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Abstract: During recent years, many papers have been published on ransomware, but to the best
of our knowledge, no previous academic studies have been conducted on ransom note files. In
this paper, we present the results of a depth study on filenames and the content of ransom files.
We propose a prototype to identify the ransom files. Then we explore how the filenames and the
content of these files can minimize the risk of ransomware encryption of some specified ransomware
or increase the effectiveness of some ransomware detection tools. To achieve these objectives, two
approaches are discussed in this paper. The first uses Latent Semantic Analysis (LSA) to check
similarities between the contents of files. The second uses some Machine Learning models to classify
the filenames into two classes—ransom filenames and benign filenames.

Keywords: ransomware; ransom note file; detection; identification; Latent Semantic Analysis;
Machine Learning

1. Introduction

Ransomware has spread rapidly over the last five years causing significant damage,
especially in Windows environments. This category of malware covers two classes—Locker
ransomware and Crypto ransomware. The first denies or blocks access to files. The second
encrypts important data on a target machine, including files and backups. Generally, in
both classes, a ransom to pay is demanded. This paper examines only the second class
because it is more spread than the first class and the ransom files are more related to
Crypto-ransomware than to Locker-ransomware.

Ransom note files are created by ransomware, then added in several directories
on the target machine to notify the victims that their files are encrypted. They provide
payment information, show how to send payment, the amount requested, and what are the
consequences if if you do not pay. These files are the single links between the ransomware
developers and their victims. The behavior of adding the same ransom files in directories is
repeated recursively in each target directory. Only a few papers like [1–3] have mentioned
the use of the ransom files to detect or identify ransomware. For example, Endgame
team [1] developed a classifier based on the Naïve Bayes model to classify the ransom
files. The whitepaper of MWR labs [2] presented some behaviors to detect ransomware.
Among the proposed behaviors in this whitepaper is the use of a bag of most used terms
in the ransom files. While this idea of monitoring the added ransom files can be effective,
it can take time if it is based only on reading the whole content of any created file on the
machine, searching for ransom content, then deciding if this file is truly a ransom file or
not. Therefore, we found that monitoring the filenames of the created files, searching for
ransom filenames, then checking the content of any file named like a ransom filename
can help to spot ransomware or minimize its damage. Indeed, as shown in the following
sections, the used terms in the filenames or the content of the ransom files are limited to a
few terms.
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The likelihood of spotting a benign file named like the filename of a ransom file is
small in a computer. Furthermore, the false positive files described in Section 4.2 (the
readme or help files) are not created recursively in each directory compared to the ransom
files which in several cases are recursively duplicated. Finally, any solution to detect
ransomware must contain several indicators based on different ransomware behaviors. In
other words, this proposition cannot detect all ransomware and cannot be used alone in a
ransomware detector. Indeed, many ransomware families do not add the ransom files in
every target directory, some families encode the content of their ransom files and others
add only one ransom file at the end of their infection (e.g., Spora ransomware [4]). For
these reasons, we suggest that using the ransom files must be monitored with a corpus of
ransomware behaviors. In summary, this paper presents the following contributions:

• We make the first and probably unique available collection of ransom files. This
collection contains more than 170 ransom files of 62 different ransomware families.
This collection is shared in GitHub (https://github.com/lemmou/RansomNoteFiles,
accessed on 15 September 2021) for evaluation and study by the research community.
It can also be used in the area of criminology and profiling ransomware developers.
These ransom files were collected manually from different sources:

– From Malware Traffic Analysis Project (https://www.malware-traffic-analysis.
net/, accessed on 15 September 2021);

– From Hybrid-Analysis, looking for the ransom note filenames (https://hybrid-
analysis.com/, accessed on 15 September 2021);

– By running some ransomware samples in our virtual machines;
– From The Week in Ransomware of BleepingComputer (https://www.bleeping

computer.com/, accessed on 15 September 2021);
– From the Pastebins of the owner of ID-Ransomware project (https://pastebin.

com/u/Demonslay335, accessed on 15 September 2021).

