
����������
�������

Citation: Alavizadeh, H.; Alavizadeh,

H.; Jang-Jaccard, J. Deep Q-Learning

Based Reinforcement Learning

Approach for Network Intrusion

Detection. Computers 2022, 11, 41.

https://doi.org/10.3390/computers

11030041

Academic Editors: Paulo Quaresma,

Vítor Nogueira and José Saias

Received: 10 February 2022

Accepted: 7 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

Deep Q-Learning Based Reinforcement Learning Approach for
Network Intrusion Detection
Hooman Alavizadeh 1,∗ , Hootan Alavizadeh 2 and Julian Jang-Jaccard 3

1 UNSW Institute for Cyber Security, University of New South Wales, Canberra 2612, Australia
2 Computer Engineering Department, Imam Reza International University, Mashhad 553-91735, Iran;

h.alavizadeh@imamreza.ac.ir
3 Cybersecurity Laboratory, School of Information Technology and Electrical Engineering, Massey University,

Auckland 0632, New Zealand; j.jang-jaccard@massey.ac.nz
* Correspondence: h.alavizadeh@adfa.edu.au

Abstract: The rise of the new generation of cyber threats demands more sophisticated and intelligent
cyber defense solutions equipped with autonomous agents capable of learning to make decisions
without the knowledge of human experts. Several reinforcement learning methods (e.g., Markov)
for automated network intrusion tasks have been proposed in recent years. In this paper, we
introduce a new generation of the network intrusion detection method, which combines a Q-learning
based reinforcement learning with a deep feed forward neural network method for network intrusion
detection. Our proposed Deep Q-Learning (DQL) model provides an ongoing auto-learning capability
for a network environment that can detect different types of network intrusions using an automated
trial-error approach and continuously enhance its detection capabilities. We provide the details of
fine-tuning different hyperparameters involved in the DQL model for more effective self-learning.
According to our extensive experimental results based on the NSL-KDD dataset, we confirm that the
lower discount factor, which is set as 0.001 under 250 episodes of training, yields the best performance
results. Our experimental results also show that our proposed DQL is highly effective in detecting
different intrusion classes and outperforms other similar machine learning approaches.

Keywords: network security; deep Q networks; deep learning; reinforcement learning; network
intrusion detection; NSL-KDD; artificial intelligence

1. Introduction

The new generation of Intrusion Detection Systems (IDSs) increasingly demands
automated and intelligent network intrusion detection strategies to handle threats caused
by an increasing number of advanced attackers in the cyber environment [1–3]. In particular,
there have been high demands for autonomous agent-based IDS solutions that require
as little human intervention as possible while being able to evolve and improve itself
(e.g., by taking appropriate actions for a given environment), and to become more robust to
potential threats that have not been seen before (e.g., zero-day attacks) [4].

Reinforcement Learning (RL) has become a popular approach in detecting and classi-
fying different attacks using automated agents. The agent is able to learn different behavior
of attacks launched to specific environments and formulates a defense strategy to better
protect the environment in the future. An RL approach can improve its capability for
protecting the environment by rewarding or penalizing its action after receiving feedback
from the environment (e.g., in a trial-and-error interaction to identify what works better
with a specific environment). An RL agent is capable of enhancing its capabilities over
time. Due to its powerful conception, several RL-based intrusion detection techniques have
been proposed in recent years to provide autonomous cyber defense solutions in various
contexts and for different application scenarios such as IoT, Wireless Networks [5,6], or
Cloud [7–9]. The RL agent is able to implement the self-learning capabilities during the

Computers 2022, 11, 41. https://doi.org/10.3390/computers11030041 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11030041
https://doi.org/10.3390/computers11030041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-0033-6706
https://orcid.org/0000-0003-0344-4494
https://orcid.org/0000-0002-1002-057X
https://doi.org/10.3390/computers11030041
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11030041?type=check_update&version=2

Computers 2022, 11, 41 2 of 19

learning process based on its observation without any supervision requirement, which
typically involves the expert knowledge from human [10]. Many network intrusion de-
tection techniques have been proposed based on this RL concept [11]. However, most of
the existing approaches suffer from the uncertainty in detecting legitimate network traffic
with appropriate accuracy and further lacks the capability to deal with a large dataset.
This is because an RL agent typically needs to deal with very large learning states and
would encounter the state explosion problem. In recent years, deep reinforcement learning
(DRL) techniques have been proposed that are capable of learning in an environment
with an unmanageable huge number of states to address the main shortcoming of existing
RL techniques. DRL techniques such as deep Q-learning have shown to be a promising
method to handle the state explosion problem by leveraging deep neural networks during
the learning process [12].

Many DRL-based IDS for network intrusion detection techniques have been proposed
in the existing literature, leveraging different types of intrusion datasets to train and
evaluate their models [13,14]. However, most of these existing proposals only focus on
enhancing their detection ability and performance compared to other similar approaches.
The majority of these existing works do not offer comprehensive studies as to how best to
develop and implement a DRL-based IDS approach for a network environment without
providing the precise details, such as how the DQL agent can be formulated based on an
RL theory or how to fine-tune hyperparameters for more effective self-learning and interact
with the underlying network environment. In this paper, we address these shortcomings
by introducing the details of design, development, and implementation strategy for the
next generation of the DQL approach for network intrusion detection.

The main contributions of our work are summarized as follows:

• We introduce a new generation of network intrusion detection methods that combine
a Q-learning based reinforcement learning with a deep feed forward neural network
method for network intrusion detection. Our proposed model is equipped with the
ongoing auto-learning capability for a network environment it interacts with and can
detect different types of network intrusions. Its self-learning capabilities allow our
model to continuously enhance its detection capabilities.

• We provide intrinsic details of the best approaches involved in fine-tuning different hy-
perparameters of deep learning-based reinforcement learning methods (e.g., learning
rates, discount factor) for more effective self-learning and interacting with the under-
lying network environment for more optimized network intrusion detection tasks.

• Our experimental results, based on the NSL-KDD dataset, demonstrate that our pro-
posed DQL is highly effective in detecting different intrusion classes and outperforms
other similar machine learning approaches, achieving more than 90% accuracy in the
classification tasks involved in different network intrusion classes.

The rest of the paper is organized as follows. Section 2 presents the related work.
Section 3 discusses the essential concepts and background associated with reinforcement
learning and deep neural network. Section 4 represents the NSL-KDD dataset used for this
paper. The proposed DQL-based anomaly detection approach is given in Section 5. The
evaluation, experimental results, and analysis are given in Section 6. Finally, we conclude
the paper in Section 7.

2. Related Work

Q-learning, considered to be a model-free method, has been hailed to be a promising
approach, especially when utilized in challenging decision processes. This method is
appropriate if the other techniques such as traditional optimization methods and supervised
learning approaches are not applicable [15]. The advantages of Q-learning are its effective
results, learning capabilities, and the potential combination with other models.

