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Abstract: The Internet of Things (IoT) allows billions of physical objects to be connected to gather and
exchange information to offer numerous applications. It has unsupported features such as low latency,
location awareness, and geographic distribution that are important for a few IoT applications. Fog
computing is integrated into IoT to aid these features to increase computing, storage, and networking
resources to the network edge. Unfortunately, it is faced with numerous security and privacy risks,
raising severe concerns among users. Therefore, this research proposes a contextual risk-based
access control model for Fog-IoT technology that considers real-time data information requests for
IoT devices and gives dynamic feedback. The proposed model uses Fog-IoT environment features
to estimate the security risk associated with each access request using device context, resource
sensitivity, action severity, and risk history as inputs for the fuzzy risk model to compute the risk
factor. Then, the proposed model uses a security agent in a fog node to provide adaptive features in
which the device’s behaviour is monitored to detect any abnormal actions from authorised devices.
The proposed model is then evaluated against the existing model to benchmark the results. The
fuzzy-based risk assessment model with enhanced MQTT authentication protocol and adaptive
security agent showed an accurate risk score for seven random scenarios tested compared to the
simple risk score calculations.

Keywords: fuzzy logic; risk assessment model; confidentiality-based attacks; security; sensors;
Internet of Things; fog computing

1. Introduction

A growing number of physical objects are being connected at an unprecedented rate,
realising the idea of the Internet of Things (IoT) [1]. It is the internetworking of various
objects and network connectivity that allows these objects to communicate and exchange
data, including sensors, smart meters, smartphones, smart vehicles, radio-frequency identi-
fication (RFID) tags, personal digital assistants (PDAs), and other items such as embedded
devices, software, and actuators. Some IoT applications might need a fast response, some
might involve private data, which should be stored and processed locally, and some might
produce large volumes of data, which could be a heavy burden for networks [2]. With
the advance of IoT, fog computing [2,3], has been introduced to bring services closer to
the end-users by pooling the available computing, storage, and networking resources at
the edge of the network. However, the Fog-IoT network has more significant challenges
because it has three different layers, and each layer requires a different technique of security
assessments.

The target of this study is to tackle confidentiality-based attacks in the Fog-IoT network.
Several problems are detected in the Fog-IoT network, which are man-in-the middle attacks,
in which hackers control and manipulate the private communications of users, data leakage,
and data manipulation and the existing access control models that are incapable to evolve
according to the environmental changes.

In order to mitigate these problems, an enhanced MQTT protocol authentication
method in the Fog-IoT network is being proposed. The authentication protocol covers
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a contextual risk model to continuously quantify risk on any fog node configured to
join the network. In ensuring that the abnormality action on the devices is captured,
an adaptive monitoring security agent in the fog node is also proposed. The research
objectives mapped with the following research questions: (i) What type of method is
needed to tackle confidentiality-based attacks in the Fog-IoT network? (ii) What model is
suitable to quantify risk in fog nodes? (iii) What technique is needed to detect abnormal
actions from the device?

Several contributions are made. First, an enhanced MQTT protocol authentication
method in the Fog-IoT network is developed and tested. The researcher used the EMQX
MQTT broker to enhance the authentication method since the broker is a scalable and highly
extensible MQTT broker. The broker allows pre-trigger as a plugin for client authentication.
The researcher used the plugin to configure the command to check the username, IP
address, and risk value against the MYSQL database, which is shared with the access
control mechanism. A unique token is introduced in the authentication, which will be
secret between the sender and receiver in the communication channel.

The next contribution is presenting a contextual risk model to quantify risk in fog
node using a fuzzy inference system. Two types of risk estimation methods are created
to quantify the risk, risk assessment, and fuzzy model. Based on the existing models,
the proposed model is enhanced to support adaptive features by adding the history and
device context to better estimate risk. The risk assessment model is used with a Multifactor
Evaluation Process to provide precise risk calculation while the fuzzy model approaches
enhanced with a risk assessment formula using the MATLAB tool. Both models are
simulated in the Fog-IoT setup and evaluated. The risk factor results are compared with
a series of scenarios to get accurate results. The enhanced fuzzy model provided better
results in seven different random scenarios testing with the same Fog-IoT setup using the
risk assessment.

The last contribution is an adaptive monitoring security agent in the fog node capable
of detecting abnormal actions from the device. The adaptive monitoring security agent
developed in the fog node and an actual fog node performs filtering from clients. The
agent constantly monitors for unauthorized access or connection-related log information
from the EMQX MQTT broker. The agent updates client info as a blacklisted device in
the MYSQL database if a particular client cannot authenticate. The agent also terminates
any connected client in the channel by rerunning the access control of the EMQX MQTT
broker. The adaptive monitoring security agent is simulated in the normal authentication
method with valid and invalid client info. The agent also tested the security analysis of the
Man-in-the-Middle attack scenarios.

In evaluation model, several case studies demonstrating calculated risks from the
model are presented. One notifiable contribution to the body of knowledge is proving the
essence of adaptive risk and monitoring mechanism in the Fog-IoT environment. Due to
the instability and insecurity that lies in IoT sensors nodes and its communication protocols,
the proposed idea clearly demonstrated the usage of the MQTT protocol and risk model in
initiating any new connection.

The remainder of the paper is organised as follows: Section 2 discusses the literature
review. Section 3 presents in-depth information on the methodology used in developing
the proposed work. Section 4 presents the results. Section 5 presents the discussion related
to the proposed solution and results, and Section 6 presents the conclusion.