• We present a depth analysis of the ransom files including some statistics based on
their filenames and contents;

• We propose a prototype to identify the ransomware family associated with a given
ransom file;

• We apply an approach to classify the ransom files and benign files and another
approach to check their similarities using some models of Machine Learning and
Latent Semantic Analysis (LSA);

• The results of the previous items allow us to propose a new approach to detecting
ransomware using the filenames and the content of the ransom files. This approach
can be used with other behaviors to make a ransomware detector or added to the
currently available solutions of ransomware detection, identification or prevention.
Moreover, several ransomware families can be detected or identified using only this
approach before their damage. In particular, the ones that add their ransom files
before encryption;

• We compare the effectiveness of our approach on some ransomware detection tools at
the end of this paper.

Table A1 in Appendix A (All theses families are crypto ransomware despite the Locker
tag in the names of some ransomware) shows the used ransom files in this paper. This
paper is structured as follows: ransom files description and related works are presented
in Section 2. Section 3 describes how the ransom files can be identified and the proposed
prototype to identify these files. The results of our study on the filenames of the ransom
files are outlined in Section 4. The same study of Section 4 is applied to the content of the
ransom files in Section 5. Finally, the conclusion is drawn in Section 6.

2. Ransom Note Files and Related Works

The ransom files are a unique way for the victims to take the first steps to restore their
encrypted files. The ransom notes provide information to the victims such as the payment

https://github.com/lemmou/RansomNoteFiles
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information, fee, deadline, free files decryption, and various instructions to pay the ransom,
then recover the encrypted files. The collected dataset of the ransom files includes the
ransom notes of different known families like Locky, Cerber, and TeslaCrypt. Table A1 in
the Appendix A shows the collected ransom files. The graph in Figure 1 shows the number
of families for each extension of the ransom files. The most used extension is txt followed
by htm and html (htm(l)). More than 30 families use txt or htm(l) files as a ransom note.
Other ransomware like Blind, Mr.Dec and NemucodAES ransomware use hta files. Matrix
ransomware family is the single family in our collection that uses rtf files. Generally, few
ransomwares, such as Qinynore and Cypher, choose rtf files for their ransom files.

Figure 1. Number of Ransomware Families for Each Extension.

Ransomware families change the extensions and filenames of their ransom files be-
tween the versions. Other families add their names, the extension of encrypted files or
the victim identity (ID) to the filenames. In another way, some ransomware families like
Dharma, Jaff or HC7 keep the same filename and extension of their ransom files in all their
versions. Generally, the extensions of the ransom notes are limited to few extensions. More-
over, despite the changes in the filenames between the versions of the same ransomware,
we prove in Section 4.1 that the used terms in the filenames are also limited to few terms.

WannaCry is a well-known ransomware that spread in May 2017 by exploiting a vul-
nerability in the SMB protocol. It infected more than 200,000 machines in the world [5].
This Crypto worm copies the content of the file r.wnry into a file named @Please_Read_
Me@.txt before encrypting the files. Lemmou et al. [6] found that three files (txt, html
and url) with the same filename !_HOW_TO_RESTORE_[extension] were replicated by
PrincessLocker ransomware in target directories before encryption. Moreover, by ex-
ploring some recent ransomware, we found that many ransomware families like JSWORM,
ChaCha, StopDjvu, LockerGoga and GlobImposter add their ransom files before encryp-
tion. Some versions of TeslaCrypt, CryptoLocker, and Cerber add their ransom files in
each target directory after encrypting only the content of this directory. The filenames of all
these ransom notes can be easily identified. For example, JSWORM-DECRYPT.hta of JSWORM
ransomware, README_LOCKED.txt of LockerGoga or DECRYPT-FILES.html of ChaCha ran-
somware. For these reasons, using the ransom files to detect the ransomware can:

• Minimize the ransomware damage to few encrypted files if the ransomware encrypts
the files of a target directory then puts the ransom files in this directory;

• Detect the ransomware without encrypting any file if the ransomware creates its
ransom files before encryption.

