
computers

Article

Enhancing Robots Navigation in Internet of Things
Indoor Systems

Yahya Tashtoush 1,* , Israa Haj-Mahmoud 1, Omar Darwish 2,* , Majdi Maabreh 3, Belal Alsinglawi 4 ,
Mahmoud Elkhodr 5 and Nasser Alsaedi 6

����������
�������

Citation: Tashtoush, Y.;

Haj-Mahmoud, I.; Darwish, O.;

Maabreh, M.; Alsinglawi, B.;

Elkhodr, M.; Alsaedi, N. Enhancing

Robots Navigation in Internet of

Things Indoor Systems. Computers

2021, 10, 153. https://doi.org/

10.3390/computers10110153

Academic Editor: Sergio Correia

Received: 24 September 2021

Accepted: 8 November 2021

Published: 15 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science Department, Jordan University of Science and Technology, Irbid 22110, Jordan;
israa_haj_mahmoud@yahoo.com

2 Information Security and Applied Computing Department, Eastern Michigan University,
Ypsilanti, MI 48197, USA

3 Department of Information Technology, Faculty of Prince Al-Hussein Bin Abdallah II For Information
Technology, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; majdi@hu.edu.jo

4 Computer Data and Mathematical Sciences, Western Sydney University, Sydeney, NSW 2116, Australia;
b.alsinglawi@westernsydney.edu.au

5 School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia;
m.elkhodr@cqu.edu.au

6 Computer Science Department, Taibah University, Medina 2003, Saudi Arabia; nsaede@taibahu.edu.sa
* Correspondence: yahya-t@just.edu.jo (Y.T.); odarwish@emich.edu (O.D.)

Abstract: In this study, an effective local minima detection and definition algorithm is introduced for
a mobile robot navigating through unknown static environments. Furthermore, five approaches are
presented and compared with the popular approach wall-following to pull the robot out of the local
minima enclosure namely; Random Virtual Target, Reflected Virtual Target, Global Path Backtracking,
Half Path Backtracking, and Local Path Backtracking. The proposed approaches mainly depend
on changing the target location temporarily to avoid the original target’s attraction force effect on
the robot. Moreover, to avoid getting trapped in the same location, a virtual obstacle is placed to
cover the local minima enclosure. To include the most common shapes of deadlock situations, the
proposed approaches were evaluated in four different environments; V-shaped, double U-shaped,
C-shaped, and cluttered environments. The results reveal that the robot, using any of the proposed
approaches, requires fewer steps to reach the destination, ranging from 59 to 73 m on average, as
opposed to the wall-following strategy, which requires an average of 732 m. On average, the robot
with a constant speed and reflected virtual target approach takes 103 s, whereas the identical robot
with a wall-following approach takes 907 s to complete the tasks. Using a fuzzy-speed robot, the
duration for the wall-following approach is greatly reduced to 507 s, while the reflected virtual target
may only need up to 20% of that time. More results and detailed comparisons are embedded in the
subsequent sections.

Keywords: local minima; target switching; trap situation; mobile robot navigation; infinite loop

1. Introduction

The number of robots deployed in the manufacturing industry has increased drasti-
cally in recent times [1]. The Internet of Things (IoT) enables autonomous and mobile robots
to interact with their surroundings, sense obstacles, navigate through defiance patterns,
perform a certain task, and be involved in many autonomous interactions [2]. Robots are
believed to be the key enablers of industry 5.0, especially in manufacturing. When a human
user initiates a task, robots that observe the process using visionary sensor devices, such
as the use of a mounted camera, can then aid the workers within the production space.
Robotic applications are increasingly being adopted in healthcare systems as well. The
COVID-19 pandemic, for instance, has seen the use of Robots for the purpose of collecting
samples from patients. Robots were also used to disinfect common spaces with larger

Computers 2021, 10, 153. https://doi.org/10.3390/computers10110153 https://www.mdpi.com/journal/computers

https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-4248-8732
https://orcid.org/0000-0001-8346-7148
https://orcid.org/0000-0003-0316-3641
https://orcid.org/0000-0001-9904-7551
https://doi.org/10.3390/computers10110153
https://doi.org/10.3390/computers10110153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/computers10110153
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers10110153?type=check_update&version=4


Computers 2021, 10, 153 2 of 24

traffic, such as in hospital entrances and supermarkets [3]. Robots are envisioned to be the
key enablers for personalized healthcare systems providing assistance to patients and the
elderly [4,5].

Within industrial spaces, in unmanned aerial vehicle (UAV) applications, commonly
known as a drone, cameras play an important role in observing the environment the drone
may encounter—particularly in adverse weather events. Thus, navigational solutions,
such as those proposed in [6,7], rely on the use of automated camera-based systems to
improve the navigation and landing of UAVs. However, in confined spaces, such as in
warehouse settings, collaborative robots should consider the presence of humans, objects,
and manufacturing machines to avoid any potential accidents in the operational space.
Therefore, robots need a plan to travel safely to arrive at the final specified target and
to avoid any incidents within their navigated path. Navigational environments are the
medium in which robots are deployed. Generally, they are different types of robots. Their
characteristics vary, such as their size and shape. They possess different capabilities as
well, such as the obstacles’ avoidance mechanism they use. Given the natural complexity
of the environment they operate in, robots require tailored path planning schemes. For
example, path planning for indoor environments should consider the existence of walls and
narrow channels, such as corridors. Navigating a robot through unknown environments or
within indoor manufacturing traffics is prone to several navigational challenges, including
those relating to local minima. Such encountered challenges may prevent the robot from
reaching its destination or accomplishing its mission. The local minima resulting from
common shapes of obstacles, including U-shaped, E-shaped, or V-shaped, constrains the
robot from moving forward and reaching its target freely by limiting the navigational area
of the robot [8,9]. The problem of local minima emanates when the robot keeps repeating
the same steps infinitely. This navigational problem appears mostly in U-shaped obstacles
and mazes. Since the robot always follows many steps in the navigation algorithm, it could
become stuck in an infinite loop by repeating the steps defined in its algorithm without
being able to reach the target destination. This local minima issue is also referred to in
the literature as “limit cycle” [10],” deadlock” [11], “dead end”, “cyclic dead end”, or
“trap-situation” [12]. To this end, this paper makes the following contributions:

• An improved and novel algorithm is proposed for the detection and avoidance of
local minima.

• The proposed algorithm encompasses five approaches to effectively avoid obstacles,
including V-shaped, double U-shaped, C-shaped, and cluttered environments, without
falling into the local minima. Mainly, the approaches involve changing the target
point temporarily and placing a virtual obstacle covering the local minima region in
order to force the robot out of deadlock.

• Several experimental works were set up to evaluate the performance of the five
proposed approaches. The results indicate that the Local Path Backtracking approach
has the best performance among the five proposed approaches, followed by the
Reflected Virtual Target approach.

• Additionally, the results demonstrated that the proposed approaches are quite re-
liable. For instance, in cluttered environments, the time and distance required to
reach a destination by a robot were reduced by eight times when compared to other
traditional approaches.

• Overall, the simulation results of the proposed system showed an enhancement in the
time required to reach the target in most of the five proposed approaches, especially
in the wall-following approach.

This paper is organized as follows: Section 2 describes the main challenges mobile
robots face during path planning. Section 3 summarizes the related works. Section 4
describes the base system that the proposed approaches rely on and the fuzzy speed
controller employed by the proposed approaches. The proposed approaches to overcome
the local minima problem and simulation results are provided in Section 5. Section 6
concludes the paper, and potential future directions are given in this section.



Computers 2021, 10, 153 3 of 24

2. Challenges in Online Path Planning

This section is devoted to a brief review of the challenges encountered by robots in
path planning. Typically, in online path planning, the robot is expected to overcome several
major and minor challenges, such as those reported in [13]. The main challenges are briefly
summarized below.