2. Background and Literature Review

Fog computing is the worldview broadening of cloud computing and its adminis-
trations to the edge of the system. Fog is recognised from the cloud in its nearness to
end-clients/hubs, thick land circulation, support mobility, heterogeneity, interoperability,
and pre-preparing. Fog computing does not replace cloud computing, but it supplements
cloud computing and intends to give a computing and capacity stage physically nearer
to the end hubs, provisioning other types of uses and administrations with a productive
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exchange with the cloud layer [3]. Fog computing is a virtualized platform that offers com-
putational, networking, and storage services between cloud computing and end devices.
The features of fog computing are as follows:

• Decentralisation—fog nodes are an independent entity which can manage the resource
and services and do not require a centralised server to control the system [4].

• Low latency—fog node is closer to the Fog-IoT end devices. Thus the latency is
lowered compared to when accessing to the cloud directly [4].

• Large scale IoT applications support—Fog computing supports large-scale IoT ap-
plications such as environmental monitoring and climate change monitoring, which
bring heavy management overhead to the centralised cloud.

• Heterogeneity—fog computing is a virtualised platform that offers computational,
networking, and storage services between cloud computing and end devices. It serves
as a building block, as it exists in different forms, and can be deployed in wide-ranging
environments.

• Interplay with cloud—cloud computing is a central global entity, and the fog node
focuses on localised data processing. Big Data analysis and machine learning use both
cloud and fog computing to perform data analysis.

• Predominance of wireless access—cloud layer provides global coverage, which is used
as a repository to store years of data. This information is typically used in machine
learning analysis and metric systems using indicators.

• Online analytics—many applications require both Fog localisation and Cloud glob-
alisation, mainly for analytics and Big Data. This first tier of the Fog, designed for
machine-to-machine (M2M) interaction, collects and processes the data and issues
control commands to the actuators. It also filters the data to be consumed locally and
sends the rest to the higher tiers. The second and third-tier deal with visualisation and
reporting (human-to-machine (HMI) interactions), as well as systems and processes
(M2M). The timescales of these interactions range from seconds to minutes (real-time
analytics) and even days (transactional analytics). Some data relates to protection and
control loops that require real-time processing (from milliseconds to sub-seconds).

• Mobility support—fog computing applications enable direct communication with
mobile devices using protocols such as Cisco’s Locator/ID Separation Protocol that
decouples host identity from location identity using a distributed directory system.

• Geographic distribution—fog computing must support different storage levels from
the lowest tier to the highest tier. The higher the level, the broader geographical
coverage, and the longer the time scale.

• Location awareness—the location of fog nodes can be traced actively or passively to
support devices with rich services at the network edge. Fog computing dedicates to
local IoT applications accessible for the devices in certain areas via specific fog nodes.
Therefore, it is aware of the devices’ regions based on the locations of fog nodes [4].

Since technology evolves rapidly, most systems do not have the intelligence to detect
suspicious behaviour and mostly block malicious activity. The software protection solution
needs to change from restricting malicious activity to actively monitoring the behaviour of
the system. There are many ways to lower the attack’s impact, such as shrinking the attack
surface to prevent threats from spreading, segmenting the system at the network level, and
reducing the remediation time by acting promptly to all the attacks and slowing down the
rate of the attack. This can be achieved with adaptive security architecture (ASA). Figure 1
shows the architecture of adaptive security.

Based on Figure 1, the four aspects of ASA are prediction, prevention, detection, and
response. The leading role of the prediction stage is to analyse the visibility of threats,
predict the threats, and expect any new security attacks to the current system. The future
attack scenarios are predicted from intelligence from history and other environment states.
Next, in the prevention stage, the potentials threats are prohibited. The system is isolated
to protect against any threats by reducing the surface area of potential attacks. The in-
formation on malicious activities is captured in the system. Then, in the detection stage,
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it continuously monitors the system, which enables the detection of attacks as early as
possible. The risk factor associated with the target is assessed and prioritised based on
the detection incident. On the other hand, the system can isolate the affected part due to
the potential attack to prevent any further critical damage. Finally, it is the response stage
which responds to an attack. The attack needs to be analysed to get in-detail information
about the full scope of the breach. Thus, adaptive security architecture can be implemented
in mitigating security attacks.

Figure 1. Adaptive security architecture [5].

2.1. Security Attacks

In this section, comprehensive security issues in the Fog-IoT network are discussed.
The security attacks are classified into three levels: node-level attacks, network-level attacks,
and application-level attacks [6]. These attacks can be prevented and mitigated by applying
several countermeasures. Table 1 shows the level of attacks, its type of attacks, and the
countermeasures that can be applied.

Table 1. Classification of security attacks in fog computing [6].

Level of Attacks Types of Attacks Countermeasures

Node-level attacks

Node capture attacks
Node jamming

Malicious code injection on node
Physical damage of the node

RF interferences and Eavesdropping
False data injection attacks

Replay attacks
Crypt analysis attacks

Sleep deprivation attacks

Device Authentication
Data Confidentiality

Data Integrity
Secure booting by using low power cryptographic

hash functions
Data Anonymity

Access Control Devices
Physical barriers

Monitoring devices

Network-level attacks

Denial of Services (DoS)
Spoofing attacks
Sinkhole attacks

Man-in-the-Middle attacks
Routing information attacks

Sybil attacks
Unauthorised access

RFID cloning
Traffic analysis attacks

Network Authentication mechanisms
Confidentiality and integrity of transmitted data

Implementation of routing security
Secure user data on devices by using encryption

and cryptographic mechanisms



Computers 2022, 11, 16 5 of 21

Table 1. Cont.

Level of Attacks Types of Attacks Countermeasures

Application-level attacks

Phishing attacks
Malicious Virus/Worms

Trojan horse
Ransomware

Spyware

Access control lists
Firewalls

Protective softwares
Intrusion detection mechanisms

Trust management

These security attacks can be prevented through the implementation of an access
control mechanism. The following section discusses the access control mechanism.