Over recent years, the frequency of ransomware activities and the number of new
ransomware families have grown since 2015. Simultaneously, many ransomware analysis,
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detection, and prevention approaches have been published to detect ransomware. The
first ransomware analysis was published by Gazet in 2010 [7]. He presented a comparative
analysis of four ransomware families. More similar analyses have been published during
the last four years. For example, the works of D. Caivano et al. [8] on the common
ransomware characteristics of 76 samples and the works of Lemmou et al. [9] that extracted
the ransomware behaviors of more than 20 ransomware families. In addition, in their paper
they discussed some behaviors that were automatically searched by analyzing more than
200 different ransomware collected during 2019.

On ransomware detection, different approaches have been proposed. For example,
monitoring abnormal file system activities to detect ransomware was proposed by Khar-
raz et al. [10] in 2015. Their work was the first attempt to detect the ransomware and their
analysis of several ransomware families allowed them one year later to propose a monitor-
ing tool called UNVEIL which detects Crypto-ransomware. ShieldFS [11] is a ransomware
detection tool based on the difference between file system I/O requests of ransomware
and benign software. DaD [12] is a tool to detect ransomware based on monitoring file
system activities of all userland threads. CryptoDrop [3] another ransomware detection
tool, which alerts the user during suspicious activities using a set of ransomware behaviors.
Until now, UNVEIL and ShieldFS were not released for download, but CryptoDrop and DaD
were available for download until 2019.

Other approaches have been proposed to detect ransomware such as using decoy
files or monitoring the API crypto. The first approach is based on monitoring some files
named decoys in some directories. Any write access to these files alerts the monitoring
tool. This approach was described by Jeonghwan et al. [13] and it has been used by
several detection tools like Antiransom V3, Padvish and Cybereason RansomFree. Lem-
mou et al. [9] discussed how ensuring maximum efficiency of using decoy files to detect
ransomware. Generally, using decoy files to detect ransomware is an interesting idea, but it
must be used with other monitored ransomware behaviors. On monitoring the API Crypto,
Palisse et al. [14] introduced two countermeasures to decrypt files based on the interception
of the API Crypto calls and weak ransomware operations. In the same way, Eugene et al.
proposed PayBreak [15] a tool that hooks the encryption functions of standard libraries
and securely stores encryption keys in a key vault for a future decryption of the encrypted
files by ransomware.

Traditional ransomware detection techniques are included in the current malware
detection and are primarily based on signatures that malware developers can easily evade.
Machine Learning models have good capabilities to detect ransomware. Bello et al. [16]
presented a comprehensive survey on the detection of ransomware attacks using Machine
Learning algorithms. Their study analyzed literature from different perspectives focusing
on Machine Learning algorithms to detect ransomware. An example to detect ransomware
using Machine Learning was proposed by Poudyal et al. [17]. They designed a ransomware
detection prototype named AIRaD for AI-based Ransomware Detection. Their tool is
based on a deep inspection approach for multi-level profiling of crypto ransomware,
which captures the distinct features at Dynamic Link Library, function calls, and assembly
levels. PEDA [18] is a pre-encryption detection algorithm for detecting crypto-ransomware
proposed by Kok et al. PEDA uses two levels of detection. The first is a signature based
detection to detect known ransomware. The second is a Machine learning model based
on the API calls to detect known and unknown ransomware. DNAact-Ran [19] is another
ransomware detection solution using Machine Learning. DNAact-Ran uses Digital DNA
sequencing design constraints and k-mer frequency vector. This solution was evaluated
on 582 ransomware and 942 benign applications and it showed its effectiveness to detect
ransomware compared with other methods. Ketzaki et al. [20] proposed a detection
procedure based on neural network methodologies to detect ransomware. The used
features by the neural network model are extracted from monitoring in real-time the CPU,
the memory, the disk space, the rate of reads and writes, the number of changed, created
and deleted files.
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The current paper offers a complementary to these works. For example, Scaif et al. [3]
use three primary and two secondary indicators to detect the ransomware in their tool
CryptoDrop. Monitoring the ransom files can be added as a secondary indicator among the
other indicators to reach the threshold score of detection in CryptoDrop. Some ransomware
add their ransom files during exploring directories before encryption. However, our idea
to detect the ransomware using the ransom files can also be combined with monitoring the
per-thread file system traversal suggested in [21]. Within Machine Learning, the ransom
files can be used as a monitored feature in [20] like rate of reads/writes and the number of
changed, created and deleted files. Related to monitoring the API Crypto or decoy files, a
created ransom file by a specified process can confirm that this process is a ransomware if
also uses the API Crypto. The same is true if this process accesses to a decoy file.

