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Abstract: Occupational disorders considerably impact workers’ quality of life and organizational
productivity, and even affect mortality worldwide. Such health issues are related to mental health
and ergonomics risk factors. In particular, mental health may be affected by cognitive strain caused
by unexpected interruptions and other attention compromising factors. Risk factors assessment
associated with cognitive strain in office environments, namely related to attention states, still
suffers from the lack of scientifically validated tools. In this work, we aim to develop a series of
classification models that can classify attention during pre-defined cognitive tasks based on the
acquisition of biosignals to create a ground truth of attention. Biosignals, such as electrocardiography,
electroencephalography, and functional near-infrared spectroscopy, were acquired from eight subjects
during standard cognitive tasks inducing attention. Individually tuned machine learning models
trained with those biosignals allowed us to successfully detect attention on the individual level, with
results in the range of 70–80%. The electroencephalogram and electrocardiogram were revealed to be
the most appropriate sensors in this context, and the combination of multiple sensors demonstrated
the importance of using multiple sources. These models prove to be relevant for the development
of attention identification tools by providing ground truth to determine which human–computer
interaction variables have strong associations with attention.

Keywords: occupational health; biosignals; attention; machine learning; cognitive tasks; electrocardiogram;
electroencephalogram

1. Introduction

Mental health and musculoskeletal disorders are currently the most prevalent work-
related disorders (WRD) [1], having a significant impact not only on the quality of life of
workers but also in terms of organizational productivity and absenteeism [2]. Occupational
hazards continue to be a cause of disorders with an effect on mortality worldwide. Even
with significant improvements in identifying these risks with technology and the precau-
tionary measures introduced over the last decades in workplaces to prevent and mitigate
occupational hazards [2], they continue to occur. Presently, cognitive demands of working
tasks are high due to many external factors, such as constant interruptions, ambient distrac-
tions, and information overload [3]. The literature available on these topics has underlined
that providing meaningful feedback to workers based on their personal data and delivering
recommendations on ways to improve work efficacy and well-being contribute to reducing
risk factors of WRD related to mental health difficulties and disorders [4]. To the best of our
knowledge, there is a lack of scientifically validated tools able to identify attention in office
environments, coupled with the delivery of personalized feedback and recommendations.
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Even though attention is a common term, it has different meanings according to the
contexts where it is applied. For psychology, attention is a cognitive process defined by
William James (1890) as “taking possession by the mind, in clear and vivid form, of one
out of what seem several simultaneously possible objects or trains of thought” [5]. Thus,
in the context of work, attention is the mechanism through which the individual focuses
on a subject even though numerous external stimuli may exist, such as noise in the office,
computer notifications, or coworkers talking. Moreover, attention can be active if it is
controlled and defined by the individual’s goals and expectations, or passive if it depends
on external stimuli (e.g., loud noise) [6]. On the other hand, attention can also be defined as
focused attention, when the individual focuses on one stimulus among various, or divided
attention, when the individual focuses on multiple objectives simultaneously. Finally,
attention can be external, referring to the selection and modulation of sensory information,
or internal, referring to the selection, modulation, and maintenance of internally generated
information [6].

With attention being a cognitive process, it is associated with physiological changes
that may be detected using appropriate sensors. Such sensors measure biosignals, which
are generated by the human body from different sources. For instance, biosignals can have
a chemical source (e.g., hormonal concentration), mechanical (e.g., muscle movements),
thermal (e.g., body temperature), and electrical (e.g., electrocardiogram) [7]. In this study,
we focused on electrical and mechanical biosignals to measure various body functions.
These biosignals can be measured with high sampling frequencies at the surface, having no
or low invasiveness.

This work is part of the project “Prevention of Occupational Disorders in Public
Administrations based on Artificial Intelligence” AT (PrevOccupAI) [8], which aims to
identify and characterize profiles of WRD and profiles of daily working activities from
individuals working in the public administration, in particular, Autoridade Tributária. In this
project, both ergonomic and mental health risk factors will be assessed by the group of
researchers. Although the presented study focuses on detecting attention during specific
tasks, it contributes to the understanding of the occupational context by providing relevant
indicators that can be associated with mental health risk factors, such as high cognitive
demands due to constant interruptions.