The application of machine learning such as Deep Reinforcement Learning (DRL) [16–18],
supervised and unsupervised learning, in cybersecurity, has been investigated in various
studies [14,15,19,20]. In [19], the authors studied a comprehensive review of DRL for

Computers 2022, 11, 41 3 of 19

cybersecurity. They studied the papers based on the live, real, and simulated environment.
In [20], the authors showed the applications of DRL models in cybersecurity. They mainly
focused on the adversarial reinforcement learning methods. They also presented the recent
studies on the applications of multi-agent adversarial RL models for IDS systems. In [14],
the authors studied several DRL algorithms such as Double Deep Q-Network (DDQN),
Deep Q-Network (DQN), Policy Gradient (PG), and Actor-Critic (AC) to intrusion detection
using NSL-KDD [21] and AWID [22] datasets. Those datasets were used for training
purposes and for classifying intrusion events using the supervised machine learning
algorithms. They showed the advantages of using DRL in comparison with the other
machine learning approaches, which are the application of DRL on modern data networks
that need rapid attention and response. They showed that DDQN outperforms the other
approaches in terms of performance and learning.

In [23,24], the authors proposed a deep reinforcement learning technique based on
stateful Markov Decision Process (MDP), Q-learning. They evaluated the performance
of their method based on different factors such as learning episodes, execution time, and
cumulative reward and compared the effectiveness of standard planning-based with a deep
reinforcement learning based approach.

In [25], the authors proposed a reinforcement learning agent installed on routers
to learn from traffic passing through the network and avoid traffic to the victim server.
Moreover, in [26], the authors proposed a machine learning method to detect multi-step
attacks using hidden Markov models to predict the next step of the attacker. In [27], the
authors proposed a decision-theoretic framework named ADRS based on the cost-sensitive
and self-optimizing operation to analyze the behavior of anomaly detection and response
systems in autonomic networks.

In [28], the authors combined the multi-objective decision problem with the evolution-
ary algorithms to make an efficient intrusion response system. They considered an intrusion
response system as a multi-attribute decision making problem that takes account of several
aspects before responding to the threats such as cost of implementation, resource restriction,
and effectiveness of the time, and modification costs. This multi-objective problem tried to
find an appropriate response that was able to reduce the values of these functions.

Most of the existing works focused only on the enhancement of their methods to
provide better performance and on the evaluation of the performance of the proposed tech-
niques through comparison with other similar machine learning (ML)-based approaches.

3. Background
3.1. Reinforcement Learning

Modeling a system as a Markov Decision Process (MDP) so that an agent can interact
with the environment based on different discrete time steps is an important aspect in
designing many decision-making related problems. MDP can be shown as a 5-tuple:
M = (S, A, T, R, γ) where S denotes a set of possible states and A indicates a set of possible
actions that the agent can perform on the environment, and T denotes the transition
function from a state to another state. T defines the (stationary) probability distribution
on S to transit and reach a new state s′. The value of R denotes the reward function, and
γ = [0, 1) indicates the discount factor.

A policy π can be defined to determine the conditional probability distribution of
selecting different actions depending on each state s. The distribution of the reward
sequence can be determined once a stationary policy has opted. Then, policy π can be
evaluated by an action-value function which can be defined under π as the expected
cumulative discounted reward based on taking action from state s and following π policy.
By solving the MDP, the optimal policy π∗ can be found that maximizes the expected
cumulative discounted reward based on all states. The corresponding optimal action
values satisfy Q∗(s, a) = max

π
Qπ(s, a), and the uniqueness and existence of the fixed-point

solution of Bellman optimality equations can be obtained by Banach’s fixed-point theorem.

Computers 2022, 11, 41 4 of 19

Q∗(s, a) = R(s, a) + γ
∫

s′
T(s′|s, a) max

a′
Q∗(s′, a′)

The essential cyclic process in the RL is agent-environment interaction. The RL agent
should interact with the environment to explore and learn from different transition and
reward functions obtained from the action taken. This process makes the RL agent able to
find out the optimal policy, see Figure 1. During the interaction with the environment at
time t, the RL agent observes the information about the current state s, and then chooses
an action a based on a policy. Then, it receives a reward r from the environment based on
the action taken and moves to a new state s′. The RL agent improves itself by experiences
gained based on this cyclic agent–environment interaction. The learning process could be
based on either (i) approximating the transition probabilities and reward functions to learn
the MDP model and then finding an optimal policy using planning in the MDP (i.e., known
as the model-based approach), or (ii) trying to learn the optimal value functions directly
without learning the model and deriving the optimal policy (e.g., model-free approach).

Q-learning can be considered as a model-free approach that updates the Q-values
estimation based on the experience samples on each time step as the following equation.

Q(s, a)← Q(s, a) + α(r + γ max
a′

Q∗(s′, a′)−Q(s, a))

where α is the learning rate, and Q(s, a) is simply the current estimation.

Figure 1. DQN model based on agent–environment interaction.

3.2. Feed Forward Neural Network

We utilized a feed forward neural network constructed based on a fully connected
neural network as the main module of the DRL model for approximating the Q-values and
training the model based on the NSL-KDD Dataset. The intrusion datasets will be fed into
a pre-processing module first for cleansing and preparing the dataset and also extracting
the related features [29].

The fully connected neural network includes different fully connected layers that link
every single neuron in the layer to neurons of the previous layer. The neural network
output f (x) or y is represented in Equation (1) [30].

y = f (x) = F| f |(F| f | − 1(. . . F2(F1(x)))) (1)

where x is the input, Fi is a transformation function, and | f | denotes the total number of
computational layers, which can be the hidden layers and the output layer in the neural
network. The outputs from the preceding layers are transferred using each perceptron by
applying a non-linear activation function. Finally, the ith perceptron in the tth layer can be
represented as:

ot
i = ν

(
wt

i∗ · ot−1 + bt
i

)
(2)

Computers 2022, 11, 41 5 of 19

where ot−1 is the output of the preceding layer, wt
i∗ is the weight vector of the perceptron,

bt
i is its bias and ν is the non-linear activation function.

Activation functions play an essential role in the training process of a neural network.
Activation functions manage the computations to be more effective and reasonable as there
is the complexity between the input units and the response variable in a neural network.
The main role of the activation function is to convert an input unit of a neural network
to an output unit. Different activation functions can be used in a neural network such as
Sigmoid, Tanh, and ReLU. However, the ReLU activation function is known as a more
effective one compared with the other activation functions in many detection problems,
with lower run-time and demands for less expensive computation costs; see Equation (3),
where z is the input.

ReLU(z) =

{
0 if z < 0
1 if z ≥ 0

(3)

4. Dataset

NSL-KDD dataset is a labeled network intrusion detection dataset that so far has
been used in many tasks to evaluate different deep learning-based algorithms for devising
different strategies for IDS [31,32]. NSL-KDD dataset contains 41 features labeled as a
normal or specific attack type (i.e., class). We utilized the one-hot-encoding method for
the dataset preprocessing to change the categorical features to the corresponding numeral
values as deep learning models can only work with numerical or floating values. We
normalized the train and test datasets to the values between 0 and 1 using a mix-max
normalization strategy. The 41 features presented in the NSL-KDD dataset can be grouped
into four features, such as basic, content-based, time-based, and host-based traffic features.
The value of these features is mainly based on continuous, discrete, and symbolic values.
The NSL-KDD dataset contains five attack classes such as Normal Denial-of-Service (DoS),
Probe, Root to Local (R2L), and Unauthorized to Root (U2R). These attack classes can be
identified using the features corresponding to each NSL-KDD data. Table 1 defines the
attack classes for NSL-KDD that we consider in our study.

Table 1. NSL-KDD data-record classes.

