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Abstract: Skin cancer is one of the most common human malignancies, which is generally diagnosed
by screening and dermoscopic analysis followed by histopathological assessment and biopsy. Deep-
learning-based methods have been proposed for skin lesion classification in the last few years. The
major drawback of all methods is that they require a considerable amount of training data, which
poses a challenge for classifying medical images as limited datasets are available. The problem can
be tackled through transfer learning, in which a model pre-trained on a huge dataset is utilized and
fine-tuned as per the problem domain. This paper proposes a new Convolution neural network
architecture to classify skin lesions into two classes: benign and malignant. The Google Xception
model is used as a base model on top of which new layers are added and then fine-tuned. The model
is optimized using various optimizers to achieve the maximum possible performance gain for the
classifier output. The results on ISIC archive data for the model achieved the highest training accuracy
of 99.78% using Adam and LazyAdam optimizers, validation and test accuracy of 97.94% and 96.8%
using RMSProp, and on the HAM10000 dataset utilizing the RMSProp optimizer, the model achieved
the highest training and prediction accuracy of 98.81% and 91.54% respectively, when compared to
other models.

Keywords: convolution neural network; deep learning; melanoma; ISIC; transfer learning

1. Introduction

Melanoma skin cancers, including other categories of non-melanoma, are increasing
globally. In the US alone, it is estimated that 99,780 new melanomas will be diagnosed
in 2022, and around 7650 people are expected to die of malignant melanoma. Melanoma
is more common in white people compared to African Americans. Overall, 1 in 38 are at
lifetime risk of getting melanoma for white people, while it is 1 in 1000 for black people
and 1 in 167 for Hispanics. Despite new therapeutic agents, such as checkpoint and
BRAF inhibitors, to improve the survival of cases in advanced stages, melanomas still
become fatal [1]. It is the most harmful type of skin cancer, which causes pigmented
marks on the skin in humans [2]. The abnormality in the melanin-producing cells, also
called melanocytes, is the main reason for melanoma. Certain risk factors are associated
with melanomas, such as fair skin, hereditary factors, sunburn history, weakened immune
system, exposure to ultraviolet light, and the use of tanning beds. Melanoma, if diagnosed
in later stages, has a survival rate below 14%. However, if it is detected in the early stages,
the survival rate is around 97% [3]. Thus, it is paramount that melanoma skin cancer
is detected early with improved accuracy to increase survival. A skilled dermatologist
generally goes through steps, starting with the observation of the suspected lesions, then
dermoscopy by magnifying the lesions using a microscope and finally a biopsy [4]. It is
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a time-consuming and low-accuracy process that further leads the patient to later stages.
It is also found that under 80% of dermatologist diagnoses are correctly diagnosing the
skin cancer with this process [5]. To overcome all these problems, a lot of algorithmic
solutions are developed using computerized image analysis techniques [6]. Most of the
developed solutions are parametric, which requires the data to be distributed normally. As
the dataset is heterogeneous, it would be insufficient to diagnose the disease accurately
with these methods.

Convolution neural networks (CNNs) that are part of deep neural networks (DNNs)
are far better than other methods for performing tasks, such as object detection and image
classification [7]. Significant research has been conducted in the field of natural image
classification, and these works have produced CNN architecture such as GoogLeNet [8],
AlexNet [9], ResNet [10], VGGNet [11] and others. These architectures can be used as
pre-trained models that are publicly available. They were initially trained on around
1.28 million natural images of 1000 classes from the ImageNet dataset [12]. Other models
can use the weights and biases from these pre-trained models. It means that by fine-tuning
all the layers or some specific layers of these models using backpropagation using our
dataset, they can be used in the proposed task of skin cancer classification.