The design of an attention tool using a human–computer interaction (HCI) and work-
related variables was presented and explained in detail by Gamboa et al. (2021) [9]. Briefly,
this tool aims to combine variables from HCI with work-related variables that can be
associated with attention and are known to affect work performance and well-being. This
tool may deliver meaningful easy-to-interpret feedback on personal outcomes that facilitate
self-awareness and self-reflection regarding working aspects, as well as recommendations
to promote targeted actions in working environments. The definition of variables is the first
main task of this tool. However, it is fundamental to establish a ground truth of attention
during the human–computer interaction in order to associate such variables with attention.

In this work, we explored the relationship between biosignals and attention during
two different cognitive tasks. Thus, it is required to have significant attention from the
user in specific moments to accomplish those tasks. Since these are cognitive tasks, the in-
teraction with the computer is limited. Following the literature, we decided to use an
electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS), as these
allow for a measurement of cognitive processes [10]; an electrocardiogram (ECG) and
electrodermal activity (EDA) to infer emotional regulation responses [11]; and a respiratory
inductance plethysmography (RIP) band around the upper abdominal region and an ac-
celerometer (ACC) attached to the head of the participants to measure changes in posture
and head movements. For this analysis, we extracted a set of features from each acquired
biosignal and applied a machine learning (ML) algorithm to combine these features and to
predict the attention state. In this study, the class of attention state was binary, i.e., the state
can be: attention or no attention. The main contributions of this work are:

• The study of different biosignals to train and predict the attention state;
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• The study of different combinations of biosignals to train and predict the attention state;
• The study of the application of unobtrusive sensors and combination of sensors with

ecological validity (ability to be applied outside the laboratory) for the attention
state detection;

• The study of training specific models for each individual to take into consideration the
individual differences while interacting with the computer, and also the differences in
the respective biosignals [12,13].

With this pilot study, we intend to demonstrate the importance of individual-tailored
solutions in attention detection tools. Moreover, we aim to validate our methodology to
establish the ground truth of the attention state to study the related HCI variables.

An additional task was included in the procedure presented in this paper. Al-
though this task is not analyzed in this study, it will be suitable in the future to explore
HCI variables related to attention. In this, the user solves several Python exercises while
acquiring allof the biosignals in combination with a set of HCI variables: mouse movement,
keyboard presses, screenshots, audio, and screen snapshots. The models built in the present
work will be applied in this task as ground truth for attention, and, afterward, the analysis
of HCI variables will be correlated with the result. Given that office workers often perform
tasks with a high interaction with a computer and HCI variables are less invasive than
biosignals, the attention tool will only depend on the HCI variables. One important factor
that should be considered in HCI is personal style, as different individuals may interact
differently with the computer. Namely, personality types may affect the interaction and
should be taken into account [12,13].

2. Related Work

Brain–computer interfaces (BCI) provide a mean for individuals to communicate with
a computer using only their thoughts [14]. This means that, typically, sensors capable of
detecting shifts in brain functioning are a requirement. Sensors such as low-channel EEG
and low-channel fNIRS can be applied in these contexts (e.g., [15,16]) due to their ecological
validity when compared to other techniques, e.g., magnetoencephalography, functional
magnetic resonance imaging, and positron emission tomography [17,18]. Common BCI’s
yield the ability to actively control equipment, e.g., communication of patients with mobility
problems and the interaction with computers [16]. Passive BCI’s, on the other hand, are
used to monitor the individual’s state, which may serve, for example, as the basis for
improving an interface with which the user interacts [19]. Moreover, the detection of a
mental state shift is usually automatic by applying artificial intelligence methods, e.g., ML
algorithms [16].