2.2. Access Control in Fog-IoT

The Fog-IoT devices exchange multiple information related to the state of the environment
or the end users’ behaviour. The communication channel between the Fog-IoT system is crucial,
and a robust access control mechanism is needed to prevent any security attacks. Figure 2
shows the hierarchical process of access control according to each Fog-IoT layer.

Figure 2. IoT flow model.

The main motive of access control is to allow access to allowed users and prevent
authorised users from accessing the system in an unauthorised manner [7]. This is done to
ensure that only authorised users are allowed to access a system to protect confidentiality
and integrity. There are two types of access controls which are traditional and dynamic
access control [8].

Traditional access control is rigid and uses static access policies. The outcome of the
policies is always the same regardless of any situation because they are predefined. When
there are changes in the state of the environment, the static approach fails to adapt to the
condition for access decision-making [4]. For instance, Discretionary Access Control (DAC),
Mandatory Access Control (MAC), and Role-based Access Control (RBAC) are the three
main traditional access control models.

Dynamic access control is a very flexible model that uses dynamic contextual features
together with access policies. The decision-making happens in real-time at the time of
the request [9,10]. For instance, real-time features can be trust, risk, context, history, and
operation need [11,12]. For this study, we proposed a contextual risk-based access control
model that uses the security risk factor as one of the inputs for access decision making.

2.3. Risk-Based Access Control Model

The risk factor can be estimated for each request in a system that allows or denies
access dynamically [4]. The access decision is made by performing a risk analysis on
each user access request [13]. The formula to represent quantitative risk is Quantified



Computers 2022, 11, 16 6 of 21

Risk = Likelihood × Impact (1). The probability of an incident is the likelihood, and the
impact is the estimation of the damage over any incident [14]. There are two types of
quantified risk-based access control: non-adaptive and adaptive. The adaptive model
requires a continuous monitoring process, and the risk estimation is adaptive based on
access sessions. In contrast, the non-adaptive model measures the risk during each request
and does not continuously monitor abnormal detection [15].

Many improvements can be made in the access control in the Fog-IoT network. Several
existing risk-related models that use the security risk for dynamic access control models
are discussed. In order to fulfil the gaps found in existing models, this study implements
adaptive security architecture in access control decision-making to strengthen the security
solution. Table 2 shows the comparison between existing risk-based access control models.

Table 2. Comparison between existing risk-based access control models.

Author(s) Risk Estimation Technique Risk Factors Limitations

[16] Risk Assessment Outcomes of actions Risk factors are limited and lack
of adaptive approach

[17] Fuzzy MLS Model Subject security level and object
security level differences

History of user behaviour not
used to predict the future

[18] Fuzzy Model Data sensitivity, action severity, and
user risk history

No clear risk estimation and lack
of adaptive approach

[19] Fuzzy Interference Object security level and subject
security level

Inefficient fuzz inference and lack
of adaptive method

[20] Risk Assessment Object sensitivity, subject trust, and
the difference between them

Past risk history not counted in
the access control model

[21] Risk Assessment History of reward and penalty points No predictive risk technique used

[22] Game Theory Access benefits of the subject Risk factors are limited, and the
adaptive approach not used

[23] Mathematics Functions Data Sensitivity, action severity, and
risk history Lack of risk prediction method

[24] Risk
Assessment Outcomes of actions Risk factors are limited and lack

of risk prediction technique

[25] Mathematics Functions Risk policies Risk factors are limited and lack
of prediction

Based on the risk model analysis performed by previous researchers, several limi-
tations have been captured, such as no history factor [16–18] being accounted for in risk
calculations, no prediction in risk calculations [19–21], and no contextual factors presenting
the current state of environment being included in risk calculations [16,18,22–25]. Thus, the
need to propose a new contextual risk model in essential. One interesting study showing
how the proposed cloud-edge ecosystem model is being tested is shared by Ficco et al.
(2017) [26]. However, instead of testing in an emulated environment, we would only test
our proposed model in a simulated environment. The reason for this being that, since this
work is at the experimental stage, a simulation may be sufficient. Nevertheless, the option
to emulate the model would be achieved.

2.4. Authentication in Fog-IoT

In this section, the authentication process is discussed in detail. This study uses the
Message Telemetry Transport (MQTT) protocol to set up the Fog-IoT network. The protocol
is ideal for machine-to-machine interaction as it uses fewer system resources such as low
power and less data packet size. The MQTT protocol provides a basic authentication
mechanism. Due to this reason, the EMQX MQTT broker is considered to enhance the
authentication mechanism. The types of authentications are discussed in Table 3.
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Table 3. Techniques of authentications.

Techniques of Authentication Descriptions

Username and password authentication

n Similar to basic MQTT protocol authentication technique
n Pre-trigger uses a configuration file that has username and password

information
n Allows defining multiple clients for a system.

MySQL authentication

n MySQL database is used as a medium in the authentication step.
n EMQX generates the SQL command with the input parameter to check against

the stored data.
n MySQL database is available before the authentication process.
n For instance, the value of the password field of a query result is compared with

the input client password after salt encryption, whether it is a match or vice
versa. The client can be authenticated if the password field exists as a result.

Redis authentication

n When a client is up and running, the Redis authentication pre-trigger is
connected to the Redis server.

n The authentication info is validated with the stored data, and this determines
the client access connection.

n The client data are stored before the Redis service starts.

MongoDB authentication

n One of the techniques used as a pre-trigger.
n The information stored in the MongoDB database are re-used during the

authentication phase.
n This determines access to a particular client.