Categories Notation Definitions Samples #

Normal N Normal activities based on the features 148,517

DoS D
Attacker tries to avoid users of a service
Denial of Service attack 53,385

Probe P
Attacker tries to scan the target network to
collect information such as vulnerabilities 14,077

U2R U
Attackers with local access to victim’s machine
tries to get user privileges 119

R2L P
Attacker without a local account tries to send
packets to the target host to get access 3882

5. Anomaly Detection Using Deep Q Learning
5.1. Deep Q-Networks

One of the most effective types of RL is Q-learning, in which a function approximator
such as either a neural network or a deep neural network is used in RL as a Q-function to
estimate the value of the function. The Q-function integrated with a deep neural network
can be called Deep Q-Learning (DQL). The Q-learning agent in the DQL can be represented
as Q(s, a; θ). The Q-function consists of some parameters such as state s of the model, action
a, and reward r value. The DQL agent can select an action a and correspondingly receives
a reward for that specific action. The neural network weights related to each layer in the
Q-network at time t are denoted by the θ parameter. Moreover, si+1 or s′ represents the
next state for the DQL model. The DQL agent moves to the next state based on the previous
state s and the action a performed in the previous state s. A deep neural network is used as

Computers 2022, 11, 41 6 of 19

the deep Q-network to estimate and predict the target Q-values. Then, the loss function for
each learning activity can be determined by Q-values obtained on the current and previous
states. In some cases, only one neural network is used for estimating the Q-value. In this
case, a feedback loop is constructed to estimate the target Q-value so that the target weights
of the deep neural network are periodically updated.

5.2. Deep R-Learning Concepts

Here we define the important concepts related to DQL based on the environment
where the NSL-KDD dataset is used for network intrusion detection tasks.

5.2.1. Environment

The environment for this study is the one where the pre-processed and normalized
NSL-KDD dataset is used, where the columns (features) of the NSL-KDD dataset denote
the states of the DQN. There are 42 features in NSK-KDD and we utilize the first 41 features
as states. Feature 42 is the label that will be used for computing the award vectors based on
model prediction. Note that in this DQN model, the agent only obtains actions to compute
the rewards vector, and there is no real action performed to the environment.

5.2.2. Agent

DQL agent is utilized in the DQL model based on the network structure so that there
is at least one agent for the context of a network. The agent interacts with the environment
and applies rewards based on the current state and the selected action. A DQL agent could
be defined as a value-based RL agent that is able to train the model to estimate the future
rewards values. A DQN can be trained by an agent interacting with the environment based
on the observation and possible action spaces. In the DQL training process, the agent needs
to explore the action space by applying a policy such as epsilon-greedy exploration. The
exploration helps the agent to select either a random action with a probability of ε or an
action greedily based on the value function with the greatest value with probability 1− ε.

5.2.3. States

States in DQL describe the input by the environment to an agent for taking action. In
the environment where the NSL-KDD dataset is used, the dataset features (as in Table 2)
are used for state parameters for DQN. We use those 41 features as the inputs of DQN such
that si = Fi for training and prediction using DQN.

Table 2. List of features on NSL-KDD dataset.

F# Feature Name F# Feature Name F# Feature Name

F1 Duration F15 Su attempted F29 Same srv rate
F2 Protocol_type F16 Num root F30 Diff srv rate
F3 Service F17 Num file creation F31 Srv diff host rate
F4 Flag F18 Num shells F32 Dst host count
F5 Src bytes F19 Num access files F33 Dst host srv count
F6 Dst bytes F20 Num outbound cmds F34 Dst host same srv rate
F7 Land F21 Is host login F35 Dst host diff srv rate
F8 Wrong fragment F22 Is guest login F36 Dst host same srv port rate
F9 Urgent F23 Count F37 Dst host srv fiff host rate
F10 Hot F24 Srv count F38 Dst host serror rate
F11 Num_failed_logins F25 Serror rate F39 Dst host srv serror rate
F12 Logged_in F26 Srv serror rate F40 Dst host rerror rate
F13 Num compromised F27 Rerror rate F41 Dst host srv rerror rate
F14 Root shell F28 Srv rerror rate F42 Class label

Computers 2022, 11, 41 7 of 19

5.2.4. Actions

An action is considered as the decision chosen by the agent after processing the
environment during a given time window such as after finishing the process of a mini-
batch. The DQN agent generates a list of actions as an action vector based on the given
input of the neural network and input features. The final Q-values are used to judge
whether an attack was captured successfully. It feeds the state vector with the size of the
mini-batch to the current DQN. Then, the agent compares the output of the current DQN
based on threshold rates as Q-values and determined the Q-threshold value for classifying
the attack classes.

5.2.5. Rewards

In DQL, the feedback from the environment for a corresponding action done by an
agent is called a reward. A reward vector can be defined based on the output values
of DQN and the size of the mini-batch. The DQL agent can consider a positive reward
when the classification result of DQN matches the actual result based on the labels in the
NSL-KDD. Otherwise, it may get a negative reward. The reward value can be considered
depending on the probability of prediction by the classifier. This value can be adjusted
based on the Q-values obtained to enhance the classifier’s performance.

5.3. Deep Q-Learning Process

The standard Q-learning and DQN can be differentiated based on the method of
estimating the Q-value of each state-action pair and the way in which this value can be
approximated using generalized state-action pair by the function Q(s, q). The process of
DQL is based on the Pseudocode represented in Algorithm 1 that describes how the DQN
agent deals with the environment using the NSL-KDD. In the first step, the parameters of
the algorithm and models are initialized based on Table 3. The values of the features of
NSL-KDD (F1–F41 as in Table 1) indicate the state’s variables (s) of the DQN. Note that the
batch size (bs) for the DQN process is set as 500. This means that for each state the amount
of 500 records of NSL-KDD are fetched from memory and fed into one state (S), see the
batch table represented in Figure 2. However, there are 41 features as the state variables,
each of which can have various values. Thus, as the number of state-value pairs becomes
comparatively large, it is not possible to keep them in a Q-table (or look-up table). Thus,
the DQN agent leverages a DNN as the function approximator to compute Q values based
on the states and actions.

Figure 2. DQN model prediction using states and deep neural network, the outputs are Q-values,
and actions are computed based on argmax Qi for the current state.

Computers 2022, 11, 41 8 of 19

Table 3. DQL agent and Neural Network parameters.