Attention, being mainly a cognitive process, can be assessed using passive BCI’s
by applying the usual sensors in this context. For example, Ko et. al. (2017) applied
a 32-channel EEG to assess sustained attention in the classroom and demonstrated that
there was a relationship between spectral dynamics and the performance in a specific
sustained attention task [20]. In another study, Hu et al. (2018) applied a similar EEG
sensor with 32 channels and performed classification using ML, with the algorithm k-
nearest neighbors, to detect self-reported attention levels in a simulated distance learning
environment, achieving an accuracy of around 80% [21]. Fahimi et al. (2018) used a single
prefrontal channel EEG to measure attention during a cognitive test (Stroop test) and
a neurophysiological test (repeatable battery for the assessment of neurophysiological
status—RBANS), concluding that, specifically, the alpha–gamma ratio and theta–beta ratio
are related to the individual’s response time [22]. Instead of BCI, Zhang et al. (2017) took a
different approach and assessed attention in the classroom using embedded sensors, namely
accelerometers and gyroscopes, as well as cameras, for the analysis of the head motion,
pen motion, and visual focus monitoring. The assessment was made with a rule-based
approach (rules defined by the authors) and a data-driven approach (applying ML models),
reaching around a 60% and 80% accuracy, respectively [23]. Still in the classroom, Zaletelj
and Košir (2017) used 2D and 3D models of the Kinect One sensor to detect attention
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based on image-related features, reaching a classification accuracy of around 75% [24].
Abate et al. (2021) developed a system for attention monitoring with integrated feedback
for synchronous distance-learning based on image-related features. The system was applied
during distance-learning lessons and also in an engineering company. The aim was to
provide the information to the supervisors as feedback to decide how to better adapt the
content to the overall users’ state [25]. Though there is a high prevalence of attention
monitoring works related to learning, other applications include driver vigilance [26–28],
construction workers [29], and other attention-dependent workers (e.g., nuclear power
plant operator [30]).

From an informative and/or interventive perspective, solutions to foster attention and
time management, including browser extension and mobile apps, already exist. In this
domain, Toggl Track [31] allows us to track the time time spent in activities such as emails
or websites and block websites such as social media; Rescue Time [32] allows us to set limits
to websites; and Time Out reminds us to take breaks [33].

3. Material and Methods
3.1. Data Acquisition

Given the importance of establishing a ground truth for attention and baseline, we
developed a setup that includes baseline periods and standard cognitive tasks, namely,
n-back and mental subtraction tasks developed using PsychoPy software [34]. A log file is
stored in a CSV format.

Latent is a chrome extension used to track the HCI in contexts of web-based nav-
igation [35]. This tool monitors and collects data of the mouse movement, keyboard
presses, screenshots, audio, and snapshots using the computer’s webcam during the
Python tutorial, which involves extensive interaction with the computer. Data are stored in
a MongoDB database.

The physiological data were collected using biosignalsplux acquisition devices from
PLUX Wireless Biosignals [36] at 1000 Hz and 16-bit resolution. EEG and fNIRS sensors
were employed using two channels each (reducing the number of channels to create a
close to natural learning environment), positioned around the F7 and F8 positions of the
10–20 system [37]. Electronic devices and noise sources, such as WiFi or Bluetooth devices,
were not near the sensors in order to avoid noise. The ECG sensor was applied to measure
the lead I of the Einthoven system. The EDA sensor was placed in the palm of the non-
dominant hand, reducing movement constraints during computer interaction. The RIP
sensor was placed in the upper abdominal region to measure the thoracic expansion/com-
pression and the ACC was placed on the right side of the head to measure head movements
and overall posture changes. The diagram in Figure 1 illustrates the positioning of all
sensors. Biosignals data were recorded using OpenSignals, an application provided by
PLUX Wireless Biosignals, and stored in TXT format. An example of the acquired biosignals
is shown in Figure 2, where all raw signals are shown in arbitrary units.

fNIRS

ECG

EDA

RIP

ACC
EEG

Figure 1. Position of the sensors used during data acquisition.
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Figure 2. Example of the acquired signals. From left to right and top to bottom, the signals represent: red channel of the first fNIRS sensor; infrared channels of the
first fNIRS sensor; red channel of the second fNIRS sensor; infrared channel of the second fNIRS sensor; first lead of the EEG sensor; second lead of the EEG sensor;
EDA signal; ECG signal; RIP signal; time to answer the n-back task; X, Y, and Z of the accelerometer sensor, respectively.
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3.2. Participants

A sample of 8 volunteering subjects (4 females) aged between 20 and 27 years old
(M = 22.9, SD = 2.1) participated in this study. Participants were students and recruited at
NOVA School of Science and Technology. All participants were Portuguese but fluent in
English, and right-handed [38], and none reported suffering from psychological or neu-
rological disorders or taking medication other than contraceptive pills. Written informed
consent was obtained before participation according to the approved protocol by the Ethics
Committee of the NOVA University of Lisbon. This procedure was performed in an isolated
room where all the equipment was disinfected before and after each acquisition due to the
current pandemic situation, following guidelines set by the government health entity of
Portugal, Direção-Geral de Saúde.