Evaluation of MQTT Authentication

The EMQX broker provides various technologies to enhance the authentication scheme.
MySQL authentication is apt for the current research because there are many use cases for
a relational database such as MySQL. Any applications that require multi-row transactions
are better suited for a relational database. MongoDB has a greater challenge to replace
legacy systems that were built for relational databases. Arduino and Node.js also use
MySQL databases, and the libraries are easily implemented. In this study, the MySQL
plugin is combined with the MySQL technique to support risk factors and introduce strict
token rules to authenticate the devices, making the system robust. The methods are further
discussed in Section 3.

3. Research Methodology

In this section, the research methodology of the proposed approach is explained phase
by phase, as each phase has contributed an output which indirectly is the pre-request for
the next phase in the research cycle. Figure 3 shows the phases involved in this research.

Based on Figure 3, there are four phases which are: analysis (phase 1), design (phase 2), sim-
ulate (phase 3), and evaluate (phase 4). Starting with phase 1, a literature review is conducted on
the previous work regarding Fog-IoT and its security challenges. In analysing the requirements,
some research on the existing risk models based on context awareness criteria such as location,
time, network type, and the user is conducted. Contextual awareness is the ability of a given
application to access information about the physical environment and automatically adapt
its behaviour appropriately in real-time. Based on the criteria stated, each parameter reveals
abnormal or unintentional conditions. The system can detect the changes in the environment
state with the help of device context and reacts actively in real-time. The locations reveal the
latitude and longitude of the devices that are connected to the system. Time is also an essential
criterion for a sensor device to be activated in a system that reveals the usage timeline. The
information of the selected network type, where a device communicates through the gateway,
is captured because it helps in filtering intruders in a system. Besides, the device ID helps to
determine whether it belongs to the allowed list or vice versa. Based on the study conducted,
the major problem in Fog-IoT is the compromise in data confidentiality [27,28]. Diverse forms
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of security attacks are identified in fog network layers. This study analyses several dynamic risk
models based on security attacks and a literature review on the MQTT authentication methods.

Figure 3. Research phases.

In phase 2, which is design, the technique is planned from the data collected from
phase 1, and the problem is identified. This stage identifies the project requirement and
the techniques of enhancement. A contextual risk-based model is proposed based on the
analysis of access control models and adaptive monitoring security agents in the fog node
to mitigate the data confidentiality-based attacks [29]. The proposed adaptive system based
on adaptive security architecture consists of three main elements. First is the ability of
the designed system to analyse and predict the vulnerabilities, the potential threats, and
anticipate new types of attacks in the existing system. The information from history and
other sources are used to anticipate future attack scenarios. The access control mechanism
stores the access list of devices associated with risk in the database to predict behaviour for
the future. Second, there is a method of prevention. The system is hardened and isolated
to protect against the identified threats by reducing the surface area for potential attacks.
Known malicious activities are countered by using the blacklisting approach based on past
incidents. The access control terminates the connection of a device based on the prediction
step. Third, the component of an adaptive method comes into the picture. Continuous
system monitoring enables the detection of a successful attack as early as possible. After
the detection of an incident, the risk associated with it is assessed and prioritised. The
security agent in the fog node monitors the behaviour of the successful communication of
a device. If a connected session takes a longer time than expected, it results in connection
termination. The device info and its risk value are adjusted accordingly. The risk estimation
value is calculated based on previous researchers’ formula [20].

In phase 3, which is a simulation, a secure and non-secure Fog-IoT network to simulate
the proposed adaptive contextual risk model are set up. Figure 4 shows the Fog-IoT secure
setup with four layers. First, the end device layer consists of sensors and an IoT platform.
The NodeMCU with temperature and humidity sensors are used. Second, the gateways
and switching layer push the data from end devices to the fog nodes or receive the data
from the fog node to the end devices. Third, the fog layer has three segments: Fog Node
Manager, known as an MQTT broker, adaptive monitoring agent, and actual fog node,
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which analyses based on the data. The proposed model is part of the fog node. The last
layer is the cloud, which stores the data permanently.

Figure 4. Fog-IoT simulation setup.

Another setup is similar to the earlier version but with the inclusion of a Man-in-the-
Middle attack between the fog layer and the end devices. Figure 5 shows the modified
simulation setup to measure the proposed algorithm and improve the technique if needed.
The results are captured and evaluated in the last phase. The final phase is evaluation. For
the evaluation purpose, each mentioned objective is evaluated based on the evaluation
metrics. The evaluation metrics are further discussed in the following subsection.

Figure 5. Modified Fog-IoT simulation setup.
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3.1. Evaluation Metrics

According to the evaluation done in the final phase, the evaluation is done based on
the evaluation metrics. The in-depth discussion is presented in this section.

3.1.1. MQTT Plugin vs. MQTT

A literature review on the MQTT protocol and its authentication type is conducted.
The MQTT protocol provides basic authentication using a username and password scheme
and the module is rigid to adapt the proposed risk model. EMQX broker provides ad-
ditional control for authentication using the MySQL database. The integration of the
emqx_auth_mysql plugin and MQTT offers additional control to the system. Thus, the
EMQX MQTT plugin is used.

3.1.2. Risk Model and Factor Quantification

The proposed contextual risk-based model is simulated in Fog-IoT networks and
evaluated using the risk assessment formula. Figure 6 shows the risk scale used to compare
with the risk factor obtained through simulation.

Figure 6. Risk scale.

Based on Figure 6, the output of the risk factor is compared against the risk quadrant
with a threshold value of 0.3. The threshold value is set based on risk assessment by [20].
The result of every communication step for the same device varies according to the simu-
lating condition. The presence and absence of an adaptive security agent also influenced
the risk factor of the access control.

3.1.3. Case Scenario of Testing the Proposed Model against Man-in-the-Middle Attack

Testing and implementing the Man-in-the-Middle attack in the normal condition was
conducted to differentiate the outcomes. The security analysis is performed by changing
the input of the proposed model and the conditions. The resource allocation and network
performance are also evaluated using the proposed model. The evaluation also contributed
to some opinions on the future enhancement of this study.