The weights and biases of AlexNet and VGGNet are initialized because the visual
information may differ from skin images. In medical image analysis, access to validated
data is expensive and heavily restricted, due to which training of CNNs from scratch
becomes a tedious task [13]. The transfer learning approach can overcome this problem
because it uses a pre-trained network (i.e., one trained on other types of images rather than
domain-specific) and adapts it to the classification problem at hand. Valuable features are
identified by using this pre-trained model even when the training samples are limited [14].
Recently, medical image analysis in different applications, such as cardiology, diabetic
retinopathy, radiology, ultrasound imaging, gastroenterology, breast cancer diagnosis,
microscopic imaging and dermoscopy, has used transfer learning [15]. Two different
transfer learning techniques have been used for skin lesion classification. In one of the
techniques, a pre-trained CNN is used to generate features. Here, images are given as input
to the pre-trained CNN model, and then features are extracted from a convolution layer or a
particular fully connected (FC) layer [16]. A classifier such as SVM can be built using these
extracted features [17]. These extracted features were encoded to discriminative and more
invariant representations, and to increase classification performance, they are consolidated
with other hand-crafted feature descriptors. The second technique used in transfer learning
is that the pre-trained models can be adapted to the other domain or problem by fine-tuning
the network layers. In the work proposed in [18], the fully connected or FC layers of the
pre-trained model were replaced by more new layers, and then the re-training of the model
was conducted so that the weights of the newly added layers could be adapted for the
classification of skin lesions. In different research work conducted so far, the pre-trained
models that are used in both transfer learning techniques for skin lesion classification
varied differently, including VGG16, VGG19, ResNet-152 and Inception-v4 [19].

Recently, some research work is also carried out for melanoma detection using autoen-
coders. In the work published in [20], stacked sparse autoencoders are used to discover
pixel intensities from the input images, which are high-level features given as input to the
classifier. Here, instead of training the whole network at once like in CNN, each layer is
trained separately, and then fine-tuning of the network is conducted to improve the perfor-
mance. Here, the authors also proposed a novel deep neural network architecture based
on the bag-of-features (BOF) model, which represents an image as a set of independent
local descriptors, and these are then quantized in the form of a histogram vector. Color
features are also included in local descriptors to better classify the input skin lesion image.
Here, the SIFT (Scale Invariant Feature Transform) [21] descriptor is combined with color
information. The proposed method achieved an accuracy of 95%, specificity value of 94.9%
and sensitivity value of 95.4% using BOF input to deep autoencoder instead of raw images.
Recently, a case-based reasoning (CBR) system was proposed in [22] to support users in
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obtaining the image of affected skin area. The ISIC archive dataset is utilized in the analysis
of skin lesion classification as a benign and malignant melanoma. The kernel of the CBR
system is built upon a CNN with sixteen layers that trained and learned recursively. The
proposed work gives an accuracy of only 75% on the ISIC archive dataset.

Although many methods have been developed for melanoma screening, a systematic
approach is missing, and the models proposed so far are too complex. Additionally, the
results of some important metrics in the medical images classification domain, such as
specificity and sensitivity, are not up to the mark.

Thus, to overcome these shortcomings, a novel CNN model is proposed using a
transfer learning approach to assist the dermatologist in accurately diagnosing skin cancer.

The rest of the paper is structured as follows: Section 2 discusses the material and
methods, Section 3 discusses the experimental setup and results, Section 4 discusses the
proposed model outcomes, and, finally, Section 5 discusses concluding remarks and scope
for future work.

2. Material and Methods

This research aims to develop the best transfer learning approach to classify skin
lesion images into two classes. The first class is benign skin tumors, and the second
class is malignant cancerous melanoma. The method proposed in this work has the
following workflow:

• Dataset selection and augmentation: ISIC archive dataset is selected, and data aug-
mentation is applied to overcome the class imbalance problem, leading to overfitting;

• Preprocessing: Input image preprocessing is kept minimum to increase the generaliza-
tion ability and adaptability of the proposed model for other classification tasks;

• Selection of base model: Xception model [23], a well-known CNN model pre-trained
on the ImageNet dataset, is selected as the base model;

• The last layer of the Xception model is removed, and three more layers are added:
drop out layer, global average pooling, and dense or FC layer with two nodes, which
is the last layer for binary classification, i.e., melanoma or benign;

• The pre-trained Xception network is fine-tuned multiple times on the ISIC archive
dataset with different settings to achieve more accuracy and good performance for
skin lesion classification;

• The model is optimized using six different optimizers, and the model performance is
compared on each of those optimizers;

• A novel variable learning rate algorithm and early stopping criterion are used to avoid
unnecessary model training for fix number of epochs;

• Results: The proposed method’s performance in every different setting is shown and
compared to other techniques developed so far.