3.3. Tasks

This procedure includes three different tasks: n-back task, mental subtraction task,
and Python exercises in a Jupyter notebook [39].

N-back (described in [40]) and mental subtraction were employed as standard cogni-
tive tasks. Rest periods of 60 s were implemented before, between, and after the two main
tasks, and 20 s between tasks’ explanations and procedure to avoid contamination from
reading the instructions. Finally, a rest period of 10 s between difficulty levels of n-back and
between subtraction periods was introduced. Regarding the number of trials, the n-back
task consisted of 4 levels with 60 trials each, and mental subtraction had 20 subtraction
periods of 12 s, in which, participants had to continuously subtract a given number from
the result of the previous subtraction while a visual cue was shown.

Participants took, on average, around 8 min and 30 s (509± 75 s) to complete the
n-back task and 9 min and 7 s (547± 2 s) to complete the mental subtraction task.

The Python exercises, presented in a tutorial, aim to simulate a close-to-real working
task that involves the execution of theoretical and practical examples. This part of the
procedure will be analyzed for future purposes and will not be explored in this study.

3.4. Procedure

After being in the room, participants were informed about the whole procedure in
this experience, all provided written informed consent, and none objected to wearing the
sensors. After this, the sensors were attached, and the software with which the participants
would interact with was launched. Regarding the experimental procedure, the participants
were asked to fill a sample characterization survey with some of their personal information,
depicted in the annexed Figure A1. The cognitive tasks that followed included standard
psychological tests, namely the n-back task and the mental subtraction task. After complet-
ing these cognitive tasks, participants were asked to solve the Python exercises. Finally,
a questionnaire was presented regarding the participants’ opinion of the whole experience
(whether the duration of the experimental procedure was appropriate, whether the lan-
guage was understandable, whether the difficulty of the questions was adjusted, etc.). The
whole procedure is described visually in Figure 3.

Figure 3. Diagram of the experimental procedure. The Python tutorial and second questionnaire will
not be analyzed in this study.
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3.5. Signal Processing

Biosignals can be prone to motion artifacts or other noise sources and should be pre-
processed for impact minimization. Thus, a second-order band-pass Butterworth finite
impulse filter was applied to each acquired biosignal with cut-off frequencies adapted to
each of them. A summary of those frequencies is presented in Table 1.

Table 1. Cut-off frequencies in Hz of the second-order band-pass Butterworth finite impulse filters
applied for each acquired biosignal.

Biosignal Low-Pass (Hz) High-Pass (Hz)

fNIRS 0.05 1
EEG 1 30
ECG 5 15
EDA 0.016 35
RIP 0.01 1

ACC 0.01 10

In the case of the fNIRS sensor, after applying the filter, the modified Beer–Lambert law
was applied to convert optical density into relative concentrations of the chromophores of
hemoglobin, i.e., oxygenated hemoglobin and deoxygenated hemoglobin using the mes2hb
GitHub repository [41].

After pre-processing, the signals were segmented according to the tasks and resting
periods. A windowing approach with no overlap was applied to re-segment the segments
in 10 s segments. Possible uneven sampling segments were removed according to the
following filter: more than 20% of data points with 5 times higher period than the 1 × 10−3 s
sampling period or one of the data points has a time difference higher than 0.2 s compared
to the adjacent neighbors. Finally, the final half of the segments of each task (n-back and
mental subtraction) was removed to make sure that fatigue did not influence our results.

A label of task or baseline was attributed for each extracted segment. Namely, if a given
segment belonged to one of the cognitive tasks, the label was task, and if it belonged to one
of the rest periods, the label was baseline.