4. Adaptive Contextual Risk-Based Model

The proposed contextual risk model illustrates the complete interaction of the Fog-IoT
model, which covers MQTT authentication between devices and server, risk-based access
control, and adaptive monitoring agent to monitor the network. The proposed model has
been set up in an environment shown in Figure 5. The proposed adaptive MQTT broker
fog node aims to calculate the risk of connections based on authorised credentials and
several contextual rules triggered by the fuzzy engine. The following section explains the
operation flow of the proposed model.

4.1. Proposed Contextual Risk-Based Model Operation Flow

In this study, the Fog-IoT architecture is designed to implement the proposed adaptive
security architecture. Figure 7 shows a simple IoT environment operation flow setup with
connections between cloud, fog computing, and end devices or sensors. The proposed
fog layer has two segments which are the adaptive MQTT broker and the actual fog node.
The sensors’ data are published to the EMQX broker using the wireless access point. The
NodeMCU microcontroller aggregates the temperate and humidity sensor and publishes
two times per minute. The data is subscribed by the fog server using the same wireless
access point. The data filtering happens in the fog server, and only the distinct results are
stored in the cloud server. An estimated total of 10 packets are sent per 5 h.
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Figure 7. Proposed Method Operation Flow.

Based on Figure 7, there are four layers: end devices, gateway and switching, fog
node, and cloud. Figure 8 shows the components involved in the adaptive MQTT. Each
layer and the respective components are explained in detail as follows:

• End Device Layer—this layer is similar to the physical layer of the Open Standard
Interconnection (OSI) model. It consists of sensors, actuators, and microcontrollers.
The motive of this layer is to gather data from IoT devices, and then these data are
transmitted to fog nodes through a communication channel such as WiFi. These
devices are limited with a resource such as power and storage. The data or the con-
nection can be monitored and managed in the same Local Area Network (LAN) using
a monitoring dashboard or tools. In this study, the temperature and humidity sensor
is used to test the Fog-IoT. The sensors are plugged into the NodeMCU IoT platform,
and the data are transmitted using a WiFi network. MQTT protocol version 5.1.1 is
used in this layer to publish the data. The publisher is programmed using the C/C++
programming language by Arduino IDE.

• Gateway and Switching Layer—the motive of this layer is to transmit the information
from the end devices to the fog node or obtain the response from the fog node to the
end device. In this study, the NodeMCU with a dht22 sensor is connected to the fog
layer using the IEEE802.11n access point.

• Fog Node Layer—this layer consists of three sections: Fog Node Manager, known as
an MQTT broker, the adaptive monitoring security agent, and the actual fog node,
which are analysed based on the data. This layer considers the “middle man” and
obtains the temperature and humidity data from the dht22 sensor. Then, the fog server
does the data filtering and sends the data to the cloud server. The fog node uses the
EMQX broker to subscribe to the data from the sensors using the Node.js Application
Program Interface (API). These data are temporarily stored in the fog server before
sending it to the cloud. EMQX broker applies the adaptive security framework to
authenticate the clients.

• Cloud Layer—this layer aims to store important data permanently. In this study, the
Google cloud server database is used to store the data. The data are pushed from the
fog layer whenever needed.



Computers 2022, 11, 16 12 of 21

Figure 8. Components of Adaptive MQTT.

4.2. Adaptive MQTT Broker for Communications

MQTT is a lightweight protocol often used for devices to communicate with other systems.
It is used to publish and subscribe messaging techniques to exchange data. Figure 8 shows the
components involved in adaptive MQTT broker.

Based on Figure 8, this system has five components: a publisher of messages (sensor
data), a subscriber to messages (client), a broker that connects the sensors and the clients, an
authentication plugin, and a MySQL database. Each component is explained in detail as follows:

• Broker—in this study, the EMQX broker is used to set up the localhost machine.
This is to allow for the complete control of the broker. The broker provides a web
dashboard and backend access. NodeMCU with dht22 sensors are connected directly
to the broker and can publish the temperature and humidity data. The fog server can
authenticate the broker to obtain the data.

• Authentication Plugin—the MQTT server controls the client access authentication
step. The EMQX allows authentication setup in a different layer, such as the transport
layer and application layer. It allows the support of different layers. The MySQL au-
thentication technique is used to enhance the current authentication scheme. MySQL
script plugin is used to set up the MySQL database connection and query filtering.
The SQL query provides results, and the results are validated against the rules check
in the configuration file. The broker uses a hardcoded token to check the allowed
device list to authenticate. This token is used by the device as well; if the selected user
exists and the risk is less than 0.3, the device can authenticate.

• MySQL—the devices and the broker communicate with this user table, which contains
the username, password, risk factor value, and IP address to validate the info.

• Publisher—after the MQTT client establishes the connection with the broker, the client
can publish messages. MQTT filters the messages using a topic on the broker. Every
message contains a topic which the broker helps to send to the subscribed clients.
Every MQTT packet payload contains the data to transmit in byte format. The use
case of the client decides on the payload structure. The client can publish the data
in binary data, text data, or even XML or JSON. NodeMCU uses the dht22 sensor to
establish a connection and publish the data EMQX. The MQTT packet of a published
message has several attributes.

• Subscriber—the client receives the data from the broker known as a subscriber. A
subscriber usually presents in an IoT network as some entity that needs to acquire
the data. The client needs to send a subscription message on the topic of interest to
the MQTT broker. The subscription message contains a unique identifier and a list
of subscriptions— in this research, the client subscription to the fog server. Once the
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data is obtained, it performs the data filtering algorithm and selectively pushes it to
the cloud.