• Figure 1 below shows the steps that are followed in the proposed methodology.

The following subsections give detailed descriptions of each stage of our proposed
methodology.
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Figure 1. Proposed Methodology.

2.1. Dataset and Its Augmentation

The ISIC archive dataset is used in this study, which consists of publicly available
images of skin lesions under Creative Commons licenses. There are over 150,000 images in
the ISIC archive, of which approximately 70,000 have been made public. There are many
classes of skin lesion images in the ISIC archive with ground-truth diagnoses and other
clinical metadata. These images are contributions from specialized melanoma centers from
around the world [24]. For the proposed work, two classes, i.e., benign and melanoma, of
images were taken from the ISIC archive. The number of images downloaded for benign
was 5000 and for that of melanoma was 2285, out of which 10% of images were taken for
testing purposes, i.e., 500 and 228 from each class. Therefore, the number of images left
for training and validation purposes of the benign class is 4500 and 2057 for melanoma.
Here, one thing to note is that there is a class imbalance both in the test and training and
validation datasets, which will result in a model that may have low performance on the
test dataset, specifically for the minority class.

To overcome this, data augmentation [25] is used to make the number of samples
for each class equal for both training and test data. There are several ways for data
augmentation; we have rotated the image at an angle of 180◦, image width and height
shift by a factor of 0.05 each, zoom shift by 0.05 and horizontal and vertical flip set to
true. Using these transformations, 272 images were generated for the test set from the
melanoma class and 2443 for the training dataset from the melanoma class, making each
class’s contribution equal to the training and test datasets. Afterwards, the total number of
images in the training dataset is 9000, and 33 % are taken for the validation set, 2970, and
the remaining 6030 for the training part. Finally, the test dataset contains 1000 images of
melanoma and benign tumors. The sample images from each class in the ISIC dataset is
shown in the Figure 2 below.

2.2. Preprocessing

The preprocessing steps in the proposed work are very few to support the model’s
generalization ability when tested on other datasets. The original images are 1022 by 767,
which are resized to 224 × 224 × 3, i.e., height, width and depth. All the images are scaled
down by a rescaling factor of 255 before giving input to the model. The dataset consists of
a colorful image that contains three maps: Red, Green and Blue. All the pixels are in the
range of 0–255, and these values would be too high for our model to process, so rescaling
by a factor of 1/255 transforms all pixels’ value in the range of 0–1 [26].
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2.3. Pre-Trained Convolution Neural Network Model and Its Fine-Tuning

We have used well-established CNN architectures to extract optimized features from
the images, called the Xception model. It was developed by Google researchers and is an
extreme version of the Google Inception model, which has obtained excellent classifica-
tion performance as compared to VGGNet, ResNet and Inception model for the image
classification task. The Xception model replaces the Inception model with depth-wise
separable convolutions instead of inception modules. It is 71 layers deep and trained on the
ImageNet database with more than a million images. As shown in Figure 3, the network
architecture consists of a linear stack with depth-wise separable convolution layers and
residual connections.

The input data first go through the entry flow block, followed by the middle flow,
which is repeated eight times, and, at last, through the exit flow block. Here, all the
convolution and separable convolution layers are followed by batch normalization. To
extract features from this pretrained Xception CNN model, fine-tuning of this model is
conducted using ISIC skin lesion images to obtain higher quality features from the images.