Parameters Description Values

num-episode Number of episodes to train DQN 200
num-iteration Number of iteration to improve Q-values in DQN 100
hidden_layers Number of hidden layers: Setting weights, producing outputs, based on activation function 2
num_units number of hidden unit to improve the quality of prediction and training 2× 100
Initial weight value Normal Initialization Normal
Activation function Non-linear activation function ReLU
Epsilon ε Degree of randomness for performing actions 0.9
Decoy rate Reducing the randomness probability for each iteration 0.99
Gamma γ Discount factor for target prediction 0.001
Batch-size (bs) A batch of records NSL-KDD dataset fetched for processing 500

Algorithm 1: Deep Q-learning agent training based on NSL-KDD environment.
Data: NSL-KDD dataset /* Environment */

Data: DQL parameters /* Agent parameters */

/* Result: Dictionaries of VMs and Reachability, VMs and Vulnerabilities */

begin
/* Pre-processing and Parameters Initialization */

Normalize(NSL-KDD)
Initialize parameters←as Table 3
bs←500
State←fetch(NSL-KDD,bs)
Create_model(States, hidden_layers, ReLU, output_layers)
/* DQL agent learning episodes and iterations */

foreach epoch ∈ num-episode do
Reset(states)

Create(q_val_List[size=bs,Action_size])
foreach T ∈ num_iteration do

Initialize parameters
/* With probability of ε: */

AVi ← Create_random(Action_space) ∀i ∈ bs
ε← ε ∗ decoy_rate
/* With probability of 1− ε: */

QVi ←model.predict(current-state)
AVi = Argmax(QVi) ∀i ∈ bs
/* Compute rewards */

RVi ← Compute_reward(AV,labels) ∀i ∈ bs
/* Agent’s learning improvement */

Q’←model.predict(state’)
QTi←RVi+γ ∗Q[state′, action′]
Model.train(state,QTi)
Compute_loss(QVi,QTi)
State←State′

end
end

end

Figure 3 presents the overall steps of DQL using an agent. First, the normalized
NSL-KDD dataset is fed into the environment and the DQL agent initializes a vector for Q
values, state’s variables, actions according to batch size, the DNN parameters, and weights
are initialized. Then, the learning iterations train the DQN based on the epsilon-greedy
approach. The outer iteration represents different episodes of the learning process and
after each iteration, the value of states is initialized again. Note that the parameters of the
trained DNN are preserved and are not initialized for each episode iteration. The state Sn at
each discrete state is given by the training sample (Batchn), see Figure 4. At the end of each

Computers 2022, 11, 41 9 of 19

episode, a complete sequence of states, rewards, and actions are obtained in the terminal
state. During the start of the training, the agents receive the first batch (500 records from
the environment), and this is the starting state S1 of the environment.

 (a) Environment = NSL-KDD
 (b) DQN Agent (Qv,Sv,Av)
 (c) Model parameters (weights)

Start

Initialization

Episode<
num-episode

 Si = Fetch (Environment, bs)
States Initialization

Determine

 (a) Choose bs random actions
 AVi = Rnd (0,1)
 (b) epsilon*=decoy-rate

Exploration

With probability Epsilon

 (a) QVi =Predict (Current-state)
 (b) AVi =argmax (QVi)

With probability 1-Epsilon

Prediction of current state

 (a) RVi = Reward_Function (AVi, Labels)
 (b) S'i = Fetch (Next-state, bs)

Reward-Function

 (a) Q'Vi =Predict (S'i)
 (b) A'Vi =argmax (Q'Vi)

Prediction of next state

 QTi = RVi + Gamma * Q'Vi

Target Q Calculation

 (a) QVi = Train (Si, QVi)
 (b) Compute-Loss (QVi, QTi)

Learning improvement

T<
 num-Iteration

Yes

End Save Trained
DQN Model

No

Environment

Si QVi AVi

AVi

Class Labels

Labels RVi

Train DNN model

QVi

Si

Figure 2

Figure 3. DQL agent training phase flowchart.

Figure 4. State transition Markov diagram for DQN agent training process based on current and next
states prediction and training.

Computers 2022, 11, 41 10 of 19

6. Evaluation of the DQL Model

In the inner iteration, the DQN agent performs exploration, action selection, and
model training based on DQL. Note that each iteration adjusts the Q-function approximator
which uses a DNN. In the standard Q-learning, a table of values is kept and the agent
separately updates each state-value pair. However, DQN utilizes a deep-learning approach
to estimate the Q-function. We leverage a deep neural network as a function approximator
for the Q-function. We use a deep neural network consisting of 4-layers as represented in
Figure 2, with ReLU activation for all layers, including the last one to ensure a positive
Q-value. Layer one is the input layer, which includes 41 neurons and is fed with the state
variables on each iteration. There are 2 hidden layers with the size of 100 each for training
purposes, and 1 output layer with the size of 5, which keeps the output layer corresponding
to the related Q values for each attack class. Note that after each training iteration based
on the states and batch size, the Q values predicted in the output later will be fed into Q
vectors (denoted as QV) as illustrated in Figure 2.

In the DQN learning procedure, there should be an appropriate trade-off between
exploitation and exploration. At the first rounds of learning, the exploration rate should
be set as a high probability with the value of approximately 1, and gradually decreases
using a decoy rate, see Figure 5. The exploration is performed based on the epsilon-
greedy approach. An epsilon-greedy policy is implemented as a training strategy based on
reinforcement learning definition which helps the agent to explore all possible actions and
find the optimal policy as the number of explorations increases. The action is chosen by
applying the epsilon-greedy approach, which selects a random action with a probability of
ε or predicts the action with a probability of (1− ε).

Figure 5. Exploration strategy using Epsilon-greedy approach.

As the batch size for each state is equivalent to bs (defined in Table 3), bs numbers of
random actions will be fed into the action vector (AV) as AVi = Rnd(0, 5), ∀i ∈ bs, where
0–5 denotes Norman (N), Probe (P), DoS (D), U2R (R), and R2L (R), respectively. In the first
set of iterations, the probability of choosing random actions is high, but as time passes this
probability gets lower by the epsilon-greedy approach, as in Figure 5. With the probability
of 1− ε, the DQL agent predicts the actions using the current state (including the first
batch with the size of bs and state variables). Note that, the amount of bs records of the
environment denotes the current state. The features (i.e., variable states) of the current
state are fed into the input layer of DNN architecture and the Q-values are predicted based
on the DNN parameters and weights in the output layer. The action having the highest
Q values is selected for each record i in the current state as AVi = argmax(QVi), ∀i ∈ bs,
which can be either normal or malicious based on the four attack types.

In the next step, the action vector (AV) filled by either random actions (i.e., with a
higher chance in the first iterations) or predicted actions using DQN (i.e., with higher
chance after a while) is fed into the reward function for computing the rewards based
on comparing the AVi with the labels in the dataset for corresponding data-record, see
the reward function represented in Figure 3. Then, the DQL agent needs to compute the
Q vectors and action vectors of the next state denoted as Q′Vi and A′Vi for all i ∈ bs to

Computers 2022, 11, 41 11 of 19

complete the training process and DQL principles as illustrated in Figure 4. Then, the target
Q (denoted as QT) is computed based on the rewards, discount factor for future rewards,
and predicted Q vectors as Equation (4).

QTi = RVi + γ ·Q′Vi (4)

The results of QTi are further fed into the DQN for the training process and computing
the loss function as represented in the learning improvement phase in Figure 3. The training
of the neural network is performed with a Mean Square Error (MSE) loss between the
Q-value estimated by the neural network for the current state and a target Q value obtained
by summing the current reward and the next state’s Q-value multiplied by the value of
discount factor (λ). The computation of the loss function for the evaluation of the DQN
performance is critical. We compute the loss value after each iteration episode for the DQN
network based on the current states and target network. The total loss can be denoted as
Equation (5).

Loss =
1
n ∑

n

(
Q(s, a)︸ ︷︷ ︸

Prediction

− r + γQ(s′, a′)︸ ︷︷ ︸
Target

)2

(5)

Once the training of the model is completed, the trained NN is used for prediction.
For each state, the Q-function provides the associated Q-value for each of the possible
actions for that specific state. The predicted action is determined based on the maximum
Q-value. The model is trained for a number of iterations and episodes, which are enough
for covering the complete dataset.