3.6. Feature Extraction

Given the 10 s signal segments, relevant information needed to be extracted to enable
the classifiers to find possible relations between them and the given classes. That informa-
tion was extracted in the form of features using the time series feature extraction library
(TSFEL) project [42]. The original TSFEL paper describes all implemented features in detail
and presents their corresponding mathematical formulation. Though TSFEL provides
a list of 60 features, we only kept 22 features for each segment based on the following
criteria: (1) exclude features that were specific to sensors we did not employ (e.g., audio and
electromyography); (2) exclude the features that had high computational cost according
to the values provided in TSFEL GitHub repository; (3) reduce the number of remaining
features to approximately half arbitrarily to reduce the computational cost of extracting
the features. The final set of features, their domain, and the corresponding description are
enumerated in Table 2.
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Table 2. Extracted features, respective domain, and short description.

Domain Feature Description

Statistical

Maximum Maximum value of a segment.
Minimum Minimum value of a segment.
Polarity Maximum of segment divided by the minimum.

Mean Mean value of a segment.
Variance Variance value of a segment.

Standard Deviation Standard deviation value of a segment.
Kurtosis Kurtosis of a segment.

Skewness Skewness of a segment.

Temporal

Mean of Differences Mean of the derivate of the segment.

Total Energy Total energy of a segment in the form of the sum of the squares of all
values divided by the time of the segment.

Area Under the Curve Area under the curve of the segment using the trapezoid rule.
Absolute Energy Same as total energy, but without accounting for the time of the segment.

Peak to Peak Distance Absolute value of the peak to peak amplitude of a segment.
Entropy Shannon entropy of a segment.

Slope of Linear Regression Slope of a linear regression of a segment.
Zero Crossing Count Number of times the signal crosses the zero value.

Spectral

Fundamental Frequency Frequency of the first prominent peak of the segment’s
frequency spectrum.

Maximum Frequency Maximum frequency of the segment’s frequency spectrum.
Power Bandwidth Width of the frequency band in which 95% of its power is located.

Spectral Distance Sum of the difference between the frequency spectrum of the segment to
the linear regression of the cumulative frequency spectrum.

Median Frequency Median frequency of the segment’s frequency spectrum.
Spectral Entropy Spectral entropy of the segment’s frequency spectrum.

Thus, we extracted 22 features from each signal. This means that, for sensors com-
posed of more than one channel, the number of features multiplies by the number of
generated signals. Namely, we have 2-channel EEG, so 44 EEG features; 4 signals of fNIRS
(2 chromophores for 2 channels), resulting in 88 features; finally, 3-channel ACC, and thus
66 features. When combining sensors, the number of features sums. Hence, when we
consider EEG-fNIRS, for example, the total number of features is 132 (44 + 88).

Unlike other works, such as [43], our feature extraction procedure was generic enough
to be applicable to all sensor signals simultaneously.

3.7. Model Training

We used a random forest algorithm to perform the model training to classify the
attention events. In this case, the train and test sets were selected by stratified k-folds
cross-validator. The models were trained with individual biosignals or their combinations.
The different combinations of biosignals depend on the general results of each sensor.

When the datasets are imbalanced, which means that the predictive classes do not
exist in the same quantity, the models could produce biased results. In our scenario, the two
classes were never exactly in the same quantity, and, therefore, to handle this issue, we
applied a random undersampling that consists of sampling from the majority class in order
to keep only a part of these points. This way, the majority and the minority classes have the
same dataset size [44].

Dealing with numerical features in ML, it is a common approach to normalize the
variables to discard inter-subject variability. This way, values of the signals are adjusted
to a given scale without modifying signal characteristics. We used a technique called
standardizing [45] that subtracts the statistical mean from each value and divides the result
by the standard deviation. The technique is described in Equation (1)

x′ =
x− x
std(x)

, (1)
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where x is the original array of values, x is the mean value of x, std(x) is the standard
deviation of x, and x′ is the standardized vector.

These statistics were calculated from each feature of the training set and were stored to
be applied in the testing set. The final set of values has a mean value of zero and a standard
deviation of one. To keep the test set unseen during the training phase, the normalization is
first performed to the training set of features, recording each mean and standard deviation.
The normalization of the testing is based on the recorded mean and standard deviation of
the training set.