We have removed the last FC layer of the Xception model and replaced it with three
new layers, which are the dropout layer to prevent the model from overfitting, the global
average pooling layer to reduce the total number of parameters in the model to minimize
overfitting and the dense or FC layer with two nodes to solve the binary classification
problem, as shown in Figure 4.

The model is initialized with ImageNet weights on which it is pretrained, and the
weights are updated during the fine-tuning of all the layers during the training of our
proposed model on the ISIC skin lesion dataset so that the pretrained Xception model
integrates well into our new CNN model.
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In this proposed model, we have used different optimizers during the fine-tuning of
the model. The optimizers utilized in our experiments are Adam [27], an adaptive learning
rate optimizer; Adamax based on Adam, an adaptive learning rate optimizer; LazyAdam
for handling sparse updates, another variant of the Adam optimizer [28]; Nadam, which is
again a variant of Adam with nesterov momentum [29]; RMSProp, i.e., root mean square
propagation [30]; SGD, i.e., stochastic gradient descent [31].

In machine learning, optimization is the task of minimizing the loss function J(w),
where w is the model’s parameter, w ∈ Rd. It is conducted by updating the parameters in
the direction opposite to the gradient of the objective function ∇w J(w) with respect to the
model’s parameters. The step size we take to reach a local minimum is called the learning
rate and is represented by η.

In the case of SGD, it performs a parameter update for each of the training images x(i)

and its corresponding label y(i) with the following equation:

w = w− η.∇w J
(

w; x(i); y(i)
)

(1)

Momentum can be added to SGD to accelerate it in the relevant direction. It adds a
fraction γ of the past time update vector vt−1 to the current update vector vt as:

vt = γvt−1 + η∇w J(w) (2)

w = w− vt (3)

In this work, we used SGD with nesterov acceleration, which can significantly speed
up the training process and improve the convergence. Nesterov acceleration is added to
the above equation to give momentum a slowdown phase when slopes come up again.
The momentum term γvt−1 is used here to move the parameters w, and by calculating
w − γvt−1, we obtain an approximation of the next position of the model’s parameters. The
gradient is now calculated with respect to the future position of the model’s parameters:

vt = γvt−1 + η∇J(w− γvt−1) (4)

w = w− vt (5)

Exponentially decaying average of past gradients, just like momentum, is kept by
the Adam optimizer. Momentum can be visualized as a ball running down a slope, but
Adam can be pictured as a heavy ball with friction, preferring flat minima on the error
surface [27]. The decaying averages in Adam for past and past squared gradients, mt and
vt, are calculated as follows:

mt = β1mt−1 + (1− β1)gt (6)

vt = β2vt−1 + (1− β2)g2
t (7)

where the first moment and the second momentum of the gradients are mt and vt, respec-
tively, β1 and β2 are decay rates and gt is the gradient on the current mini-batch. The biased
correction equation for Adam is:

m̂t = mt/1− βt
1 (8)

v̂t = vt/1− βt
2 (9)

Finally, to perform the weight update, the following equation is used:

wt = wt−1 − n
m̂t√

vt + ε
(10)

where the default values of β1 and β2 are 0.9 and 0.999 and 10−8 for ε.
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Adamax, which is based on the infinity norm, is also used as a variant of the Adam
optimizer. It is used for sparse parameter updates and has the following set of equations
for optimization:

gt = ∇w ft(wt − 1) (11)

mt = β1mt−1 + (1− β1) gt (12)

vt = max(β2vt−1, |gt|) (13)

wt = wt−1 − (α/(1− βt
1
)
).mt/vt (14)

The LazyAdam optimizer handles the updates, which are sparse, more efficiently. For
each trainable variable, Adam maintains two moving-average accumulators, which are
updated at every step. LazyAdam handles the updates of a gradient in a lazy manner
for sparse variables. Instead of updating accumulators for all indices, it only updates
accumulators for sparse variable indices that only appear in the current batch. Comparing
it with the Adam optimizer can provide the best performance model training in some of
the applications [28].