6.1. Experiment Setup and Parameters

We implemented our proposed model in Python using Tensorflow framework version
1.13.2. In our study, we analyzed the performance of our DQL model using NSL-KDD
datasets. The training portion of the NSL-KDD dataset includes various samples for the
network features and corresponding labels for intrusion with different possible values such
as binary or multiclass anomaly. In this paper, we considered the network features as states
and the label values as the actions to adapt these elements to DQN concepts.

The parameters and values associated with the DQL model are shown in Table 3. For
the fully connected architecture, we used a total of two hidden layers with ‘relu’ activation
function apart from input and output layers. During the training, various major parameters
should be determined and examined in order to find the best values that are appropriate
and ideal for the model. At the beginning step for training, the exploration rate ε, is set to
0.9 for the agent to perform exploration based on some degree of randomness with a decoy
rate of 0.99. The initial values for other values such as batch-size and discount factor are
illustrated in Table 3. However, we also evaluate the performance of the DQL model based
on different values. We examined the behavior of the proposed DQL agent by varying the
discount factor values. This essentially determines how the DQL agent can improve the
performance of learning based on future awards.

Figure 6 demonstrates the loss and reward values obtained during the DQL training
process based on different values of the discount factor. Figure 6a,b show the reward and
loss values by setting the λ as 0.001 and 0.01, respectively. As it shows, the loss value is
lower in λ = 0.001. However, we increased the learning rate significantly and evaluated
the loss and reward values in Figures Figure 6c,d. The results indicate that a higher value
for the discount factor leads to a higher loss value. As it also shows, the loss value in the
worst-case reaches 1.7 based on λ = 0.001, while it reaches 4 in the higher discount factor
value λ = 0.9. However, as demonstrated in Figure 6, we can observe that reward values
have a sharp increasing trend for all discount factor values.

Based on the results obtained during the DQN agent learning process, we discovered
that the lower discount factor yields a lower loss value that leads to better results in terms
of learning the model, especially when the episode numbers are smaller.

Computers 2022, 11, 41 12 of 19
Version March 4, 2022 submitted to Journal Not Specified 12 of 18

0 20 40 60 80 100 120 140 160 180 200

0

1

2

Episode

Lo
ss

0

50

100

R
ew

ar
d

(a)

0 20 40 60 80 100 120 140 160 180 200

0

1

2

Episode

Lo
ss

0

50

100

R
ew

ar
d

(b)

0 20 40 60 80 100 120 140 160 180 200

0

1

2

3

Episode

Lo
ss

0

50

100

R
ew

ar
d

(c)

0 20 40 60 80 100 120 140 160 180 200
0

2

4

Episode

Lo
ss

0

50

100

R
ew

ar
d

(d)
Figure 6. Comparing the loss and reward values of DQN learning process based on different discount
factor values: (a) γ = 0.001, (b) γ = 0.01, (c) γ = 0.1, and (d) γ = 0.9

Accuracy: 374

Accuracy is one of the most common metrics to evaluate and judge a model. It 375

measures the total number of correct predictions made out of all the predictions made by 376

the model. It can be obtained based on True Positive (TP) value, True Negative (TN) rate, 377

False Positive (FP) rate, and False Negative (FN) value. Equation (6) shows the Accuracy 378

metric. 379

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Precision: 380

Precision evaluates can be obtained based on the percentage of positive instances 381

against the total predicted positive instances. In this case, the denominator is the sum of 382

TP and FP denoting the model prediction performed as positive from the whole dataset. 383

Indeed, it indicates that ‘how much the model is right when it says it is right’, see Equa- 384

tion (7). 385

Figure 6. Comparing the loss and reward values of DQN learning process based on different discount
factor values: (a) γ = 0.001, (b) γ = 0.01, (c) γ = 0.1, and (d) γ = 0.9.

6.2. Performance Metrics

We use different measurements to evaluate the performance of our proposed DQL
model used for network intrusion detection, such as Accuracy, Precision, Recall, and F1
score. However, the performance of the model cannot rely only on the accuracy values
since it evaluates the percentages of the samples that are correctly classified. It ignores the
samples incorrectly classified. To perform better evaluation, we analyzed the results based
on the other performance metrics, as follows.

6.2.1. Accuracy

Accuracy is one of the most common metrics to evaluate and judge a model. It
measures the total number of correct predictions made out of all the predictions made
by the model. It can be obtained based on True Positive (TP) value, True Negative (TN)

Computers 2022, 11, 41 13 of 19

rate, False Positive (FP) rate, and False Negative (FN) value. Equation (6) shows the
Accuracy metric.

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

6.2.2. Precision

Precision evaluates can be obtained based on the percentage of positive instances
against the total predicted positive instances. In this case, the denominator is the sum of TP
and FP, denoting the model prediction performed as positive from the whole dataset. In-
deed, it indicates that ‘how much the model is right when it says it is right’, see Equation (7).

Precision =
TP

TP + FP
(7)

6.2.3. Recall

Recall (Sensitivity) shows the percentage of positive instances against the total actual
positive instances. The denominator is the sum of TP and FN values, which is the actual
number of positive instances presented in the dataset. It indicates ‘how many right ones
the model missed when it showed the right ones’. See Equation (8).

Recall =
TP

TP + FN
(8)

6.2.4. F1 Score

The harmonic mean of precision and recall values is considered as the F1 score. It
considers the contribution of both values. Thus, a higher F1 score indicates better results.
Based on the numerator of Equation (9), if either precision or recall value goes low, the final
value of the F1 score also decreases significantly. We can conclude a model as a good one
based on the higher value of the F1 score. Equation (9) shows how the F1 score is computed
based on both precision and recall values.

F1 score =
2× Precision× Recall

Precision + Recall
(9)

6.3. Performance Evaluation

We evaluated the performance of the DQN on the testing phase based on the parame-
ters set in Table 3 and training based on 200 episodes.

The confusion matrix for the DQL model based on two different discount factors of
0.001 and 0.9 are shown in Figure 7. The confusion matrix represented the evaluation
of our model for the test data set. The rows in the confusion matrix are associated with
the predicted class and the columns indicate the true class. The confusion matrix cells on
the main diagonal demonstrate the correctly classified percentages such as those having
been classified as TP or TN. However, the incorrectly classified portion is located in the
off-diagonal cells such as FN and FP values. The values located on the last columns (most
right columns) indicate the percentages of incorrectly classified predictions corresponding
to each class. Considering the confusion matrices, we observe that the true-positive rate for
normal, DoS, and Probe classes for λ = 0.001 has decreased from 0.96 to 0.82, and 0.68 to
0.93, 0.89, and 0.57 for λ = 0.9, respectively. This shows that the DQL agent performs better
for the smaller values of discount factor γ = 0.001 compared to larger discount factor value
such as γ = 0.9. However, the results for the minority class of R2L are very low because of
unbalanced distributions of the number of samples for each class (see Table 1).