Random forest (RF) is a supervised learning algorithm. It is an ensemble of decision
trees that produces a more accurate and stable prediction, merging multiple decision trees.
To overcome the sensitivity of the decision trees, in a random forest, each tree is trained on
different sets of data through bagging, which is a method that randomly samples a data
set with replacement. The features considered in each node are from a random subset of
features to create an uncorrelated forest of trees whose prediction is more accurate than
that of any individual tree. The subset of random features should be smaller than the set of
features to avoid this problem. Every decision tree consists of decision nodes, leaf nodes,
and a root node. The leaf node of each tree is the final output produced by that specific
decision tree. For the final decision, the RF classifier aggregates the results of individual
trees. The selection of the outcome follows the majority-voting system, leading to the
random forest classifier exhibiting good generalization [46,47]. The subset of features used
at each node was limited to the logarithm of the number of features. The number of trees
was set to 200 due to computational time cost. The criterion used for the decision trees was
Gini, the minimum number of samples to split a node was 2, and the minimum number of
samples to be a leaf node was set to 1.

Given that test data should not be included in training data, we applied a stratified
k-folds cross-validator to split the data into train/test sets. This method divides the sample
into groups of samples (folds) of equal sizes. The prediction function uses k-1 folds for
training and leaves one fold out for testing. A stratification process is also part of this
method in order to guarantee that each fold contains approximately the same percentage of
classes in the training set and the test set [48].

3.8. Model Evaluation

To evaluate a model’s performance, the predicted classes of the samples of the test set
are compared with the real classes. In a binary classification, which is the case of this study,
the evaluation metrics are based on the following terms [49]:

• True Positive (TP): number of samples predicted positive and with a positive real class;
• True Negative (TN): number of samples predicted negative and with a negative real class;
• False Positive (FP): number of samples predicted positive and with a negative real class;
• False Negative (FN): number of samples predicted negative and with a positive real class.

In this study, we evaluated the models based on their accuracy, which corresponds to
the ratio between the number of correctly predicted classes and the number of all predicted
classes within the test set (Equation (2)) [49].

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

In this work, to evaluate the models in terms of accuracy, only models with an accuracy
score higher than 60% are significant, since we are considering binary and balanced sets.
However, these will still be regarded as poor models if lower than 70%. Given that, in the
related work presented in Section 2, the accuracy scores are between 70% and 80%, we
consider those as good models in this context. Given that there were no studies with higher
accuracy values, we consider very good models to be those achieving values of 80–90%.
Thus, models that achieve results higher than 90% accuracy should be carefully analyzed,
as it may indicate cases of overfitting and may not generalize well in real applications.
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Figure 4 shows a flowchart of the described signal processing steps.

Figure 4. Flowchart of the processing steps since pre-processing until model evaluation. The proce-
dure was the same for every participant.

4. Results

Regarding the high number of possible sensor combinations (total of 63) and the
required computation time necessary to train models for each combination, we started to
train the models with each individual sensor signal and combined best performing ones,
and ended by testing the full sensor array. Here, only the results of the best combinations
will be presented, and correspond to:

• fNIRS-EEG;
• EEG-ECG;
• EEG-ACC;
• EEG-ECG-ACC;
• fNIRS-EEG-ECG;
• fNIRS-EEG-ECG-EDA.

Regarding the eight participants and the above combination of biosignals, in the end,
this work generated 104 different models.

After the biosignals processing part, the application of the filter for uneven sampling
to the segments of 10 s removed one single segment from a total of 810.

The segmentation procedure, which differentiates periods of the task and baseline,
was performed for each participant, and the total number of each class is presented in
Table 3. As already mentioned, in order to use these classes to perform model training,
it is important to have a balanced dataset. After randomly downsampling the classes to
keep only the original data, the total number of tasks will have exactly the same number as
the baseline, given that the task is the majority class for all of the participants and that the
number of samples is sufficient to train the classifiers.

Table 3. Initial number of samples for the considered classes for each participant.

Participant A B C D E F G H

# task 54 60 37 56 74 56 52 66
# baseline 48 48 19 47 45 50 50 47

Ten folds were selected to apply the stratified k-folds cross-validator given the previ-
ously presented size of the final subsets. This way, the minimum test set by fold contains
three samples (participant A), and the maximum test set by fold contains ten samples
(participant F or G). Therefore, the evaluation of each model is performed in 10 different
test folds, and so ten distinct accuracy scores are calculated for each model. The final
accuracy is calculated based on the mean of the 10-fold accuracy scores.