Further, the RMSProp [30] optimizer is used, which is used to resolve the radically
diminishing learning rates. It is similar to the SGD algorithm with momentum, but the
oscillations are restricted in the vertical direction here. The loss function in RMSProp is
minimized based on the following:

w = w− α
dw√

vdw + ε
(15)

where vdw is:
vdw = β·vdw + (1− β)·dw2 (16)

β is the value of the momentum or decay rate, which is a hyperparameter and is
generally set to value of 0.9, and ε is used to prevent divide by zero error.

The Nadam optimizer used is very much similar to the Adam optimizer. Like Adam
with nesterov momentum [29], we have discussed above in SGD or RMSProp with momen-
tum term. The update rule in Nadam is as follows:

wt+1 = wt −
n√

v̂t + ε

(
β1m̂t +

(1− β1)gt

1− βt
1

)
(17)

where m̂t is the current momentum vector for bias correction.
We used the sparse categorical cross-entropy loss function, which calculates the cross-

entropy loss between the labels and predictions with every optimizer algorithm we utilized.
Sparse categorical cross-entropy loss is like the categorical cross-entropy loss function
defined in Equation (18) below. The only difference between them is related the truth labels
definition. In sparse categorical cross-entropy, the truth labels are encoded in the form of
an integer such as [1,2] for 2-class problems, while in categorical cross-entropy, it is [1, 0],
[0, 1] for 2-class problems.

LCE = −
n

∑
i=1

ti log(pi) (18)

where n is the number of classes, ti is the truth label and pi is the softmax classifier
probability for ith class.

In our experiments, the initial learning rate is set to 0.0001 and the batch size to 32 for
all the optimizers we have used. The number of epochs is set to 64 for all the optimizers,
except for SGD, for which we have set it to 128. The momentum term for SGDM is set to
0.0, and β1, β2 and ε are set to 0.9, 0.999 and 0.0000001, respectively, in Adam, Nadam,
Adamax and LazyAdam. In RMSProp, the values of β, momentum and ε are set to 0.9, 0
and 0.0000001, respectively.
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Early stopping criteria are used during training to stop the process when the validation
accuracy has stopped improving. It is a form of regularization that is used to avoid
overfitting [32]. The following parameters are set for this:

patience_epochs = 5 (19)

This is designed to stop the training process if the validation accuracy metric does not
improve after 5 epochs. Here, the model’s weight will also be restored from the epoch that
has the best value of the monitored quantity as per the following expression:

restore_weights = True (20)

The dropout value is set to 0.50, which means 50 percent of randomly selected neurons
are dropped out or ignored during training. It means on the forward pass, the contribution
of these neurons in the activation of downstream neurons is temporally removed, and no
weight updates are applied to the neurons on the backward pass [33]. This technique helps
deal with overfitting during the training process.

Finally, the activation function used in the last fully connected layer is the softmax
activation function. Our model is configured to output 2 values, i.e., malignant or be-
nign. Hence, the softmax function normalizes the output values by converting them from
weighted sum values into probabilities that sum to one [34].

3. Experimental Setup and Results

The model is implemented in Google Colabs, a cloud facility provided by Google to
implement machine learning algorithms. Colabs provide very powerful processing units
such as GPU and TPU. The proposed model is implemented on Tesla P100-PCIE-16GB
GPU using Python programming language. After training and validating the proposed
CNN model on the augmented dataset, the model was tested on 1000 unlabeled images of
melanoma and benign. This section discusses training, validation, and testing processes
and the model’s performance analysis during these phases using metrics such as training
accuracy, training loss, validation accuracy, validation loss, prediction accuracy and pre-
diction loss. AUC, which stands for area under curve, determines whether the model is
capable of distinguishing between classes and is also calculated for the proposed model.
The higher the AUC value, the better the model is at predicting benign as benign and
malignant as malignant.