Computers 2022, 11, 41 14 of 19
Version March 4, 2022 submitted to Journal Not Specified 13 of 18

Normal
9322
96%

97
1%

291
3%

0
0%

DoS 1118
15%

6190
83%

0
0%

149
2%

Probe
532
22%

193
8%

1646
68%

48
2%

R2L 2506
92%

Norm
al

0
0%

DoS

17
1%

Probe

220
8%

R2L

Tr
ue

La
be

l

Predicted Label

(a)

Normal
9031
93%

97
1%

582
6%

0
0%

DoS 745
10%

6637
89%

74
1%

0
0%

Probe
871
36%

145
6%

1379
57%

48
2%

R2L 1901
69%

Norm
al

743
27%

DoS

110
4%

Probe

0
0%

R2L

Tr
ue

La
be

l

Predicted Label

(b)
Figure 7. Confusion Matrix based on the classification categories for our DQL model for two different
Discount Factors: (a) γ = 0.001, (b) γ = 0.9.

Precision =
TP

TP + FP
(7)

Recall: 386

Recall (Sensitivity) shows the percentage of positive instances against the total actual 387

positive instances. The denominator is the sum of TP and FN values which is the actual 388

number of positive instances presented in the dataset. It indicates that ‘how many right 389

ones the model missed when it showed the right ones’. See Equation (8). 390

Recall =
TP

TP + FN
(8)

F1 score: 391

The harmonic mean of precision and recall values is considered as the F1 score. It 392

considers the contribution of both values. Thus, the higher the F1 score indicates the better 393

results. Based on the numerator of Equation (9), if either precision or recall value goes low, 394

the final value of the F1 score also decreases significantly. We can conclude a model as a 395

good one based on the higher value of the F1 score. Equation (9) shows how the F1 score is 396

computed based on both precision and recall values. 397

F1 score =
2× Precision× Recall

Precision + Recall
(9)

6.3. Performance Evaluation 398

We evaluated the performance of the DQN on the testing phase based on the parame- 399

ters set in Table 3 and training based on 200 episodes. 400

The confusion matrix for the DQL model based on two different discount factors of 401

0.001 and 0.9 are shown in Figure 7. The confusion matrix represented the evaluation 402

of our model for the test data set. The rows in the confusion matrix are associated with 403

the predicted class and the columns indicate the true class. The confusion matrix cells on 404

the main diagonal demonstrate the correctly classified percentages such as those having 405

been classified as TP or TN. However, the incorrectly classified portion is located in the 406

off-diagonal cells such as FN and FP values. The values located on the last columns (most 407

right columns) indicate the percentages of incorrectly classified predictions corresponding 408

to each class. Considering the confusion matrices, we observe that the true-positive rate 409

for normal, DoS, and Probe classes for λ = 0.001 has decreased from 0.96 to 0.82, and 0.68 410

Figure 7. Confusion matrix based on the classification categories for our DQL model for two different
discount factors: (a) γ = 0.001, (b) γ = 0.9.

Figure 8 shows the performance of the proposed DQL model for the correct estimations
(TP and TN) together with FP and FN values based on the number of samples. The results
are captured after performing 200 episodes for the agent’s learning with the discount factor
of λ = 0.001. Considering the graph, we observe higher correct estimations for Normal,
DoS, and Probe classes, respectively, while these values are lower for the minority classes
due to the unbalanced distribution of class samples.

We evaluated the performance or DQL model based on both accuracy and time against
the different numbers of training episodes in Figure 9. We can observe that the accuracy
value has an ascending trend from 100 episodes to 250 episodes. However, this value
decreased to 300 episodes, while training based on 300 episodes lasts more than 20 min.
It shows that the best number of episodes for the DQL agent for training is 250 episodes,
which take a smaller execution time of around 17 min based on our implementation.

Probe
0

Normal DoS

False Negative

False Positive

Correct Estimation

R2L

10,000

8,000

6,000

4,000

2,000

Figure 8. # of samples against estimated attack types.

Computers 2022, 11, 41 15 of 19

Figure 9. Performance of the DRL process based on different episodes.

Table 4 compares the overall performance of the DQL based on two different discount
factors in the DQL training process. The results show that all performance metrics have
higher values for the smaller value of discount factor λ = 0.001. Table 5 shows the
performance metrics for each class separately while the DQL model is trained based on
200 episodes with the discount factor λ = 0.001.

Table 4. Performance evaluation of DQL based on various discount factor values.

Metric
Discount Factors

γ = 0.001 γ = 0.1 γ = 0.9

Precision 0.7784 0.6812 0.6731
Recall 0.7676 0.7466 0.758
F1 score 0.8141 0.7063 0.6911
Accuracy 0.7807 0.7473 0.7578

Table 5. Evaluation metrics for DQL Model based on each classes.

Metric
Attack Categories

Normal DoS Probe R2L

Accuracy 0.8094 0.9247 0.9463 0.8848
F1 score 0.8084 0.9237 0.9449 0.8370
Precision 0.8552 0.9249 0.9441 0.8974
Recall 0.8093 0.83 0.9247 0.8848

6.4. Comparison with Other Approaches

In this section, we compare the results obtained from our proposed DRL models with
various common ML-based models based on NSL-KDD datasets. We compare the results
with Self-organizing Map (SOM), Support Vector Machine (SVM), Random Forest (RF),
Naive Bayes (NB), Convolutional Neural Network (CNN), and some hybrid models such
as BiLSTM and CNN-BiLSTM models presented in different studies [33–35].

We compare the results based on the performance metrics such as Accuracy, Recall, F1
Score, and Precision. Table 6 compares the accuracy and training time (in minutes) with
other studies in the literature.

As it shows, our model has a higher accuracy compared with the other approaches,
while it has a lower training time. However, the worst accuracy obtained by the SVM
approach is about 68%. Both BiLSTM and CNN-BiLSTM hybrid approaches have high
accuracy of 79% and 83%, respectively. However, those approaches have a higher training
time than our model.

Computers 2022, 11, 41 16 of 19

Table 7 compares our model’s performance in terms of F1-score for all classifications
with other studies in the literature. F1-score is known as a balance point between recall and
precision scores and can be considered as the harmonic average of both recall and precision.
Based on the results summarized in Table 7, the F1-score for the Normal class reaches about
81% in our study while this value is higher for CNN and CNN-BiLSTM hybrid approaches,
with values of around 90%. However, it can be seen that our models perform better in
terms of other attack classes such as DoS, Probe, R2L compared with other ML-based and
hybrid approaches in the literature. It can be seen that the RF method has the lowest value
compared to the other approaches.

Table 6. Comparing our model’s accuracy and time with other studies in the literature.

Approach Reference Adaptive-
Learning Dataset Accuracy Time

SOM Ibrahim et al.
[33] 7 NSL-KDD 75% NA

RF
Jiang et al. [34]

7 NSL-KDD 74% NA
BiLSTM 7 NSL-KDD 79% 115
CNN-BiLSTM 7 NSL-KDD 83% 72

Naive Bayes Yang et al. [35] 7 NSL-KDD 76% NA
SVM 7 NSL-KDD 68% NA

DQL Our model 3 NSL-KDD 78% 21

Table 7. Comparing our model’s performance in classification with other studies in the literature

Approach Reference Normal DoS Probe R2L

RF Jiang et al.
[34] 0.7823 0.8695 0.7348 0.0412

CNN
Yang et al. [35]

0.9036 0.9014 0.6428 0.1169
LSTM 0.8484 0.8792 0.6374 0.0994
CNN-BiLSTM 0.9215 0.8958 0.7111 0.3469

DQL Our model 0.8084 0.9237 0.9463 0.8848

7. Conclusions

We present a Deep Q-learning based (DQL) reinforcement learning model to detect
and classify different network intrusion attack classes. The proposed DQL model takes a
labeled dataset as input, then provides a deep reinforcement learning strategy based on
deep Q networks.