2.1. Obstacle Avoidance

A robot must have a kind of sensory system to avoid collisions with obstacles in
the workspace. These systems use various sensors, including ultrasonic sensors, stereo
cameras, infrared transceivers, and laser range finding sensors (LIDAR, Light Detection
and Ranging). A successful navigation system must be aware of obstacles scattered in the
navigation environment at every move; thus, many studies proposed methods to avoid
obstacles. The majority of these studies used common approaches in this field, some
of which include the use of fuzzy systems [14–16], neural networks [17–19], and Virtual
Potential Fields [20–24].

2.2. Goal Seeking, Loops and Speed

Goal seeking is a destination that the robot has to reach at the end. A robot that
terminates in a location other than the target is said to have failed its mission. Cyclic
dead ends or loops are also one of the serious challenges encountered while designing and
implementing a robot navigation system. Controlling the speed of the robot depending
on the surrounding environment is equally important as well. The focus of this paper
is to evaluate solutions to address these challenges. These possible solutions can reduce
the time needed for the robot to reach the target. In real-life applications, such as space
robots, robots employed to help rescue missions in catastrophic conditions, and robots
deployed in military applications, reducing the time that a robot takes to reach a target
point is considered crucial and critical.

3. Literature Review

A recent study discussed the potential and limitations of robots and their connections
to other machines to the progress of Industry 4.0 initiatives. Manufacturing, agriculture,
kitchen and domestic applications, robotics for healthcare practices, automotive sector, and
logistics and warehouse are some of the major potential capabilities of robotics in many
industries. Robots are programmed to have a particular amount of intelligence, which
is growing as sensor technology improves, not only to do different jobs but also to make
decisions, including its adaption in working environments. However, industrial robots
need specialized operation and continuous maintenance and development [25]. Whereas
Industry 4.0 concentrated mostly on quality, flow, and data collecting, Industry 5.0 focuses
more on highly-skilled humans and robots working side-by-side to or even together to
develop personalized goods for the consumer. Robots may perform some routine tasks,
such as heavy lifting, transportation of raw parts and merchandise, etc., while trained
employees focus more on cognitive tasks and creativity. Robots in Industry 5.0 contribute
to the reduction in production cost and to an increase in productivity [26]; however,
navigational issues, such as path planning and avoiding the local-minima problem in indoor
settings, remain amongst the key challenges to their proliferation. On this front, solutions
that aim to improve the indoor navigational systems of robots have been previously
proposed. The aim is to automate the navigation of Mobile Robots with minimal human
intervention. Thus, enabling numerous smart IoT-based applications. For instance, in [27], a
multi-sensor fusion approach has been proposed to improve the aerial navigation of robots
in industrially-restricted environments. Other works, such as those reported in [28,29]
proposed the use of vision-based object recognition solutions to improve the navigation of
mobile robots. However, these solutions are generally considered costly and require the
use of special sensing devices (e.g., mounted camera and image processing capabilities).
Furthermore, ref. [30] proposed a solution to local minima on path planning in unknown



Computers 2021, 10, 153 4 of 24

environments. In their work, they analyzed patterns in the readings gathered from sensors,
where the readings of a sensor compromise two pieces of information; the time when the
obstacle is sensed and the location where the robot sensed the obstacle. A similar study
in [31] mainly depends on the analyses of spatio-temporal patterns. These patterns were
classified to ease recognition of a deadlock situation. The classification also used a two
layered-scheme that contains a neural network followed by a fuzzy system. The study
shows good performance measured by the length of the path followed by the robot to
reach the target point. Another methodology to overcome the local minima problem is
proposed in [32]. The local minima situation was defined as a robot following the steps
B−→ C −→ B −→ D −→ B, where each of B, C, and D were places already visited by the
robot. The solution to the local minima problem was divided into three stages; detection,
definition, and avoidance. The environment of navigation was perceived as a grid G, a two-
dimensional array. The grid was composed of n square cells, and each cell is represented as
C(i)(j). To define the local minima location and size, the proposed approach in [32] built a
corresponding map to the grid that showed the explored occupied cells in the grid during
navigation. Each cell was represented by a positive integer that incremented each time
the robot detected an obstacle occupying the cell. After a local minimum was detected
and its enclosure was defined, the robot traveled to a safe destination out of the deadlock
enclosure and then closed the enclosure by a virtual wall placed at the entrance of this
enclosure, which can be identified by a special laser finding sensor on the robot on the next
visit. In addition, some studies [33,34] use the Bug algorithm [35] and its variations to keep
the robot away from falling into traps.

Other studies [9,24,36] tried to solve the local minima problem using the wall following
approach. This is a popular approach used to get the robot out of a maze by following the
walls. This method produced successful results in many environments. However, it suffers
from two major weaknesses; firstly, the method fails to reach a target point outside the
maze if it follows a wall forming a closed shape. Secondly, the robot must stop following
the wall at some point if the target is inside the maze. The success of a method using the
wall following technique depends on its ability to determine the point at which the robot
should stop following the wall appropriately, for example, in [36], the authors propose a
new deadlock detection algorithm that uses the readings of the sensors to determine the
size and place of the deadlock. This algorithm keeps running with every set of new sensors’
readings to determine the point at which the robot must stop following the wall and be set
into target tracing mode again. Although one of its major problems is local minima, many
studies use artificial potential field methods for path planning.

4. The Base Navigation System Used in This Work

Previous work proposed an enhanced path planning for mobile robots [9]. They
developed a navigation system that uses fuzzy logic and reinforcement learning to emulate
a human driver. This section details how the previously proposed path planning system
is used as the base navigation system in this work. It provides details on how the five
proposed approaches, used to address the local minima and the speed controlling system,
were integrated into this base navigation system in the form of separate modules.

The suggested navigation system employs a set of twelve ultrasonic sensors mounted
on the robot and carefully aligned to provide greater coverage. Because the front of the
robot is the most critical and is the first to encounter impediments, it contains five sensors;
the right and left sides each have three sensors, and the backside has only one sensor. Each
of these sensors has an “importance” attribute that shows how important the sensor’s
reading is to the entire robot.



Computers 2021, 10, 153 5 of 24

The straight distance between the sensor and the nearest perceived obstruction, ρ,
as well as the angle difference between the robot and that barrier, α, are calculated from
the sensors’ readings. The values of ρ and α are calculated from the readings of three
consecutive sensors. These three sensors’ values determine the shape of the obstacle. For
example, given three consecutive sensors S1, S2, and S3 report three values r1, r2, and
r3, respectively. If the values satisfy the inequality r1 < r2 > r3, then the obstacle shape is
“channel”, as illustrated in Figure 1, [8].

Figure 1. Channel identified by the readings of three sensors.

The fuzzy system uses the values of ρ and α to estimate the value of the angle (ψf)
at which the robot should travel in the following phase. However, The robot does not
perform a straight movement based on this angle. Instead, at time step t, the distance Dg(t)
between the robot and the new position indicated by the fuzzy system is measured. The
robot then virtually moves to that location and measures the distance Dg(t + 1) at the time
of step t + 1, then the difference between Dg(t) and Dg(t + 1) is fed into a fuzzy system,
which decides the value of (∆ ψf). If the proposed angle leads the robot closer to the next
target, it is rewarded; if it leads the robot away from the target, it is penalized. After that,
the knowledge base, the input of the learner module, is updated. The system considers
four actions the robot needs while navigating through the unknown environment; they are
as follows:

1. Goal-seeking action: which is responsible for taking the robot to the target point. It
includes a fuzzy system that finds the appropriate direction in every step.