3.1. Training and Validation Process

During the training and validation process, while loading the Xception model, the
“include_top” argument is set to False to remove the fully-connected output layer of the
Xception model, allowing layers to be added for the proposed model by using Xception as
a base model. The Xception model is loaded with weights = “imagenet”, as it is trained on
the imagenet dataset, which has millions of training images in 1000 categories. Because of
this, the Xception model will have prior knowledge about basic shapes, and then, layers
added on top of this knowledge for the proposed model are kept trainable so that it can
adjust to the skin lesion dataset. The initial learning rate is set to 0.0001, the batch size
is set to 32 and drop out is set to 0.50. The number of epochs are set to 64 for Adam,
Adamax, LazyAdam, Nadam and RMSProp, and for SGD, it is set to 128. The activation
function used in the dense layer is the softmax activation function. All the hyperparameters
discussed here are the same for each experiment using different optimizers, except for the
number of epochs, which is more for SGD. The training and validation process is executed
side by side the classical approach using 67: 33 split of training data into training and
validation set, respectively. Table 1 shows the training performance of the model utilizing
different optimizers.
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Table 1. Performance of the proposed CNN model during training.

Optimizer Training Loss Training
Accuracy

Validation
Loss

Validation
Accuracy

Total Epochs
Reached

Training Time
(in Seconds)

SGD 0.2423 93.33% 0.2059 95.38% 66 9738.66

Adam 0.0060 99.78% 0.0879 97.64% 11 2170.34

Adamax 0.0478 98.25% 0.0982 95.85% 9 1345.32

Nadam 0.0364 98.59% 0.1181 96.39% 7 1092.50

LazyAdam 0.0073 99.83% 0.0860 97.50% 7 1128.70

RMSProp 0.0258 99.15% 0.1431 97.94% 10 1507.78

From the above results, the best training accuracy of the model is achieved using the
LazyAdam optimizer and the lowest training loss using Adam optimizer. Additionally,
the validation loss is lowest using LazyAdam, and validation accuracy is highest using
RMSProp optimizer. By including early stopping criteria, the model reached the best
performance in epoch 7 using Nadam and LazyAdam, while it goes up to 66 epochs using
the SGD optimizer. In terms of training and validation time, the model took the least time
using the Nadam optimizer, and it took the longest time using the SGD optimizer. The
reason for a longer time in SGD can be poor handling of heavy-tailed noise, whereas Nadam
performs gradient clipping coordinate-wise in an implicit manner to tackle heavy-tailed
noise. Therefore, this clipping makes Nadam significantly faster than SGD.

3.2. Testing Process

After the training performance, the classification performance of the model is dis-
cussed. The various classification metrics were calculated for the model, such as sparse
categorical cross-entropy loss, accuracy for predicting image correctly as benign or ma-
lignant, average accuracy, average precision, average recall, average specificity, average
sensitivity and average value of area under the curve. These metrics were calculated using
different optimizers in this proposed work. Table 2 shows the classification performance of
the proposed model utilizing other optimizers. Various metrics are used here to analyze the
model performance for predicting the image class, such as accuracy, sensitivity, specificity
and precision. The accuracy is an essential measure in medical image analysis as it gives
the ratio between the samples that are correctly classified and the total number of samples
in the test dataset. The sensitivity or recall or True Positive Rate (TPR) is also considered an
essential metric in medical image analysis, as the goal is to miss as few positive samples
as possible to obtain a high recall or sensitivity value. It is the rate of correctly classified
positive samples and is calculated as the ratio between positive samples correctly classified
and the entire dataset assigned to the positive class.

The specificity is negative or opposite of the sensitivity, denoting the rate of correctly
classified negative samples. It is calculated as the ratio between negative samples that are
correctly classified and all samples that are classified as negative. Finally, precision denotes
the proportion of relevant retrieved samples, and it is calculated as the ratio between
samples that are correctly classified and all samples assigned to that class. The model
loss is very low using the Adamax optimizer, while the class-wise accuracy and average
accuracy are highest with the RMSProp optimizer. The average precision, specificity and
sensitivity values are also highest using the RMSProp optimizer. In contrast, the average
value of area under the curve is highest using the Adamax optimizer, which means that the
model performs best at predicting benign as benign and malignant as malignant using the
Adamax optimizer.
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Table 2. Performance of the proposed CNN model during classification.