4.3. Access Control Construction with Risk Assessment

Risk assessment can be an additional factor in access decision-making. In security
analysis, it can be challenging to pick the correct path for every condition. With the
additional risk criteria, good decisions are made. Based on [20], the risk assessment
formula, the risk value is evaluated after calculating the cost of outcomes based on the
relevant action and device context. The initial formula is enhanced to support additional
inputs. These are three main risk values of the outcomes: availability, integrity, and
confidentiality. The formula for each risk value of the outcome is shown as follows:

RVA(Oai,j) = CA(Oai,j) × ∑k

∫
Oai,j, Sk (1)

RVI(Oai,j) = CI(Oai,j) × ∑k

∫
Oai,j, Sk (2)

RVC(Oai,j) = Cc(Oai,j) × ∑k

∫
Oai,j, Sk (3)

The notion used in equations are as follows:

• A sensor or a device that communicates with other devices denotes a client by S.
• Client, S, executes an action, A.
• An outcome, O, of an action, A, is a consequence.
• Context, k, is information related to the current action.
• Consequence, c(O), is a function for calculating the cost of each outcome, O.
• Risk, RV (O, a), is a function for calculating risk value.

Based on the three equations shown, Equations (1)–(3) are used to calculate the risk
value of the outcome in terms of availability, integrity, and confidentiality, accordingly.
From these calculations, the risk factor can be calculated using the following final formula,
where Wi ∈ N, I = 1, 2, 3, 4, 5, 6, 7, 8. It can be adjusted according to suitable values based
on the weight of a specific metric.

RV =
W1 RVA + W2 RVI + W3 RVC + W4 RVT + W5 RVN + W6 RVD + W7 RVL + W8 RVPR

Wi
(4)

Based on Equation (4), the final risk factor can be calculated by mapping the weighted
arithmetic mean with the risk factor of availability, integrity, and confidentiality. There are
a few steps involved in risk assessment. First, the client’s action–outcome is captured. The
action can be viewed, created, modified, or deleted. Next, the action is mapped with each
factor’s availability, integrity, and confidentiality. The weight is assigned for each factor.
Then, the cost of the impact of availability, integrity, and confidentiality are determined.
Next, based on the set of device context and action, the probability is calculated. Finally,
the threshold risk value is obtained, which is used for comparison purposes. If the risk
factor is less than 0.3, the device is allowed to authenticate. MFEP is used with the input
parameters to obtain a better solution.

4.4. Access Control Construction Using Fuzzy Logic

There is a lot of uncertainty present during the risk assessment, and it affects the
calculation of risk in a scalar; for instance, when identifying the probability of impact with
severity and mathematics. Fuzzy logic calculates the results using the degree of truth. It
can represent nonlinear functions of arbitrary complexity. Based on researcher [30], the
fuzzy approach is enhanced with the risk assessment formula to compute the risk factor.
Figure 9 shows the fuzzy risk model.



Computers 2022, 11, 16 14 of 21

 

MDPI  
Postfach 
CH-4020 Basel 
Switzerland 

Tel.  +41 61 683 77 34 
Fax +41 61 302 89 18 
www.mdpi.com 

 

2 

新员工入职一周面谈问题参考： 

1、刚入职一周感觉如何，上班通勤时间和办公氛围还适应吗？ 

2、和您的 tutor 相处的怎么样？他/她是否有做到让您清楚自己每天的学习任务呢？ 

3、是否有参加新人制度培训？对考勤制度和员工手册中的规章制度有了解吗？是否

有不清晰的？目前还希望了解哪方面的规章制度？ 

4、组长或者科长是否和您进行过单独沟通？是否了解本部门和所在岗位的工作职责

呢，可否描述一下？ 

*5、您在目前的工作开展过程中是否有困难？有需要公司/组长/人事给予支持或者帮

助的地方吗？ 

*6、觉得公司还有什么需要改进的地方？ 

 

标*问题回答可手动填写至面谈内容中的补充部分 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Fuzzy risk model.

Based on Figure 9, there are four main steps involved in the fuzzy risk assessment. The
first step is the identification of the key risk indicators that define the linguistic variables.
The input and output variables, and their ranges, are also identified. There are six indicators
specified as input: time, network type, device info, location, action, and past risk. Secondly,
the ranges for the input are set accordingly and separated into classes or fuzzy sets. Thirdly,
the fuzzy rules are defined in this step. The risk varies on the factors and needs to specify
how the risk varies as a function of the factors. For instance, action severity can range
from low to high. Finally, the fuzzy model is encoded, and the system is tuned using the
MATLAB tool.

5. Results and Findings

In this section, the results and findings are presented. The risk model evaluation and
security analysis findings are discussed.

5.1. Evaluation of Proposed Contextual Risk Model

Two models are discovered based on the analysis, risk assessment, and fuzzy-based
approach. The risk assessment method provides a precise way to compute the risk, whereas
the fuzzy approach is applied using the risk assessment to quantify the risk factor. Fuzzy
modelling of risk factors addresses uncertainties in real applications, which can improve
the performance of the risk assessment methodology. Based on the formulas expressed
in Section 4.3, and using the defined input values of time, network type, device info, and
location, using normalised range as shown in Figure 10, one example shows when a user
needs to add new sensor data within a Fog-IoT environment. The input variable for the
fuzzy table is presented in Table A1 in Appendix A.

Figure 10. Data Input for Fuzzy Set.
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The input values of time, network type, device info, and location are set based on
the normalized range as shown in Table A1. For instance, the input value of the action
parameter uses the normalized AIC score to measure the severity of the impact, which
is defined in the risk assessment model. Next, both input values and fuzzy variables are
calculated to show the conceptual risk, which is shown in Table 4.

Table 4. Risk Values Generated.