2. Obstacle avoidance action: this is responsible for avoiding obstacles. It also depends
on a fuzzy system to determine the intensification degree in the difference between
the current angle and the angle at which the robot must move to avoid a collision. It
depends mainly on how close the robot is to the obstacle. The farther the obstacle is,
the smaller will be the angle that the robot has to turn in will be.

3. U-turn action: this action is only activated in two cases: during the initialization
phase; if the robot front is not facing the target point, then it must make a U-turn by
rotating until it faces the target point. The second case is when the robot gets inside
a narrow corridor with a dead end. In this case, it rotates to avoid hitting the walls
when it tries to get out of the corridor.

4. Getting rid of local minima action: this action is activated when a local minima
situation is detected during navigation. The detection of the local minima situation
is performed by finding the average number of U-turns made within a time; if this
ratio is high enough to activate this action, the wall following method is called to
take the robot out of the trap. The robot follows the nearest wall it detects and keeps
walking close to the wall while overlooking the attraction force of the target point for
some time. After that time, the robot returns to the goal-seeking action and disables
the wall-following action. If the robot finds that it is again trapped in the same local
minima, then the time of wall-following is extended.

As we mentioned before, not only the problem of local minima must be addressed
in path planning systems, but also the robot must navigate with controlled speed; that is
to balance the cost of the robot tasks and the safety of the working environment and the
robot itself. In [8], the problem of speed control is discussed and addressed using a fuzzy



Computers 2021, 10, 153 6 of 24

speed control system. The study suggests a fuzzy controller that controls the speed of the
robot depending on three factors; the turning (heading) angle (θ) in every step taken by
the robot, and ρ in (Equation (1)), which is the distance to the nearest obstacle sensed by
the ith sensor (impi) in (Equation (1)), and the importance of the ith sensor’s reading (Di)
in the same equation. In every step, each of (θ) and ρ is found, and the robot adjusts the
speed accordingly. ρ is calculated using the following formula:

ρ =
impi
Di

(1)

The importance of the sensor’s reading describes how important this reading is
according to the position of the sensor on the robot. For example, the frontier sensors are
more important than the rear sensors as the robot only moves forward. The importance of
each sensor is represented with a value in the range (0–1). After finding the values of θ and
the highest ρ among all of the sensors, they are entered into a fuzzy inference system to
find the final value of the speed for the next move. The final value of the speed is measured
by the length of the step in the next time-step (t + 1).

The fuzzy Inference System (FIS) is built on 25 rules to control the robot speed. The
FIS takes two inputs; θ which is the angle between the robot and the near obstacle, and
ρ which is the distance between the robot and the obstacle. Every one of the inputs has
five possible values (i.e., θ can be Very Small (VS), Small (S), Moderate (M), Large (L), or
Very Large (VL), and ρ can be Very Low (VL), Low (L), Moderate (M), High (H), and Very
High (VH)). The FIS output is the appropriate speed of the robot in meters/second, which
varies between 0 and 1. For more details on rules and membership functions, the reader is
referred to [8].

5. Addressing the Local Minima Problem by Target Switching

This section introduces the novel algorithm proposed in this work. The algorithm
encompasses approaches that aim to detect the local minima and approaches to get the
robot out of the deadlock enclosure. All of the approaches use the same proposed detec-
tion algorithm because of its precision and ability to detect the trap situation effectively.
Moreover, the five approaches with the detection algorithm were compared to the wall-
following approach used in [9]. The same base navigation system proposed in [9] was used
for obstacle avoidance and goal-seeking.

5.1. Environment Perception

The navigation environment was perceived as a grid composed of n cells. One major
problem that should be discussed is the partially occupied cells. This problem arises in
most navigation systems that depend mainly on grids when the robot cannot move to
a partially occupied cell, even when there is not enough space for the robot to traverse
this cell. The problem is illustrated in Figure 2. To avoid this problem, the robot does not
depend on the grid cells to find the next move. Instead, the robot uses an independent
navigation system proposed in [9] to navigate between obstacles. This means that the
grid is only used for local minima detection and avoidance while using the independent
navigation system, the robot keeps tracking and updating location information in terms of
cells. In [9], the action taken by the robot at any time depends on the immediate mapping of
the ultrasonic sensory data. However, the robot has no memory or fuzzy speed mechanism
where our contribution addresses these important features.



Computers 2021, 10, 153 7 of 24

Figure 2. The problem of partially occupied cells.

The number of cells (n) in the grid can be found using Equation (2):

n =

[
A
SR

⌉
(2)

where n is the number of the cells in the grid, A is the rectangular area of the environment,
and SR is the size of the robot. This means that there are L

RL
cells, where L is the length

of the environment, and RL is the length of the robot. The robot in [9] gets its location at
every movement step using the turning angle, and the distance from the starting point.
This location information can be used to find the robot’s location in terms of a cell using
the following formulas:

Cx =

[
x

RL

⌉
(3)

Cy =

[
y

RL

⌉
(4)

where in C_x (Equation (3)) and C_y (Equation (4)), x and y are the x-coordinates and y-
coordinates, respectively, for the robot’s current location. At each location update, the robot
found its current location within the grid and stored the cell’s index in the Vistited_Cells
vector. For example, the visited cells in Figure 3 are given by a vector of spatial data (2,5),
(3, 4), (3,6), (3,7), (4,7). Note that the icon of the robot in Figure 3 becomes a dark square
when the local minima algorithm is activated, and a circle in an independent navigation
system, such as in [9]. When traversing a cell (i), the robot tests three situations:

1. If the cell does not exist in Visited_Cells, then it is added to the vector, and the number
of visits for the current cell NV(i) is increased by 1.

2. If the cell already exists in the vector, and the robot is still traversing the same cell
with multiple steps (i.e., within the same cell’s borders), then do nothing.

3. If the cell already exists in the vector, and the robot traverses it for the ith time, then
the number of visits for the cell is incremented by 1.

In this way, the problem of early and erroneous detection in [32] is solved. The grid
perception of the environment was used for the following reasons:

1. Initially, the robot does not memorize the occupied cells. The robot cannot be precise
in checking whether the place is visited or not depending on point perception (x,y) of
the environment, as shown in Figure 2.

2. If the robot detects deadlock situations, it needs to remember how many times it visits
a region to detect the local minima.



Computers 2021, 10, 153 8 of 24

Figure 3. The difference between the effectiveness in cell perception and point perception.

5.2. Local Minima Detection

The robot used the grid to detect the local minima situation. In every step, the
robot finds the value of two variables; the local minima, or Deadlock chance (D), and the
Threshold (T), using the following equations:

D = Adjacency× Intensity (5)

T =
RT
LD

(6)

Adjacency =
G
cD

(7)

where G is adjacent to the revisited cells and cD is the revisited cells.

Intensity = T × R
V0

(8)

where RT is the total number of revisits events in the grid, R is the total number of cells
with multi-visits, and V0 is the total number of cells with only one visit within the grid. The
Adjacency (Equation (7)) is the factor used to express how close the revisited cells are to each
other, and the Intensity (Equation (8)) measure is used to describe how intense the revisiting
is in the current region. Both Adjacency and Intensity are found using Equations (7) and (8),
respectively. In Equation (6), LD refers to the length of the deadlock, which is the length
of the rectangular area that encompasses all the revisited cells. Note that the cells with
a number of visits greater than 1 and not adjacent to other revisited cells (i.e., clusters
composed of a single cell), are all neglected. As noticed from the above formulas, the
Adjacency is affected by the distance between the clusters and the number of these clusters.
When the distance between clusters increases, their Adjacency decreases. In addition to that,
Intensity increases each time the robot traverses the same groups of cells and when more
cells are revisited. The algorithm of local minima detection uses the previous formulas
to determine whether the robot must activate the mode “get out of trap” or not. Once
the deadlock is detected, the algorithm tries to explore and define the deadlock enclosure.
The process of evaluating whether a robot is in a dead-end situation or not is called a
deadlock detection algorithm. Dead-end situations happen when there is no free obvious



Computers 2021, 10, 153 9 of 24

path between the robot and its target. The method Define_Deadlock is invoked to define the
obstacle(s) that form the deadlock enclosure. While navigating, the robot keeps track of the
occupied cells by storing the occupied cell’s index in the Occupied_Cells vector. The method
Define_Deadlock uses this vector to determine which cells form the deadlock enclosure. The
method first finds the nearest occupied cell in the vector Occupied_Cells to the robot. Then,
starting from that cell, it explores the adjacent cells that are occupied too, until reaching
an End Cell. An End Cell is a cell that is occupied and adjacent to only one occupied cell,
as shown in Figure 4. The two algorithms below demonstrate the process of identifying
and detecting the deadlock, which is the first step in determining the presence of the local
minima problem. Following the detection and identification of the problem, a variety of
strategies are explored in order to solve the problem, which will be presented in this study.
These algorithms were given special attention because they represent the foundation of the
problem and the solutions that are being assessed in this study.