Considering all of the individual models built from the different combinations of sen-
sors, Table 4 presents the accuracy scores of the models based on each sensor separately to
evaluate the performance of each biosignal to predict attention. A graphical representation
is shown in the annexed Figure 5.
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Table 4. Individual accuracy to predict attention based on each sensor (values in percentage).

Participant fNIRS EEG ECG EDA RIP ACC

A 56.67 60.56 73.22 51.89 72.00 53.00
B 61.78 71.44 59.00 53.33 65.33 66.22
C 75.83 71.67 56.67 50.00 64.17 69.17
D 48.11 58.44 62.44 43.67 48.44 54.33
E 51.11 51.11 78.89 44.44 57.78 63.33
F 52.00 64.00 57.00 61.00 51.00 68.00
G 68.00 73.00 56.00 66.00 52.00 60.00
H 51.22 64.22 78.22 63.00 63.44 55.33

Figure 5. Graphical representation of the classification accuracy across sensors and participants.

Except for one participant (A), all of the others achieve better results with training
based on more than one biosignal. Table 5 presents the best accuracy scores reached for
each participant and the respective area under the curve of the receiver operating curve
(ROC-AUC). The respective confusion matrix and ROC curves are shown in Figure A2. To
reduce the required equipment, the accuracy of the models trained with a maximum of two
sensors is also presented in Table 5.

Table 5. Individual accuracy to predict attention based on combined biosignals. The accuracy scores
with a maximum of two sensors are marked with * and in are in gray.

Participant Sensors Accuracy (%) ROC-AUC (%)

A ECG 73.22 76.70
B fNIRS-EEG 72.67 76.80
C fNIRS-EEG-ECG 80.83 85.00

C * EEG-ACC 77.50 85.00
D fNIRS-EEG-ECG-ACC 64.89 66.80

D * ECG 62.44 64.15
E EEG-ECG 80.00 79.00
F EEG-ACC 71.00 74.40
G fNIRS-EEG 77.00 82.20
H EEG-ECG 78.44 82.90

5. Discussion

This study aimed to assess the feasibility of detecting the participant’s attention state
using a multitude of sensors during well-known cognitive tasks. For that, n-back and
mental subtraction were selected as candidate tasks to induce attention on individuals.
Given the availability and non-intrusiveness of the mentioned sensors, biosignals data
were acquired during those tasks. The biosignals were processed, and features with a
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low computational complexity were extracted and given as an input to classifiers that
automatically distinguished between the task and baseline.

After the segmentation and processing phase, we obtained the samples of each subject,
as presented in Table 3. We can see that the number of samples for all subjects is close,
except for the case of participant C. That was caused by an unexpected disconnection of
the device during the acquisition procedure, and so there are no data relative to the mental
subtraction task. Aside from the lower combination of sensors, we see from Table 5 that
the classification of participant C is better than the performance of all other participants.
This happens because the dataset with both tasks is more generic, and thus the cognitive
response to the two cognitive tasks may be very distinct. Even though the results may be
lower when having both tasks, because of the variability of the responses to those tasks
that are not present if we consider a single task (in this case, n-back), the classifiers will be
able to generalize better.

Given the number of sensors, it would be important to identify the most suitable
ones to detect attention. This will allow us to reduce the acquisition procedure complexity
and time in future studies and to interfere as little as possible with the individuals that
are performing the cognitive tasks. Thus, a classifier was built for each individual and
each sensor. The impact of changing these aspects is presented in Table 4. For example,
comparing different sensors for subject E reveals that the range of accuracy values is
44.44–78.89%, the EDA sensor being the least useful (lower accuracy) and the most useful
(higher accuracy) being the ECG sensor. On the other dimension, we see that individual
differences impact the results, even when using the same sensor. For example, fNIRS values
range from 48.11–75.83%, leading us to believe that an individual approach should be
considered to obtain the best results possible for each individual. This approach would
always require controlled tasks to reveal which are the best sensors for each individual.
On the other hand, the combination of various sensors was studied to optimize the achieved
results. Once again, different subjects revealed different accuracy levels and a different
optimal combination of sensors, pointing toward the direction of an individual-directed
tool. The addition of more participants would improve the statistical significance of our
results; however, since our approach is based on the individual level, the results presented
and discussed would not be altered.