Metrics
Optimizer

SGD Adam Adamax Nadam LazyAdam RMSProp

Sparse_cc_loss 0.229 0.142 0.106 0.228 0.132 0.225

Benign_accuracy 93.8% 96.2% 95.6% 94.9% 96.0% 96.9%

Malignant_accuracy 93.8% 96.2% 95.6% 94.9% 96.0% 96.9%

Avg_accuracy 93.8% 96.2% 95.6% 94.9% 96.0% 96.8%

Avg_precision 82.7% 95.6% 94.8% 93.6% 95.2% 96.3%

Avg_specificity 82.7% 95.6% 94.7% 93.6% 95.0% 96.2%

Avg_sensitivity 82.7% 95.6% 94.7% 93.6% 95.0% 96.2%

Avg_AUC 96.9% 98.6% 99.1% 98.7% 98.9% 98.5%

Time taken (in secs) 02 04 03 02 02 02

The graphs for training accuracy, validation accuracy, training loss and validation loss
with the best values using different optimizers are shown in Figures 5 and 6, respectively.
For the classification performance, the predicted results versus ground truth values for the
RMSProp optimizer are shown in Figure 7, and ROC–AUC curves are also plotted using
the RMSProp optimizer in Figure 8.
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Now to prove that the proposed model is the best compared to other state-of-the-art
models developed so far that have used the same dataset as used in this work, a comparison
is presented below in Table 3.

Table 3. Comparison of the proposed model to other models.

Methods
Metrics

Accuracy AUC Sensitivity Specificity

An ensemble-based CNN
framework [35] 86.6% 89% 55.6% 78.5%

FCRN melanoma recognition [36] 85.5% 78% 54.7% 93.1%

Novel regularizer-based CNN for
skin lesion classification [37] - 98% 94.3% 93.6%

CNN model with cytological
findings [38] - 84% 80.9% 88.1%

Proposed model 96.8% 99% 96.2% 96.2%
Note: - accuracy not reported by the author in the paper.

The above results proved that the proposed model achieved the best figures for
accuracy, AUC, sensitivity and specificity compared to other models. The proposed model
also achieved the highest training accuracy of 99.83%, which is the best among all the works
conducted for skin lesion classification problems.

To further check the generalizability of the proposed model, it is trained and tested
again on the HAM10000 [39] dataset, which stands for “Human Against Machine”. It
consists of dermatoscopic images collected, acquired and stored from different populations
and different modalities. A total of 10,015 images of melanocytic nevi, melanoma and
others are included in this dataset. We have extracted nevi and melanoma images from this
dataset only to show the binary classification as conducted on the ISIC dataset. The sample
images of these classes is shown in the Figure 9 below.
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Figure 9. Sample images from the HAM10000 dataset: nevi (row 1) and melanoma (row 2).

The dataset has 7037 images for both classes mentioned, out of which 33% of data is
taken for validation and the remaining for training purposes, while the test dataset consists
of 781 images of both classes. All the preprocessing steps are the same as the ISIC dataset,
including data augmentation of the training set. The model hyperparameters are also the
same, and the optimizer utilized is RMSProp, as it has given the best results on the ISIC
dataset. Table 4 below shows the model’s performance on the HAM10000 dataset during
training and testing compared to other state-of-the-art models on the same dataset.

Table 4. Performance of the proposed CNN model on the HAM10000 dataset.

