxiv 2022.
[CrossRef]

Dai, H.; Li, H.; Chen, C.S.; Shang, W.; Chen, T.H. Logram: Efficient Log Parsing Using n-Gram Dictionaries. IEEE Trans. Softw.
Eng. 2020, 48, 1. [CrossRef]

Blei, D.M.; Carin, L.; Dunson, D. Probabilistic topic models. IEEE Signal Process. Mag. 2010, 55, 77-84. [CrossRef]

http://dx.doi.org/10.1109/ICSE.2017.15
https://www.nltk.org/
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://pyldavis.readthedocs.io/en/latest/readme.html
http://dx.doi.org/10.36227/techrxiv.19498769.v1
http://dx.doi.org/10.1109/TSE.2020.3007554
http://dx.doi.org/10.1109/MSP.2010.938079

	Introduction
	Related Works
	Log Data
	Monitoring Data
	Multi-Sources Data

	Source Data
	Log Files
	Monitoring Metric Files

	Methodology Overview
	Log Anomaly Detection
	Data Preprocessing
	Creation of the Anomaly Dictionary
	Feature Matrix
	Clustering Algorithm

	Anomaly Detection on Monitoring Metrics
	Combining Anomalies at Machine Level
	Conclusions
	References