Figure 4. Define_Deadlock Method.

In each step of exploration, Define_Deadlock takes one cell as the center cell and then
explores the eight adjacent cells. If any cell in the adjacent eight is occupied, it is stored in
the Deadlock_Enclosure vector and the Exploration Stack. In the next step of exploration, the
top cell in the Exploration Stack is popped and set as the center cell, then explored. The
method keeps repeating these steps until it reaches the end of the enclosure. In this way,
it can define the deadlock enclosure precisely and determine the cells that form it. The
algorithm of the local minima detection and definition works as follows: considering the
number of navigation steps S, the algorithm of local minima detection and definition has a
linear time complexity of O(S) in its worst case, and that is when the robot detects/defines
a local minima in every step and when all of the discovered occupied cells are pushed into
the stack. After defining the deadlock enclosure, the robot will easily get out of it using
the end cells. An end cell is found by counting its surroundings from the vector deadlock
enclosure; if the number of surroundings equals 1, then it is an end cell.



Computers 2021, 10, 153 10 of 24

Deadlock Detection {
Find Intensity, Adjacency, Threshold, Deadlock Chance
If (Deadlock Chance > Threshold):

Call Define Deadlock
Activate “get out of trap”

}

Define Deadlock
{ Find the nearest occupied cell N to the robot
Center <– N
Stack.Push(Center)
Stack.length <– 1
Repeat until stack.length=0

find adjacent cells coordinates
Adjacent[0]=(Center.x−1,Center.y) // left
Adjacent[1]=(Center.x+1,Center.y) // right
Adjacent[2]=(Center.x−1,Center.y−1) //upper left
Adjacent[3]=(Center.x−1,Center.y+1) //lower left
Adjacent[4]=(Center.x,Center.y−1) //upper
Adjacent[5]=(Center.x,Center.y+1) //lower
Adjacent[6]=(Center.x+1,Center.y−1) //upper right
Adjacent[7]=(Center.x+1,Center.y+1) //lower right
For i = 0 To 7: // adjacent cells indexed from 0 to 7

if Adjacent[i] is in Occupied
Stack.PUSH (cell i)
Stack.Length
Stack.Length+1
Insert cell i into Deadlock-Enclosure

Next i
Center <– stack.POP
Stack.Length <– Stack.Length-1
Loop }

5.3. Addressing the Local Minima

Once the deadlock enclosure is detected and defined, the mode “get out of trap” is
activated. In this paper, there are five different approaches proposed to get out of the trap.
All of these approaches use the same detection algorithm described in the previous section.
Mainly, these approaches depend on two things: 1. Placing a virtual target in appropriate
locations instead of the real one to address the target attraction force effect on the robot.
2. Placing virtual obstacles on the deadlock enclosure. This prevents the robot from falling
into the same trap after getting out of it.

5.3.1. Random Virtual Target

In this approach, a virtual target point is placed in a random location within a limited
area around the farthest end cell from the target. The robot is affected by the new target
attraction force and stops seeking the real goal. As a result, the robot starts heading to
the virtual goal until it reaches it. Once the robot reaches the virtual goal, the real target
point is set back as the target. To avoid the robot being trapped in the same deadlock
enclosure again, a virtual obstacle is placed over the whole deadlock enclosure. Closing
the deadlock enclosure is performed by calling the Close_Deadlock method. This method
first checks whether the robot is still within the area that is to be closed. If so, the virtual
obstacle keeps shrinking in a constant ratio until the robot is out of the closed area. The
virtual obstacle dimensions are within the coordinates XS, YS, XL, and YL, which are the
smallest x-coordinate, the smallest y-coordinate, the largest x-coordinate, and the largest



Computers 2021, 10, 153 11 of 24

y-coordinates, respectively, among the coordinates in the Deadlock_Enclosure vector. The
random virtual target selection approach is illustrated in Figure 5.

Figure 5. Random virtual target selection.

To avoid placing the virtual target in a location occupied by an obstacle, the robot first
checks whether the selected location for the virtual target is located on an occupied cell
using the vector Occupied_Cells. If it is found that an obstacle occupies the selected location,
it chooses another random virtual target location.

5.3.2. Reflected Virtual Target

This approach mainly depends on the fact that in most local minima situations, the
deadlock enclosure’s opening faces the robot on its way to the target located behind that
enclosure. In this case, the problem can be solved by placing a virtual target in front of the
obstacle and within the area that precedes the enclosure opening. Once the robot reaches the
virtual target, it switches back to the real target and calls the method Close_Deadlock. This
can be achieved by simply making a reflection of the real target near the enclosure’s exit.
The real target is reflected either horizontally or vertically depending on the enclosure’s
exit direction. The appropriate reflection of the real target is achieved by assuming the
middle of the enclosure as the reflection axis. This approach is illustrated in Figure 6.

Figure 6. Virtual target by reflection of the real target.



Computers 2021, 10, 153 12 of 24

5.3.3. Backtracking

One way that guarantees the escape from the deadlock enclosure is that the robot
follows its steps back to the exit, which is the entrance to the enclosure. Since the visited
cells are all stored in the Visited_Cells vector, the robot can easily backtrack its path. To
disable the real target’s attraction force, a set of virtual targets are placed on the visited
cells that form the backtracking path, starting from the robot’s current location inside the
deadlock enclosure and moving backward until a “stop backtracking” point is reached.
The sequence of virtual targets is a set of virtual targets placed at every constant number of
cells in the Visited_Cells vector. The “stop backtracking” point can be determined using one
of three following:

1. Global Path Backtracking: The stop point is the same as the start point (S) of the
navigation. The robot keeps backtracking until it reaches the starting point. This
approach is effective in the case of small environments. However, it is inefficient in
wide environments because the robot must reach the very distant starting point when
it encounters a deadlock. After the robot escapes from the deadlock, and the mode
“get out of trap” is disabled, the start point is re-initialized and set as the first cell the
robot traverses after closing that deadlock enclosure.

2. Half Path Backtracking: The stop point is the midway point between the current
locations of the robot and the starting point. This approach is more effective than the
previous one in wide environments but less effective in small environments because
the stop point could be inside the enclosure of the deadlock.

3. Local Path Backtracking: The stop point is at the end cells. This one could be the
most appropriate choice for the point of “stop backtracking” as it guarantees that the
robot will not travel so far. On the other hand, it guarantees the robot is out of the
deadlock enclosure. The three approaches for choosing the “stop backtracking” point
are shown in Figure 7. After the robot reaches the last virtual target in the sequence, a
square virtual path of straight lines is set all around the deadlock enclosure. Then,
a final virtual target point is set on this path. The virtual path must pass by the
real target point and near the last virtual target from the backtracking sequence, as
illustrated in Figure 8. The final virtual target is determined as the middle point of
the distance between the robot and the real target. In the case that there is not enough
space for the virtual path (i.e., not enough space under or above the enclosure for
the robot to move), then the final virtual goal is placed on the opposite side of the
square virtual path. Final virtual target placed on the virtual path, guaranteeing that
the robot moves towards the real target and away from the deadlock.