Regarding the most informative biosignals, EEG and ECG have the best mean accuracy
scores, i.e., 64.30% and 65.18%, respectively, whereas EDA reaches the worst average
performance of 54.17%. Thus, if one would want to apply the same sensors regardless of
individual differences with a low number of sensors, a good combination could be the
low-channel EEG and ECG. In fact, Table 5 shows that the best combinations for each
subject always present either EEG or ECG signals. Surprisingly, fNIRS revealed a poor
performance for most subjects. This can be related to a wrong choice for the positioning of
the sensor, to a too simplistic processing of the signals, or even to an inadequate emitter–
detector distance of the used sensor. Considering the results of EEG being higher than those
of fNIRS, this may be related to the poor spatial resolution of the EEG sensor, which can
be beneficial in this case, since it may be able to detect activations from greater distances
to the sensors than the fNIRS. EDA and RIP sensors did not contribute to good results
when considering a low number of sensors and, thus, could be removed in future studies.
An interesting aspect is that the EEG sensor with a low number of channels was able to
achieve accurate results, especially in combination with other sensors, which proves that
ecological validity and the ease of use can be allied with good results.

To the best of our knowledge, previous studies did not consider the individual differ-
ences and developed general models. However, our results demonstrate the importance
of this consideration. Comparing the methodology of our study with previous studies,
many authors solely use cameras [24,25], or cameras associated with motion sensors [23],
and achieve results similar to ours, but image acquisition is more invasive than sensors
data acquisition. To assess attention, the authors that employed biosignals used only EEG,
which was enough to find some relationships with attention [20,22] and achieved good
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results in predicting attention [21]. However, most of them used 32-channel EEG, which
has less ecological validity due to the complex setup than our two-channel sensor. We could
not find studies that combined multiple biosignals as we did in this work. Our outcomes
demonstrate that the combination of sensors is better in modulating attention than the indi-
vidual sensors. An interesting finding is the good performance of ECG, which was never
explored in previous works and was revealed to be meaningful for attention detection.

6. Conclusions

The work presented in this paper aimed to classify attention events using a random
forest algorithm based on features extracted from a wide range of biosignals during the
execution of cognitive tasks.

Taking into account the individual differences that are expressed in biosignals and
HCI, the model training is performed for each participant separately. These individual
differences are confirmed by the accuracy scores obtained for each biosignal separately,
which were different from subject to subject. We expected that fNIRS and EEG would have
the best results, but fNIRS did not achieve good accuracy scores. EDA and RIP sensors did
not contribute to good results, as anticipated.

With the combination of up to three sensors, the achieved accuracy scores were higher
than 70%, except for one subject. Therefore, we conclude that, with the acquisition of a
combination of only four biosignals (fNIRS, EEG, ECG, and ACC), it is possible to identify
attention based on biosignals in cognitive tasks.

As a next step, the HCI variables acquired in the Python exercises task should be
explored. Lazar et al. (2017) concluded that HCI tools may be used to assess focused
attention and human performance by providing variables such as the time and success in
task completion, among others [50]. Variables contributing to cognitive strain and closely
related to attention include those that directly disrupt the primary task the worker is
attending to, such as interruptions from colleagues [3], notifications [51], or environmental
constraints [52]. On the other hand, variables that can promote a balanced working life
and attention management, such as quiet working hours [53] and break times [54], can also
be tracked through HCI. With all of the variables collected in the last procedure of this
study and using the built models as a ground truth of attention, a set of strong correlations
between the interaction with the computer and attention could be found.

An alternative that should be considered in future approaches is to find work-related
tasks with a high interaction with the computer. With this strategy, the pre-task with acqui-
sition of biosignals could be discarded and the HCI variables could be directly correlated
with attention events.

As this study is part of an attention tool proposed by Gamboa et al. (2021), further
future work is described in more detail in [9].
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Participant Sensors Receiver Operating Curve Confusion Matrix

A ECG

B fNIRS-EEG

C
fNIRS-EEG-

ECG

C* EEG-ACC

D
fNIRS-EEG-
ECG-ACC

D* ECG

Figure A2. Cont.
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E EEG-ECG

F EEG-ACC

G fNIRS-EEG

H EEG-ECG

Figure A2. Receiver operating curve and respective confusion matrix relative to Table 5.
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