Input Type Risk Values

User Action

RVA = 1 × 0.14

RVC = 1 × 0.13

RVI = 0 × 0.13

RVACI = 0.27

Time RVT = 0 × 0.11

Home Network RVN = 0 × 0.11

Allowed/Blocked List RVD = 0 × 0.11

Location RVL = 0 × 0.11

Device Provenance Device Past Risk = 0.3

RVPv 0.3 × 0.15 = 0.045

By using fuzzy, the process is presented as follows: First, the degree of the function
is determined based on the crisp input of RVAIC, RVT, RVN, RVD, RVL, RVPR. The second
step is taking the fuzzified input and applying the following rule: if RVAIC is medium,
RVT is low, RVN is low, RVD is low, RVL is low, and RVPR is low, then the final risk is low.
The unification of the output of all rules is carried out, which is called aggregation. The
membership function of all rules is clipped or scaled and merged into a single fuzzy set.
Figure 11 displays the overall evaluation score, which is 0.129.

Figure 11. Risk Evaluation Screen.

Next, the authors had simulated seven (7) types of random scenarios (as shown in
Table 5). Case 1 and 4 risk factors are almost close, and other cases show that the delta of
the two risk factors are much higher. In the current experiment, the fuzzy system shows a
more reliable score. Thus, the fuzzy approach provides a more accurate score in contrast to
simple risk score calculations.

5.2. Study of Security Analysis

An attacker can perform packet sniffing in the network by accessing the router/machine.
Packet sniffing is the act of capturing packets of data flowing across a computer network. In
most cases, an attacker can dissect the MQTT packet and can read the headers for the connection
information. The MQTT packet information is not encrypted entirely. If a device uses a plain
username and password, the attacker can obtain the value and other important information
such as the broker info source and destination IP address. An attacker is able to read, insert,
and modify the data in the intercepted communication. An attacker who tries to publish
invalid temperature data by connecting to the MQTT broker is rejected. The broker rejected the
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connection because the ClientID of the connection and token does not tally with the username.
This prevents an attacker from even authenticating to the broker behind an active connection.
The EMQX server log captures this incident. Figure 12 shows the sensor connection when
terminated once the new risk score is updated after the attack happens.

Table 5. Risk model evaluation result.

Case Time Network
Type Device Info Location Action Past Risk

Risk
Assessment

Score

Fuzzy
System
Score

1 7 a.m.–3 p.m. Public
network New device Other

location
Generate

sensor data 0.34 0.35 0.41

2 7 a.m.–3 p.m. House
network Allowed list Penang Generate

sensor data 0.28 0.06 0.14

3 7 a.m.–3 p.m. House
network

Blacklisted
device Penang Generate

sensor data 0.67 0.17 0.36

4 3 p.m.–11 p.m. Public
network Allowed list Penang Generate

sensor data 0.34 0.19 0.15

5 3 p.m.–11 p.m. House
network

Blacklisted
device Penang Generate

sensor data 0.67 0.23 0.60

6 11 p.m.–7 a.m. Public
network New device Penang Generate

sensor data 0.11 0.34 0.60

7 11 p.m.–7 a.m. House
network Allowed list Other

location
Generate

sensor data 0.13 0.24 0.87

Figure 12. Terminated sensor connection.

Based on Figure 12, the adaptive monitoring security agent identifies this security
breach and checks for the existence of the user and IP address. The user with that IP
address device info information is updated as a blacklisted device. The agent kicks out the
active connection to prevent any data alteration or loss.

6. Discussion

In this section, discussions are presented in terms of enhanced MQTT authentica-
tion, contextual risk model, adaptive monitoring security agent, and an evaluation of the
proposed architecture.

6.1. Enhanced MQTT Authentication Method in Fog-IoT Network

The MQTT protocol is used as the communication protocol for the Fog-IoT setup. The
basic authentication method of MQTT protocol uses a username and password, and it
is unencrypted. The authentication information can be hacked by dissecting the MQTT
packet. Every existing MQTT broker allows a different authentication technique which
depends on the scale of the project. The EMQX MQTT broker enhances the authentication
method since the broker is scalable and highly extensible. The broker allows pre-trigger as
a plugin for client authentication. The plugin is used to configure the command to check
the username, IP address, and risk value against the MySQL database, which is shared
with the access control mechanism. A unique token is introduced in the authentication
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secret between the sender and receiver in the communication channel. If a device’s risk is
more than the threshold risk value of 0.3, the device is disallowed to authenticate. This
method is simulated in the Fog-IoT and evaluated. Hence, the first objective is achieved in
this research.

6.2. Contextual Risk Model to Quantify Risk

A preliminary analysis is conducted on current risk models to address the Fog-IoT network
challenges. A dynamic access control model is used to quantify the risk factor because it
considers access policies and dynamic contextual features that can estimate in real-time [30].
This is apt in the Fog-IoT network since it is a distributed and flexible network. Two types of
risk estimation methods are created to quantify the risk: risk assessment and the fuzzy model.
Based on the existing models, the proposed model is enhanced to support adaptive features by
adding the history and device context to better estimate risk. The risk assessment model is used
with a Multifactor Evaluation Process to provide precise risk calculation while the Fuzzy model
approaches enhanced with a risk assessment formula using the MATLAB tool. Both models
are simulated in the Fog-IoT setup and were evaluated. The risk factor results are compared
with a series of scenarios to obtain accurate results. The enhanced fuzzy model provided better
results in seven different random scenarios testing with the same Fog-IoT setup using the risk
assessment. Thus, the fuzzy model is used to quantify the risk, and the second objective of this
study is achieved.