Figure 7. Three approaches to determine the backtracking stop point.



Computers 2021, 10, 153 13 of 24

Figure 8. The virtual path in the backtracking method.

5.4. Simulation Results

This section is devoted to reporting on the simulation works conducted in this work.
Each of the five proposed approaches was evaluated, and their performance was investi-
gated under different setups. There are four different test cases conducted in this section,
including path planning in the presence of C-shaped obstacles, double U-shaped, V-shaped
obstacles, and when the robot encounters cluttered environments on its path. The results
of each test of the five approaches proposed to address the local minima are then discussed
and analyzed.

The unit used to measure the efficiency of the proposed methods to address the local
minima is the number of steps the robot makes while traveling from the start point to the
target point. The size of a step is constant and equals 10 cm. There are general parameters
used in the simulation of the proposed approaches to address the local minima and the
fuzzy speed controller. The parameters are summarized in Table 1.

Table 1. Simulation Parameters.

Constant-Speed Robot Speed: 0.5 m/s Fuzzy-Speed Robot Speed: 0–1 m/s

Step length: 0.1 m Step length: 0.0375–0.2125 m

Step time: 200 ms Step time: 200 ms

Sensing range : 4 m Sensing range: 4 m

Simulation Environment Robot size: 0.7 × 0.7 m

Environment area: 14 × 24 m

Operating System: Microsoft Windows

Local Minima Avoidance

Figure 9 depicts the performance of detecting and identifying the enclosure of a
deadlock. The little circles on the cells show whether the cell is occupied or near to another
cell that is occupied. This is dependent on the robot’s sensing range; as seen in Figure 9, the
above barrier is recognized near the robot, while the below horizontal light green region
has yet to be discovered by the robot’s sensors.



Computers 2021, 10, 153 14 of 24

Figure 9. Deadlock detection and definition performance.

There are four different test cases conducted on the five proposed approaches in
addition to the wall-following approach for comparison.

Test case #1: C-shaped obstacle test case
In this test case, the robot is in front of a C-shaped obstacle. Figure 10a–f shows the

approach’s performance. The black area represents the visited path by the robot. The
challenge in this test case is that the C-shaped obstacle is a circle with a small exit. The
performance of the wall-following approach, in Figure 10f, is the worst compared to other
proposed approaches. It also required following the whole environment’s perimeter, which
is inefficient in large environments. Figure 10a,b shows the superior performance of the
reflected target over the random virtual target. This is due to the location of the chosen
virtual target. In the reflected virtual target, the virtual target is a reflection of the real
target position vertically. The reflected virtual target is near the lower end of the C-shaped
obstacle, unlike the random virtual target chosen near the upper end of the obstacle. This
added a few extra steps in the random virtual target approach because the only way to
reach the target is under the C-shaped obstacle. Figure 10c,e shows the robot’s similar
performance, which is because of the similar location of the “stop backtracking” point. In
Figure 10d, we noticed the less efficient performance of the robot when it stops backtracking
in the middle point of the path; this is because the middle point, in this case, is located
inside the C-shaped obstacle. Thus, it required more than one virtual obstacle to close the
deadlock enclosure and leave it.

Test case #2: Double U-shaped test case
In this test case, the robot enters a trap that is nested in another trap. Figure 11a–f

shows the performance of the six approaches. Figure 11a,b shows the advance in perfor-
mance for the random virtual target approach over the reflected virtual target approach.
This can be explained by the way the virtual target is chosen. In the reflected virtual target,
the robot finds itself trapped in the inner deadlock, so it places a virtual target that is a
horizontal reflection of the real target. This made the virtual target location to be near the
inner’s deadlock left end. When the robot switched back to the real target, it was still in
the same location as the virtual target; the robot entered the outer deadlock again from the
left, then detected that it was trapped again after reaching the right side of the deadlock’s
enclosure. After that, it switched back to the real target again, which is the same reflection,
but over the middle line of the outer deadlock this time. When the robot switched back
to the real target, it was still on the right side while the virtual target was in front of the
deadlock but on the left side, which required the robot to go back to the left side again,
then go out of the enclosure to the reflected target which adds a few more steps. Unlike
this approach, the random choice of the virtual target came once on the left side and once
on the right side of the enclosure. As noticed in Figure 11c, the robot stops backtracking
when it reaches the starting point. The starting point for the second outer deadlock is the



Computers 2021, 10, 153 15 of 24

same point where the robot was upon closing the first inner deadlock. Thus, the robot
had to reach that point first before closing the outer deadlock, which added a few extra
steps for the robot to reach the real target compared to the approaches in Figure 11d,e. In
the half path backtracking approach of Figure 11d, the robot stops backtracking when it
reaches the middle point of the path, and in Figure 11e, the robot stops backtracking when
it reaches the enclosure exit. This is the reason for the similar performance of the local
path backtracking and half path backtracking. In Figure 11f, we notice again the inefficient
performance of the wall-following method, which caused the robot to traverse the target’s
region without seeing it due to the disabling of the goal-seeking action while following the
wall. It is important to clarify that the magenta color has been used just to emphasize that
the robot does not follow a specific color in Figure 11, and that is also applicable to other
figures; Figures 10, 12, and 13.

(a) Random Virtual Target-C-shaped obstacle. (b) Reflected Virtual Target-C-shaped obstacle.

(c) Global path backtracking-C-shaped obstacle. (d) Half path backtracking-C-shaped obstacle.

(e) Local path backtracking-C-shaped obstacle. (f) Wall-Following-C-shaped obstacle.

Figure 10. C-shaped obstacle test case.



Computers 2021, 10, 153 16 of 24

(a) Random Virtual Target-Double U-shaped obstacle. (b) Reflected Virtual Target-Double U-shaped.

(c) Global path backtracking-Double U-shaped obstacle. (d) Half path backtracking-Double U-shaped obstacle.

(e) Local path backtracking-Double U-shaped obstacle. (f) Wall-Following-Double U-shaped obstacle.

Figure 11. Double U-shaped test case.

Test case #3: V-shaped test case
In this test case, the robot enters a V-shaped obstacle. Figure 12a–f shows the perfor-

mance of the six approaches. In Figure 12a, the robot closed most of the enclosure in the
first round, but not all of it because the random target at the first round was placed near the
end of the enclosure but almost inside. Thus, the robot fell into the same deadlock twice
and required two virtual obstacles to close the deadlock region. However, in Figure 12b,
we notice a better performance of the reflected target approach because the reflection of the
real target is outside the enclosure, which required one round to close the whole deadlock.
In Figure 12c,e, we notice a similarity in the performance of the global path and local path
backtracking. Because the “stop backtracking” points are almost in the same location (i.e.,
the robot started navigation from a point near the exit of the deadlock), the performance
was different in the half path backtracking approach of Figure 12d. In this test case, this
point was inside the V-shaped obstacle; thus, the virtual obstacle shrunk to avoid closing on
the robot inside the deadlock. In Figure 12a–e vs. Figure 12f, the wall-following approach
took the most significant number of steps, the longest path, to get out of the trap situation
because it forced the robot to follow part of the environment’s perimeter wall.



Computers 2021, 10, 153 17 of 24

(a) Random Virtual Target-V-shaped obstacle. (b) Reflected Virtual Target-V-shaped.

(c) Global path backtracking-V-shaped obstacle. (d) Half path backtracking-V-shaped obstacle.