Model Training Accuracy Classification Accuracy AUC

Proposed model 98.81% 91.54% 86.41%

DCNN model [40] 93.16% 90.16% NA

MobileNet [41] 92.93% 82.62% NA

DenseNet [42] 91.36% 85.25% NA

DLSC model [43] NA 84% 91%

Comparative study [44] NA 74.75% 81.46%

SCIS [45] 80% 78% NA

Table 4 above shows that the proposed model has outperformed other models trained
and tested on the HAM10000 dataset in terms of testing and classification accuracy. Thus,
the generalizability of the model is proved for diverse datasets. The proposed model can
be applied to different datasets due to its better performance.

The training vs. validation accuracy plot of the proposed model on the HAM10000
dataset is shown in Figure 10 below, where the validation accuracy is 0.9134, which shows
the model does not overfit the training data.
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4. Discussion

The main contribution of this work is proposing a CNN architecture based on a transfer
learning approach for melanoma skin cancer classification. By utilizing the Xception model
pre-trained on the ImageNet dataset and fine-tuning it with different types of optimizers
and hyperparameter settings, the proposed model gives very promising results without
the need for extensive preprocessing of the input skin lesion images, and there is no need
for image segmentation, which most of the previous researchers used in their work for
segmenting the lesion area. To justify using early stopping criteria, Table 1 clearly shows
the whole epoch reached during training by the model for each optimizer. The training
time and system resources are saved using this technique. Additionally, restoring the
models’ weights to the best-valued epoch further reduces the chances of degradation in
classification results.

Moreover, comparing the results using different optimizers shows that models have
excellent performances in almost all cases but are slightly higher in the case of RMSProp
and LazyAdam optimizers considering loss and accuracy during training, validation and
classification. Further, Table 3 shows that the accuracy, specificity and sensitivity are
best for the proposed model compared to other state-of-the-art models. The model also
achieved the best results when trained and tested on the HAM10000 dataset as compared
to other methods. Therefore, it can be accepted as a generalized model for different types
of datasets.

As far as the proposed model’s real-time applicability analysis is concerned, a user-
friendly mobile application can be designed to identify melanoma. The user will be able
to click the picture or upload a picture with melanoma on the device. The image will be
sent to the server where the proposed model is implemented. The feature parameters of
the image will be calculated, and the trained model can carry out image classification. The
entire process can be completed in few seconds as we have seen the classification time of
the proposed model is 2 s. Thus, with the help of a mobile application, it will be very easy
to identify melanoma during the early stages and make the task of dermatologists easier.

5. Conclusions and Future Work

Melanoma detection using deep learning architectures gives very promising results,
but the lack of large datasets to train the CNN model makes delivering good classification
performance challenging. In this paper, we have proposed a transfer learning-based
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CNN model and data augmentation techniques applied to raise training and classification
accuracy. Additionally, various optimizers are tested on the proposed model to obtain
the best results to be further applied to different datasets, as conducted in this work on
the HAM10000 dataset. The main motive of this work is to obtain a generalized model to
classify skin lesion images into different classes and on different types of datasets.

The augmented images distribution is different from the original images, so it can
lead to data bias, affecting the model’s performance. In the future, generative adversarial
networks (GANs), which use a novel method for data augmentation, can generate a large
amount of synthetic data from the original one. We used the CNN model based on the
transfer learning approach for melanoma and benign classification and obtained promising
results. Still, as part of future research, a CNN model can be developed and trained from
scratch using the large amount of data generated through GAN. Thus, the model can be
utilized using a transfer learning approach for other forms of medical image classification
by fine-tuning it if the dataset for the problem is minimal.
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CNN Convolution Neural Network
ISIC International Skin Image Collaboration
BRAF Human Gene That Encodes a Protein Called B-Raf
VGG Visual Geometry Group
ResNet Residual Network
Adam Adaptive Moment Estimation
Nadam Nesterov-Accelerated Adaptive Moment Estimation
SGD Stochastic Gradient Descent
RMSProp Root Mean Square Propagation
GPU Graphics Processing Unit
TPU Tensor Processing Unit
ROC Receiver Operating Characteristic Curve
AUC Area Under ROC Curve
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