In our proposed model, a Q-learning based reinforcement learning is combined with
a deep feed-forward neural network to interact with the network environment, where
network traffic is captured and analyzed to detect malicious network payloads in a self-
learning fashion by DQL agents using an automated trial-error strategy without requiring
human knowledge. We present the implementation of our proposed method in detail,
including the basic elements of DQL such as the agent, the environment, together with
the other concepts such as the quality of actions (Q-values), epsilon-greedy exploration,
and rewards. To enhance the learning capabilities of our proposed method, we analyzed
various (hyper) parameters of the DQL agent such as discount factor, batch size, and the
number of learning episodes to find the best fine-tuning strategies to self-learn for network
intrusion tasks.

Our experimental results demonstrated that the proposed DQL model can learn ef-
fectively from the environment in an autonomous manner and is capable of classifying
different network intrusion attack types with high accuracy. Through the extensive ex-
periments on parameter fine-tuning, we confirmed that the best discount factor for our
proposed method should be 0.001 with 250 episodes of learning.

Computers 2022, 11, 41 17 of 19

For future work, we plan to deploy our proposed method on a realistic cloud-based
environment [36,37] to enable the DQL agent to improve its self-learning capabilities and
classify the threats with high accuracy in a real-time manner. We plan to apply our proposed
model in improving the self-learning capabilities in detecting Android-based malware [38]
and ransomware [39] to test the generalizability and practicability of our model. We also
plan to deploy our proposed model in other applications such as outlier detection of indoor
air quality applications [40].

Author Contributions: Conceptualization, H.A. (Hooman Alavizadeh) and H.A. (Hootan Alavizadeh);
methodology, H.A. (Hooman Alavizadeh); software, H.A. (Hootan Alavizadeh) and H.A. (Hooman
Alavizadeh); validation, H.A. (Hooman Alavizadeh) and J.J.-J.; formal analysis, H.A. (Hooman
Alavizadeh); investigation, H.A. (Hooman Alavizadeh), J.J.-J.; resources, H.A. (Hooman Alavizadeh),
J.J.-J.; data curation, H.A. (Hooman Alavizadeh) and H.A. (Hootan Alavizadeh); writing—original
draft preparation, H.A. (Hooman Alavizadeh) and H.A. (Hootan Alavizadeh); writing—review
and editing, H.A. (Hooman Alavizadeh), J.J.-J.; visualization, H.A. (Hooman Alavizadeh) and H.A.
(Hootan Alavizadeh); supervision, J.J.-J.; project administration, H.A. (Hooman Alavizadeh). All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Cyber Security Research Programme—“Artificial Intelli-
gence for Automating Response to Threats” from the Ministry of Business, Innovation, and Employ-
ment (MBIE) of New Zealand as a part of the Catalyst Strategy Funds under Grant MAUX1912.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stoecklin, M.P. Deeplocker: How AI Can Power a Stealthy New Breed of Malware. Secur. Intell. 2018, 8. Available online: https:

//securityintelligence.com/deeplocker-how-ai-can-power-a-stealthy-new-breed-of-malware/ (accessed on 9 February 2022).
2. Hou, J.; Li, Q.; Cui, S.; Meng, S.; Zhang, S.; Ni, Z.; Tian, Y. Low-cohesion differential privacy protection for industrial Internet. J.

Supercomput. 2020, 76, 8450–8472. [CrossRef]
3. Brundage, M.; Avin, S.; Clark, J.; Toner, H.; Eckersley, P.; Garfinkel, B.; Dafoe, A.; Scharre, P.; Zeitzoff, T.; Filar, B.; et al. The

malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv 2018, arXiv:1802.07228.
4. Bodeau, D.; Graubart, R. Cyber Resiliency Design Principles: Selective Use throughout the Lifecycle and in Conjunction with Related

Disciplines; The MITRE Corporation: McClean, VA, USA, 2017; pp. 1–90.
5. Toyoshima, K.; Oda, T.; Hirota, M.; Katayama, K.; Barolli, L. A DQN based mobile actor node control in WSAN: Simulation results

of different distributions of events considering three-dimensional environment. In Proceedings of the International Conference
on Emerging Internetworking, Data & Web Technologies, Kitakyushu, Japan, 24–26 February 2020; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 197–209.

6. Saito, N.; Oda, T.; Hirata, A.; Hirota, Y.; Hirota, M.; Katayama, K. Design and Implementation of a DQN Based AAV. In
Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications, Yonago,
Japan, 28–30 October 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 321–329.

7. Alavizadeh, H.; Hong, J.B.; Kim, D.S.; Jang-Jaccard, J. Evaluating the effectiveness of shuffle and redundancy mtd techniques in
the cloud. Comput. Secur. 2021, 102, 102091. [CrossRef]

8. Sethi, K.; Kumar, R.; Mohanty, D.; Bera, P. Robust Adaptive Cloud Intrusion Detection System Using Advanced Deep Reinforce-
ment Learning. In Proceedings of the International Conference on Security, Privacy, and Applied Cryptography Engineering,
Kolkata, India, 17–21 December 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 66–85.

9. Sethi, K.; Kumar, R.; Prajapati, N.; Bera, P. Deep reinforcement learning based intrusion detection system for cloud infrastructure.
In Proceedings of the 2020 International Conference on COMmunication Systems & NETworkS (COMSNETS), Bangalore, India,
7–11 January 2020; pp. 1–6.

10. Sethi, K.; Rupesh, E.S.; Kumar, R.; Bera, P.; Madhav, Y.V. A context-aware robust intrusion detection system: A reinforcement
learning-based approach. Int. J. Inf. Secur. 2020, 19, 657–678. [CrossRef]

11. Dang, Q.V.; Vo, T.H. Reinforcement learning for the problem of detecting intrusion in a computer system. In Proceedings
of the Sixth International Congress on Information and Communication Technology, Online, 25–26 February 2022 ; Springer:
Berlin/Heidelberg, Germany, 2022; pp. 755–762.

12. Cappart, Q.; Moisan, T.; Rousseau, L.M.; Prémont-Schwarz, I.; Cire, A. Combining reinforcement learning and constraint
programming for combinatorial optimization. arXiv 2020, arXiv:2006.01610.

https://securityintelligence.com/deeplocker-how-ai-can-power-a-stealthy-new-breed-of-malware/
https://securityintelligence.com/deeplocker-how-ai-can-power-a-stealthy-new-breed-of-malware/
http://doi.org/10.1007/s11227-019-03122-y
http://dx.doi.org/10.1016/j.cose.2020.102091
http://dx.doi.org/10.1007/s10207-019-00482-7

Computers 2022, 11, 41 18 of 19

13. Ma, X.; Shi, W. Aesmote: Adversarial reinforcement learning with smote for anomaly detection. IEEE Trans. Netw. Sci. Eng. 2020,
8, 943–956. [CrossRef]

14. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. Application of deep reinforcement learning to intrusion detection for
supervised problems. Expert Syst. Appl. 2020, 141, 112963. [CrossRef]

15. Stefanova, Z.S.; Ramachandran, K.M. Off-Policy Q-learning Technique for Intrusion Response in Network Security. World Acad.
Sci. Eng. Technol. Int. Sci. Index 2018, 136, 262–268.

16. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An introduction to deep reinforcement learning. arXiv
2018, arXiv:1811.12560.

17. Hu, B.; Li, J. Shifting Deep Reinforcement Learning Algorithm towards Training Directly in Transient Real-World Environment:
A Case Study in Powertrain Control. IEEE Trans. Ind. Inform. 2021, 17, 8198–8206. [CrossRef]

18. Sethi, K.; Madhav, Y.V.; Kumar, R.; Bera, P. Attention based multi-agent intrusion detection systems using reinforcement learning.
J. Inf. Secur. Appl. 2021, 61, 102923. [CrossRef]

19. Nguyen, T.T.; Reddi, V.J. Deep Reinforcement Learning for Cyber Security. arXiv 2019, arXiv:1906.05799.
20. Caminero, G.; Lopez-Martin, M.; Carro, B. Adversarial environment reinforcement learning algorithm for intrusion detection.

Comput. Netw. 2019, 159, 96–109. [CrossRef]
21. Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009

IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009;
pp. 1–6.

22. Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats
and a Public Dataset. IEEE Commun. Surv. Tutorials 2016, 18, 184–208. [CrossRef]

23. Iannucci, S.; Barba, O.D.; Cardellini, V.; Banicescu, I. A performance evaluation of deep reinforcement learning for model-based
intrusion response. In Proceedings of the 2019 IEEE 4th International Workshops on Foundations and Applications of Self*
Systems (FAS* W), Umea, Sweden, 16–20 June 2019; pp. 158–163.

24. Iannucci, S.; Cardellini, V.; Barba, O.D.; Banicescu, I. A hybrid model-free approach for the near-optimal intrusion response
control of non-stationary systems. Future Gener. Comput. Syst. 2020, 109, 111–124. [CrossRef]

25. Malialis, K.; Kudenko, D. Distributed response to network intrusions using multiagent reinforcement learning. Eng. Appl. Artif.
Intell. 2015, 41, 270–284. [CrossRef]

26. Holgado, P.; Villagrá, V.A.; Vazquez, L. Real-time multistep attack prediction based on hidden markov models. IEEE Trans.
Dependable Secur. Comput. 2017, 17, 134–147. [CrossRef]

27. Zhang, Z.; Naït-Abdesselam, F.; Ho, P.H.; Kadobayashi, Y. Toward cost-sensitive self-optimizing anomaly detection and response
in autonomic networks. Comput. Secur. 2011, 30, 525–537. [CrossRef]

28. Fessi, B.; Benabdallah, S.; Boudriga, N.; Hamdi, M. A multi-attribute decision model for intrusion response system. Inf. Sci. 2014,
270, 237–254. [CrossRef]

29. Shi, W.C.; Sun, H.M. DeepBot: A time-based botnet detection with deep learning. Soft Comput. 2020, 24, 16605–16616. [CrossRef]
30. Ganju, K.; Wang, Q.; Yang, W.; Gunter, C.A.; Borisov, N. Property inference attacks on fully connected neural networks using

permutation invariant representations. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, Toronto, ON, Canada, 15–19 October 2018; pp. 619–633.

31. da Costa, K.A.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; de Albuquerque, V.H.C. Internet of Things: A survey on machine learning-
based intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [CrossRef]

32. Hassan, M.M.; Gumaei, A.; Alsanad, A.; Alrubaian, M.; Fortino, G. A hybrid deep learning model for efficient intrusion detection
in big data environment. Inf. Sci. 2020, 513, 386–396. [CrossRef]

33. Ibrahim, L.M.; Basheer, D.T.; Mahmod, M.S. A comparison study for intrusion database (Kdd99, Nsl-Kdd) based on self
organization map (SOM) artificial neural network. J. Eng. Sci. Technol. 2013, 8, 107–119.

34. Jiang, K.; Wang, W.; Wang, A.; Wu, H. Network intrusion detection combined hybrid sampling with deep hierarchical network.
IEEE Access 2020, 8, 32464–32476. [CrossRef]

35. Yang, K.; Liu, J.; Zhang, C.; Fang, Y. Adversarial examples against the deep learning based network intrusion detection systems.
In Proceedings of the MILCOM 2018—2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, USA, 29–31
October 2018; pp. 559–564.

36. Alavizadeh, H.; Alavizadeh, H.; Kim, D.S.; Jang-Jaccard, J.; Torshiz, M.N. An automated security analysis framework and
implementation for MTD techniques on cloud. In Proceedings of the International Conference on Information Security and
Cryptology, Seoul, Korea, 4–6 December 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 150–164.

37. Alavizadeh, H.; Alavizadeh, H.; Jang-Jaccard, J. Cyber situation awareness monitoring and proactive response for enterprises
on the cloud. In Proceedings of the 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), Guangzhou, China, 29 December–1 January 2020; pp. 1276–1284.

38. Zhu, J.; Jang-Jaccard, J.; Watters, P.A. Multi-Loss Siamese Neural Network with Batch Normalization Layer for Malware Detection.
IEEE Access 2020, 8, 171542–171550. [CrossRef]

http://dx.doi.org/10.1109/TNSE.2020.3004312
http://dx.doi.org/10.1016/j.eswa.2019.112963
http://dx.doi.org/10.1109/TII.2021.3063489
http://dx.doi.org/10.1016/j.jisa.2021.102923
http://dx.doi.org/10.1016/j.comnet.2019.05.013
http://dx.doi.org/10.1109/COMST.2015.2402161
http://dx.doi.org/10.1016/j.future.2020.03.018
http://dx.doi.org/10.1016/j.engappai.2015.01.013
http://dx.doi.org/10.1109/TDSC.2017.2751478
http://dx.doi.org/10.1016/j.cose.2011.06.002
http://dx.doi.org/10.1016/j.ins.2014.02.139
http://dx.doi.org/10.1007/s00500-020-04963-z
http://dx.doi.org/10.1016/j.comnet.2019.01.023
http://dx.doi.org/10.1016/j.ins.2019.10.069
http://dx.doi.org/10.1109/ACCESS.2020.2973730
http://dx.doi.org/10.1109/ACCESS.2020.3024991

Computers 2022, 11, 41 19 of 19

39. McIntosh, T.; Jang-Jaccard, J.; Watters, P.; Susnjak, T. The inadequacy of entropy-based ransomware detection. In Proceed-
ings of the International Conference on Neural Information Processing, Sydney, Australia, 12–15 December 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 181–189.

40. Wei, Y.; Jang-Jaccard, J.; Sabrina, F.; Alavizadeh, H. Large-Scale Outlier Detection for Low-Cost PM10 Sensors. IEEE Access 2020,
8, 229033–229042. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3043421

	Introduction
	Related Work
	Background
	Reinforcement Learning
	Feed Forward Neural Network

	Dataset
	Anomaly Detection Using Deep Q Learning
	Deep Q-Networks
	Deep R-Learning Concepts
	Environment
	Agent
	States
	Actions
	Rewards

	Deep Q-Learning Process

	Evaluation of the DQL Model
	Experiment Setup and Parameters
	Performance Metrics
	Accuracy
	Precision
	Recall
	F1 Score

	Performance Evaluation
	Comparison with Other Approaches

	Conclusions
	References