(e) Local path backtracking-V-shaped obstacle. (f) Wall-Following-V-shaped obstacle.

Figure 12. V-shaped test case.

Test case #4: Cluttered environment test case
This is the last test case, and it shows the performance of the six approaches in cluttered

and crowded environments. Figure 13a–f shows the results of the test case. In Figure 13a,b,
the random target choices, either the random virtual or the reflected virtual targets, show
the best performance compared to others. In Figure 13c, we notice the behavior of global
path backtracking. The starting point is located a bit far from the deadlock. When the robot
needs to get out of the deadlock, it must return to that far point, which is inefficient in such
cases. This problem is alleviated in the half path approach, as illustrated in Figure 13d.
However, it still adds extra unnecessary steps because the deadlock was not fully covered
with the virtual obstacle. This happens when the virtual target is located inside the area that
must be covered. So, the virtual obstacle keeps shrinking until the robot is uncovered. The
best of the “stop backtracking” points is near the exit of the deadlock enclosure achieved
by the local path backtracking approach, and this is clear in Figure 13e. In this test case,
Figure 13f shows that the wall-following approach performance performs inefficiently to
get to the target. The robot was forced under this approach to circumnavigate around some
obstacles (closed shapes) many times, thus wasting a lot of time. Table 2 shows the path
length in meters that was taken by the robot working with the six approaches to reach
the target point. As noted in the table, the robot with the wall-following approach has the
longest path in all of the four tests.



Computers 2021, 10, 153 18 of 24

(a) Random Virtual Target-Cluttered environment obstacle. (b) Reflected Virtual Target-Cluttered environment.

(c) Global path backtracking-Cluttered environment. (d) Half path backtracking-Cluttered environment.

(e) Local path backtracking-Cluttered environment. (f) Wall-Following-Cluttered environment.

Figure 13. Cluttered environment test case.

Table 2. The distance of robot routes for Figures 10–13 (measured in meters).

Approach Testcase Random Reflected
Virtual Target

Global Path
Backtracking

Half Path
Backtracking

Local Path
Backtracking

Wall-
Following

C-shaped 55 45 59 101 59 1915

Double U-shaped 97 88 100 110 96 466

V-shaped 38 27 29 31 28 111

Cluttered 46 47 55 47 52 436

Average 59 66.25 60.75 72.25 58.75 732

The reflected virtual target shows better performance in test cases 1 and 2, and this is
due to its optimal choice for the target location in these test cases. As noted in the table, the



Computers 2021, 10, 153 19 of 24

test case that required the longest path in all six approaches is the test case of the double
U-shaped obstacle.

The chart in Figure 14 shows the performance of the five approaches compared to the
wall-following approach. The efficiency of the six approaches is measured in the number
of steps required for the robot to reach the final real target. One important point to be
mentioned in this section is that each experiment was conducted 10 times to mitigate the
effect of randomization. The results recorded in this section are an average of ten runs.

Figure 14. Performance of the proposed approaches to overcome the local minima compared to the
wall-following approach (measured by the number of steps).

5.5. Speed Control Effect on the Five Proposed Approaches to Address the Local Minima

This section reports on the studies conducted to determine the effect of controlling the
speed using the previously proposed fuzzy controller [8] on the performance of the pro-
posed approaches. To address the local minima problem, the mobile robot of fuzzy speed
was provided with these approaches and then tested using the same four environmental
setups by replicating the same encountered local minima. Table 3 shows the efficiency
performance of the five proposed approaches to address the local minima with constant
speed within the four environments. Table 4 shows the performance of the five proposed
approaches with a fuzzy-speed robot. The performance of the proposed approaches is
measured by the time (in seconds) elapsed between the start and the end of navigation. It
shows the wall-following approach consumes the longest time in the trips. The local path
backtracking approach seems to be the best choice for leaving the deadlock enclosure in
general due to its reasonability in choosing the right point to stop backtracking. On the
other hand, half path backtracking seems to be the least suitable approach when the robot
starts navigating from a location that is close to the deadlock enclosure, unlike global path
planning, which is suitable for short paths but not for long ones.



Computers 2021, 10, 153 20 of 24

Table 3. Time spent during navigation by the five proposed approaches to address the local minima with a constant-speed
robot (seconds).

Approach Testcase Random Reflected
Virtual Target

Global Path
Backtracking

Half Path
Backtracking

Local Path
Backtracking

Wall-
Following

C-shaped 110.2 89.2 118.8 202.8 118.8 1600

Double U-shaped 194.6 176 200 219.6 192.6 932.4

V-shaped 75 53.6 57.8 62.2 55.4 221.4

Cluttered 91.8 94.8 109 94.8 104 872.2

Average 117.9 103.4 121.4 144.85 117.7 906.5

For the U-shaped, W-shaped, and E-shaped obstacles, the best approach that can be
used to take the robot out of the deadlock enclosure is the local path backtracking. For
the double U-shaped and V-shaped obstacles, the best choice is to use the reflected virtual
target approach, especially if the target is located right behind the deadlock enclosure and
the robot in front of it. The random virtual target approach is the most suitable approach
for complex environments, such as cluttered environments.

Table 4. Time spent during navigation by the five proposed approaches to address the local minima with a fuzzy-speed
robot [2] (measured in seconds).

Approach Testcase Random Reflected
Virtual Target

Global Path
Backtracking

Half Path
Backtracking

Local Path
Backtracking

Wall-
Following

C-shaped 96.8 71.8 98.6 223.2 97.8 80

Double U-shaped 75.6 149.6 104.4 223.6 252.2 169.8

V-shaped 83.2 48 54.6 59.6 51.2 400.4

Cluttered 127.6 105 132 88.4. 132. 1378.8

Average 95.8 93.6 97.4 168.8 133.3 507.25

When the robot moves under the proposed fuzzy speed control, the time needed to
reach the target is decreased in general, although there are some odd cases, such as the
majority of the approaches’ performance in the E-shaped obstacle test and in the double
U-shaped obstacle test. Moreover, the wall following approach with fuzzy speed is noted
to be much slower, especially in the cluttered environment test and in the V-shaped test.
This slower speed for the robot with fuzzy speed control is referred to for one or more of
the following reasons: Most trap enclosures force the robot to keep moving with a high rate
of rotations and wide heading angles, specifically before detecting the local minima. This
reduces the speed of the robot because the heading angle is a strong factor that controls the
speed in the proposed fuzzy speed controller. The difference in speed rates of the robot can
be observed in Figure 15, where thick and dark paths mean a low speed. The path in the
figure indicates the locations of the steps taken by the robot. The robot’s behavior is not
the same when the speed is controlled, and that is because the step length chosen by the
fuzzy system varies from one step to another. As an example, let us consider a robot with a
constant step length. The robot in step S at location L1 measures the distance between itself
and the nearest obstacle, say D1. Depending on the value of D1, the robot determines the
next step’s heading angle as in the proposed original navigation system [9]. On the other
hand, if the speed is controlled, the same step S will navigate the robot to another location
L2, because the step length is different. In this case, the robot measures a different distance
D2 to the nearest obstacle. As a result, the robot’s decision of the heading angle will also be
different. This variance in behavior improved the performance, on average, of the reflected
virtual target approach over the local path backtracking approach in general.



Computers 2021, 10, 153 21 of 24

Figure 15. The difference in speed rates when the speed is controlled by the proposed fuzzy
speed controller.

In the wall-following approach, the robot is much slower because it keeps moving
along with the obstacles’ walls. This means that during the wall-following behavior, the
robot is very near to obstacles, which also reduces its speed dramatically, as noted in
Figure 16.

Figure 16. Wall-following approach reaches very low-speed rates when the robot follows the walls.