6.3. Adaptive Monitoring Security Agent

An adaptive monitoring security agent is developed in the fog node and an actual fog
node that filters the clients’ data by conceptualizing the Adaptative Security Architecture
(ASA) model demonstrated in Figure 1; the whole solution of the adaptive security moni-
toring involved the stages of detection, prevention, responses and prediction. The agent
constantly looks for unauthorised access or connection-related log information from the
EMQX MQTT broker. The agent updates client info as a blacklisted device in the MySQL
database if a particular client is unable to authenticate. The agent also terminates any
connected client in the channel by rerunning the access control of the EMQX MQTT broker.
The adaptive monitoring security agent is simulated in the normal authentication method
with valid and invalid client info. The agent also tested the security analysis of the Man-
in-the-Middle attack scenario. The adaptive monitoring agent is able to complement the
enhanced MQTT authentication technique of this proposed overall architecture. Therefore,
the third objective of this study is achieved.

6.4. Evaluation of Proposed Architecture

Each objective of this study is evaluated by running the simulation and series of ex-
periments and enhanced the MQTT authentication method simulated by using NodeMCU
with dht22 sensors and localhost EMQX MQTT server. The simulation is run by tweaking
the input parameters to get the desired result. Besides, the fuzzy model is designed using
MATLAB tool and automation script implemented to obtain the input and generate the
output. The computation of risk evaluated with random scenarios and the fuzzy set range
selection is tweaked to obtain a better degree. Lastly, the security analysis is performed by
running a Man-in-the-Middle attack to validate the behaviour of the proposed model. The
adaptive features of this proposed model are able to terminate the suspicious connection
and update the risk factor as well.

6.5. Benchmarking Analysis

The researcher conducted the experiments on existing models and benchmarked
against the proposed model. The proposed model shows accurate results over seven
different scenarios for the same action severity. The fuzzy model by Al-Zewairi et al.
(2016) [31] almost obtained an accurate risk factor in case 1 and shows a vast difference
in other conditions. However, Al-Zewairi et al.’s (2016) [31] model has no context data



Computers 2022, 11, 16 18 of 21

embedded in its model. Lakshimi et al.’s (2015) [32] proposed risk model takes no input
from past risk. The main difference stated in our work is the combination of both context
and past risk factors, which have huge differences in any risk-based authentication. These
parameters are necessary to quantify risk factors because they can influence the value even
with a small change in an environment.

Based on Table 6, few device authentication risk assessments are being displayed.

Table 6. Risk assessment benchmarking Results.

Cases/Model Fuzzy Model by
Al-Zewairi et al. (2016) [31]

Risk Assessment Model by
Lakshmi et al. (2015) [32] Proposed Model

1 0.38 0.27 0.41

2 0.30 0.27 0.14

3 0.60 0.27 0.36

4 0.38 0.27 0.15

5 0.60 0.27 0.60

6 0.13 0.27 0.60

7 0.13 0.27 0.87

For instances, any risk threshold higher than 0.3 is set to be a medium risk. Medium
risk values recorded by Case 1, 3, 5, 6 and, 7 simply mean that, since the risk values are
higher than accepted threshold during the authentication process, it would be flagged and
therefore no further authentication process would take place. In addition, the result is stored
in the database. In the future, in case a valid entry risk is low, it can be re-authenticated.

7. Conclusions and Future Work

There are three main contributions of this research which are enhanced by the basic
MQTT protocol authentication method with a risk factor and token-based approach using
the MYSQL database, proposed adaptive fuzzy-based access control model with device
context and behavioural aspects which current access control models lacking off, and
the proposed adaptive monitoring agent lightweight model which uses less resources to
monitor the network in the fog server. For future work, the adaptive risk model proposed
in this research can be enhanced further to support more parameters and factors which
can influence the risk factor calculation. The authentication phase can be the primary
focus because it is the first layer to intercept any network communication. In addition,
the authentication process with risk computation can be a centralised entity that reduces
the validation steps. The decision-making process can be instantaneous during a session
whenever the device context changes into a different state. The session needs to be efficient
and dynamic to provide the best service for a system. Since the risk computation and active
monitoring can be centralised, resource management also can be optimised. The usage of
nonrelational databases such as NoSQL and Mongo Db could provide this optimisation as
well. This provides a robust security solution besides being able to cater the heterogenous
nature of IoT data as well.

Based on the simulations performed and the results obtained, one major contribution
towards the body of knowledge is that the usage of risk-based authentication for any
IoT-edge environment is a mandatory requirement. However, an optimized risk results are
possible when a fuzzy based risk model is adopted. The security properties in any IoT-Edge
environment are beyond a risk-based authentication but also a secure IoT communication
protocol such as MQTT. Thus, in real-implementation, our simulated environment using
an IoT-edge proof-of concept could be adapted to secure any edge environment.
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Appendix A

Table A1. Input and output variables for Fuzzy.

Input Variable: Time

Value Notation Range

Low L [0 0 0.5]

Medium M [0 0.5 1]

High H [0.5 1 1]

Input Variable: Network Type

Value Notation Range

Low L [0 0 1]

High H [0 1 1]

Input Variable: Device Info

Value Notation Range

Low L [0 0 0.5]

Medium M [0 0.5 1]

High H [0.5 1 1]

Input Variable: Location

Value Notation Range

Low L [0 0 1]

High H [0 1 1]

Input Variable: Action

Value Notation Range

Low L [0 0 0.25 0.4]

Medium M [0.35 0.5 0.7]

High H [0.6 0.7 1 1]

Input Variable: Past Risk

Value Notation Range

Low L [0 0 0.4]

Medium M [0.3 0.5 0.7]

High H [0.6 1 1]

Output Variable: Risk

Value Notation Range

Negligible N [0 0.01455 0.179 0.3]

Low L [0.1 0.3 0.4]

Medium M [0.2 0.343 0.517 0.6]

High H [0.4 0.6 0.8]

Very high VH [0.743 0.793 0.941 1]
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