In environments that include local minima situations, most of the robot steps are either
inside the deadlock enclosure or outside but very close. This means that the factor ρ should
be higher in these environments, and the speed should be much lower. The wall-following
approach’s performance was significantly improved when the speed was controlled with
the proposed fuzzy system for the E-shaped, C-shaped, double U-shaped, and W-shaped
obstacles test cases. This is because, in these test cases, the robot did not follow the whole
environment perimeter’s wall, as shown in Figure 17 when set side by side with Figure 9f.



Computers 2021, 10, 153 22 of 24

Figure 17. Wall-following performance in the C-shaped obstacle test case.

6. Conclusions and Future Work
6.1. Limitations and Future Work

When the opportunities offered by IoT technologies are exploited fully in an industrial
setup, this creates a rich and ubiquitous environment. IoT devices mounted on various
objects ranging from vehicles, humans, robots, goods, to moving and still objects all con-
tribute with data that would transform a typical warehouse setting into a well-connected
and dynamic smart space. As such, when robot’s path planning algorithms are empowered
by the data contributed by IoT devices, the IoT system, such as the location of objects,
presence of obstacles, and the dynamic changes in the environment, enormous opportuni-
ties and improvement to path planning and obstacle avoidance, will arise. The solutions
proposed in this work enhance robots’ navigation in device-to-device decentralized setups.
While the results were verified using simulation work, performance results in real-world
experimental scenarios remain to be validated. Future work is planned to enable the full
extent of IoT incorporation into the robots’ navigational systems. The plan is to set up a
number of IoT-enabled robots in a shared environment with other IoT devices and obstacles.
We will then attempt to further optimize the proposed solution and make better use of the
data supplied by the IoT system. In addition, the local minima problem can be addressed
using more than one robot with deep learning solutions, especially in real-life domain
space. Robotic co-workers may present and work collaboratively with their peers (human
workers) concurrently. Having more robots in a smart factory space could earnestly require
a robust system to handle the unpredicted movement of multiple robots in a closed area,
such as in a factory.

6.2. Conclusions

In robot navigation systems in IoT, there are main goals that must be achieved, in-
cluding seeking the goal, avoiding obstacles, and avoiding local minima. In this work,
five approaches to address the local minima problem are proposed. Their implications
and opportunities in the context of IoT and Industry 5.0 were also highlighted. The reli-
ability of the five proposed approaches and the achieved enhancement in performance
was validated by comparing the five approaches to the popular wall-following approach.
The results show a significant advantage and improvement in performance in the four test
cases conducted in this work. A significant improvement in performance was reported
specifically in the cases where the robot encountered W-shaped, C-shaped, and double
U-shaped obstacles. Additionally, in cluttered environments, the proposed approaches
minimized the distance and time required by the robot to reach its destination by eight
times when compared to the traditional path planning approaches. Overall, the results
showed that the robot using any of the five proposed approaches requires fewer steps to
reach the destination, ranging from 59 to 73 m on average across varied obstacle forms, as
opposed to the wall-following strategy, which requires an average of 732 m. On average,
the robot with a constant speed and reflected virtual target approach takes 103 s to complete
the tasks, which is the greatest performance among the other approaches, whereas the
identical robot with a wall-following approach takes 907 s. Using a fuzzy-speed robot, the



Computers 2021, 10, 153 23 of 24

duration for the wall-following approach is greatly reduced, from 907 to 507 s, while the
reflected virtual target, random target, and global path backtracking may only need up to
20%t of that time; 94, 96, and 97 s, respectively. This can be attributed to the fact that the
robot using the wall-following approach keeps moving along with the obstacles’ walls in
order to avoid the local minima.

Author Contributions: Conceptualization, Y.T. and I.H.-M.; methodology, Y.T., I.H.-M., B.A., and
O.D.; software, Y.T., I.H.-M., and M.M.; validation, Y.T., O.D., B.A., and M.M.; formal analysis, I.H.-M.,
B.A., O.D., and M.M.; investigation, Y.T., I.H.-M., and M.E.; resources, Y.T., O.D., M.M., B.A., and
N.A.; data curation, Y.T. and I.H.-M.; writing—original draft preparation, Y.T., I.H.-M., B.A., O.D.,
and M.M.; writing—review and editing, B.A., O.D., M.M., M.E., and N.A.; visualization, Y.T., I.H.-M.,
B.A., O.D., and M.M.; supervision, Y.T.; project administration, O.D., M.M., and B.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Authors can confirm that all relevant data are included in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Harapanahalli, S.; Mahony, N.O.; Hernandez, G.V.; Campbell, S.; Riordan, D.; Walsh, J. Autonomous Navigation of mobile robots

in factory environment. Procedia Manuf. 2019, 38, 1524–1531. [CrossRef]
2. Nahavandi, S. Industry 5.0—A Human-Centric Solution. Sustainability 2019, 11, 4371. [CrossRef]
3. Kaiser, M.S.; Al Mamun, S.; Mahmud, M.; Tania, M.H. Healthcare Robots to Combat COVID-19. In COVID-19: Prediction,

Decision-Making, and its Impacts; Santosh, K., Joshi, A., Eds.; Springer: Singapore, 2021; pp. 83–97. [CrossRef]
4. Fang, B.; Guo, X.; Wang, Z.; Li, Y.; Elhoseny, M.; Yuan, X. Collaborative task assignment of interconnected, affective robots

towards autonomous healthcare assistant. Future Gener. Comput. Syst. 2019, 92, 241–251. [CrossRef]
5. Farid, F.; Elkhodr, M.; Sabrina, F.; Ahamed, F.; Gide, E. A smart biometric identity management framework for personalised IoT

and cloud computing-based healthcare services. Sensors 2021, 21, 552. [CrossRef]
6. Demirhan, M.; Premachandra, C. Development of an Automated Camera-Based Drone Landing System. IEEE Access 2020,

8, 202111–202121. [CrossRef]
7. Premachandra, C.; Tamaki, M. A Hybrid Camera System for High-Resolutionization of Target Objects in Omnidirectional Images.

IEEE Sens. J. 2021, 21, 10752–10760. [CrossRef]
8. Tashtoush, Y.; Haj-Mahmoud, I. Fuzzy Speed Controller for Mobile Robots Navigation in Unknown Static Environments. In

Proceedings of the International Conference on Digital Information Processing, Beijing, China, 21–22 April 2013; p. 139.
9. Al-Jarrah, O.M.; Tashtoush, Y.M. Mobile robot navigation using fuzzy logic. Intell. Autom. Soft Comput. 2007, 13, 211–228.

[CrossRef]
10. Boldrer, M.; Andreetto, M.; Divan, S.; Palopoli, L.; Fontanelli, D. Socially-Aware Reactive Obstacle Avoidance Strategy Based on

Limit Cycle. IEEE Robot. Autom. Lett. 2020, 5, 3251–3258. [CrossRef]
11. Grover, J.S.; Liu, C.; Sycara, K. Deadlock Analysis and Resolution for Multi-Robot Systems. In Proceedings of the International

Workshop on the Algorithmic Foundations of Robotics XIV; Springer International Publishing: Berlin/Heidelberg, Germany, 2021;
pp. 294–312.

12. Mohanty, P.K.; Kodapurath, A.A.; Singh, R.K. A Hybrid Artificial Immune System for Mobile Robot Navigation in Unknown
Environments. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1619–1631. [CrossRef]

13. Wahab, M.N.A.; Nefti-Meziani, S.; Atyabi, A. A comparative review on mobile robot path planning: Classical or meta-heuristic
methods? Annu. Rev. Control 2020, 50, 233–252. [CrossRef]

14. Abiyev, R.; Ibrahim, D.; Erin, B. Navigation of mobile robots in the presence of obstacles. Adv. Eng. Softw. 2010, 41, 1179–1186.
[CrossRef]

15. Xie, Y.; Zhang, X.; Meng, W.; Zheng, S.; Jiang, L.; Meng, J.; Wang, S. Coupled fractional-order sliding mode control and obstacle
avoidance of a four-wheeled steerable mobile robot. ISA Trans. 2021, 108, 282–294. [CrossRef] [PubMed]

16. Cuevas, F.; Castillo, O.; Cortés-Antonio, P. Omnidirectional four wheel mobile robot control with a type-2 fuzzy logic behavior-
based strategy. In Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 49–62.

17. Zhu, A.; Yang, S.X. Neurofuzzy-Based Approach to Mobile Robot Navigation in Unknown Environments. IEEE Trans. Syst. Man
Cybern. Part C (Appl. Rev.) 2007, 37, 610–621. [CrossRef]

18. Back, S.; Cho, G.; Oh, J.; Tran, X.T.; Oh, H. Autonomous UAV Trail Navigation with Obstacle Avoidance Using Deep Neural
Networks. J. Intell. Robot. Syst. 2020, 100, 1195–1211. [CrossRef]

19. Ben Jabeur, C.; Seddik, H. Design of a PID optimized neural networks and PD fuzzy logic controllers for a two-wheeled mobile
robot. Asian J. Control 2021, 23, 23–41. [CrossRef]

http://doi.org/10.1016/j.promfg.2020.01.134
http://dx.doi.org/10.3390/su11164371
http://dx.doi.org/10.1007/978-981-15-9682-7_10
http://dx.doi.org/10.1016/j.future.2018.09.069
http://dx.doi.org/10.3390/s21020552
http://dx.doi.org/10.1109/ACCESS.2020.3034948
http://dx.doi.org/10.1109/JSEN.2021.3059102
http://dx.doi.org/10.1080/10798587.2007.10642960
http://dx.doi.org/10.1109/LRA.2020.2976302
http://dx.doi.org/10.1007/s40998-020-00314-8
http://dx.doi.org/10.1016/j.arcontrol.2020.10.001
http://dx.doi.org/10.1016/j.advengsoft.2010.08.001
http://dx.doi.org/10.1016/j.isatra.2020.08.025
http://www.ncbi.nlm.nih.gov/pubmed/32863054
http://dx.doi.org/10.1109/TSMCC.2007.897499
http://dx.doi.org/10.1007/s10846-020-01254-5
http://dx.doi.org/10.1002/asjc.2356


Computers 2021, 10, 153 24 of 24

20. Yang, S.; Li, T.; Shi, Q.; Bai, W.; Wu, Y. Artificial Potential-Based Formation Control with Collision and Obstacle Avoidance for
Second-order Multi-Agent Systems. In Proceedings of the 2020 7th International Conference on Information, Cybernetics, and
Computational Social Systems (ICCSS), Guangzhou, China, 13–15 November 2020; IEEE: Guangzhou, China, 2020; pp. 58–63.
[CrossRef]

21. Receveur, J.B.; Victor, S.; Melchior, P. Autonomous car decision making and trajectory tracking based on genetic algorithms and
fractional potential fields. Intell. Serv. Robot. 2020, 13, 315–330. [CrossRef]

22. Li, C.; Cui, G.; Lu, H. The design of an obstacle avoiding trajectory in unknown environment using potential fields. In Proceedings
of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010; pp. 2050–2054.

23. Csiszar, A.; Drust, M.; Dietz, T.; Verl, A.; Brisan, C. Dynamic and interactive path planning and collision avoidance for an
industrial robot using artificial potential field based method. In Mechatronics; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 413–421.

24. Li, G.; Tamura, Y.; Yamashita, A.; Asama, H. Effective improved artificial potential field-based regression search method for
autonomous mobile robot path planning. Int. J. Mechatron. Autom. 2013, 3, 141. [CrossRef]

25. Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Substantial Capabilities of Robotics in Enhancing Industry 4.0 implementation.
Cogn. Robot. 2021, 1, 58–75. [CrossRef]

26. Barosz, P.; GoÅ‚da, G.; Kampa, A. Efficiency Analysis of Manufacturing Line with Industrial Robots and Human Operators.
Appl. Sci. 2020, 10, 2862. [CrossRef]

27. Carrasco, P.; Cuesta, F.; Caballero, R.; Perez-Grau, F.J.; Viguria, A. Multi-Sensor Fusion for Aerial Robots in Industrial GNSS-
Denied Environments. Appl. Sci. 2021, 11, 3921. [CrossRef]

28. Rogowski, A.; Skrobek, P. Object Identification for Task-Oriented Communication with Industrial Robots. Sensors 2020, 20, 1773.
[CrossRef] [PubMed]

29. Le, A.V.; Nhan, N.H.K.; Mohan, R.E. Evolutionary Algorithm-Based Complete Coverage Path Planning for Tetriamond Tiling
Robots. Sensors 2020, 20, 445. [CrossRef] [PubMed]

30. Krishna, K.M.; Kalra, P.K. Solving the local minima problem for a mobile robot by classification of spatio-temporal sensory
sequences. J. Robot. Syst. 2000, 17, 549–564. [CrossRef]

31. Nurmaini, S. Intelligent navigation in unstructured environment by using memory-based reasoning in embedded mobile robot.
Eur. J. Sci. Res. 2012, 72, 228–244.

32. Ordonez, C.; Collins, E.G.; Selekwa, M.F.; Dunlap, D.D. The virtual wall approach to limit cycle avoidance for unmanned ground
vehicles. Robot. Auton. Syst. 2008, 56, 645–657. [CrossRef]

33. Um, D.; Ryu, D.; Kang, S. A framework for unknown environment manipulator motion planning via model based realtime
rehearsal. In Intelligent Autonomous Systems 12; Springer: Berlin/Heidelberg, Germany, 2013; pp. 623–631.

34. Taylor, K.; LaValle, S.M. I-Bug: An intensity-based bug algorithm. In Proceedings of the 2009 IEEE International Conference on
Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3981–3986.

35. Lumelsky, V.; Stepanov, A. Dynamic path planning for a mobile automaton with limited information on the environment. IEEE
Trans. Autom. Control 1986, 31, 1058–1063. [CrossRef]

36. Sanchez, G.M.; Giovanini, L.L. Autonomous navigation with deadlock detection and avoidance. In Sociedad Iberoamericana de
Inteligencia Artificial; CONICET: Buenos Aires, Argentina, 2014.

http://dx.doi.org/10.1109/ICCSS52145.2020.9336836
http://dx.doi.org/10.1007/s11370-020-00314-x
http://dx.doi.org/10.1504/IJMA.2013.055612
http://dx.doi.org/10.1016/j.cogr.2021.06.001
http://dx.doi.org/10.3390/app10082862
http://dx.doi.org/10.3390/app11093921
http://dx.doi.org/10.3390/s20061773
http://www.ncbi.nlm.nih.gov/pubmed/32210131
http://dx.doi.org/10.3390/s20020445
http://www.ncbi.nlm.nih.gov/pubmed/31941127
http://dx.doi.org/10.1002/1097-4563(200010)17:10<549::AID-ROB3>3.0.CO;2-
http://dx.doi.org/10.1016/j.robot.2007.11.010
http://dx.doi.org/10.1109/TAC.1986.1104175

	Introduction
	Challenges in Online Path Planning
	Obstacle Avoidance
	Goal Seeking, Loops and Speed

	Literature Review
	The Base Navigation System Used in This Work 
	Addressing the Local Minima Problem by Target Switching 
	Environment Perception
	Local Minima Detection
	Addressing the Local Minima
	Random Virtual Target
	Reflected Virtual Target
	Backtracking

	Simulation Results
	Speed Control Effect on the Five Proposed Approaches to Address the Local Minima

	Conclusions and Future Work 
	Limitations and Future Work
	Conclusions

	References