3. Identification of Ransom Note Files

In this section, we present the extracted markers that can be used to identify the
ransom files and associate them with their related ransomware.

3.1. Addresses

Ransomware developers share their addresses (URL, Bitcoin, Email or others) to
receive the ransom. The most used addresses are the URL and the email addresses. In
our collection of ransom files, we identified four categories of addresses: Email addresses,
Bitmessage addresses, Web payment addresses and Bitcoin addresses.

3.1.1. Email Addresses

Several ransomware families notify their victims to use the cited email addresses in
the ransom files to receive more instructions about the decryption of the files. Generally,
the ransomware developers do not use a single address for all their ransomware versions.
The email address can be used to identify the current or the previous versions of the
ransomware family and cannot generally identify or predict the next versions of the same
family. The collected dataset of ransom files, contains 43 ransomware families that used
the email addresses. Table 1 shows the used addresses by some families. Dharma family
used 14 email addresses for 10 versions and these email addresses were the single way to
communicate with the developers of Dharma.

Table 1. Email Addresses used by some Ransomware Families.

Family Version Email Address

Argus - argusdecrypt@cock.li
argusdecrypt@mailfence.com

BTCWare
Aleta chines34@protonmail.ch

Gryphon oceannew_vb@protonmail.com
Payday checkzip@india.com

Dharma

abido abibo@protonmail.com
arrow jamie_white25@aol.com, dot_faldo@aol.com

Bip emailpeekabooo@qq.com, peekabooo@qq.com
bkp bkp@cock.li
brrr paydecryption@qq.com
cmb paymentbtc@firemail.cc

manpecman manpecamet1974@aol.com, raxisubsro1977@aol.com
monro icrypt@cock.li
skynet skynet45@cock.li, skynet45@tutanota.com

stopencrypt stopencrypt@qq.com

Some ransomware, such as Triplem and Argus ransomware, added their names to
the email addresses, which can allow us to associate the ransom file with its ransomware.
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Therefore, any ransom file identifier must search the ransomware names in the email
address to identify the ransom note file.

3.1.2. Bitcoin Addresses

The second method to identify the ransom files is using Bitcoin addresses. Cryp-
toLocker was the first ransomware that asked for payment using Bitcoin (Emerging Technol-
ogy: True scale of Bitcoin ransomware extortion revealed, https://www.technologyreview.
com/s/610803/true-scale-of-bitcoin-ransomware-extortion-revealed/, accessed on 15
September 2021). Before CryptoLocker, the earlier ransomware used other payment
methods like pre-paid money vouchers, premium SMS, GoldMoney or buying from a site.

The ransomware developers add their Bitcoin addresses in the ransom files to receive
the Bitcoin payments from the victims. This address is a base58 encoded identifier of 26 to
35 alphanumeric characters starting with 1 or 3 [22]. Our dataset contains ransomware that
uses the Bitcoin addresses to receive the payment. For example, BadBlock, TripleM used
two different Bitcoin addresses in two versions and Cerber the same Bitcoin address five
versions. Generally, the Bitcoin address is used in many versions of the same ransomware.
Table 2 shows the Bitcoin addresses of some ransomware families.

Table 2. Bitcoin Addresses of some Ransomware Families.

Family Bitmessage Address

BadBlock 19zvmsm7qsqgfxcckxbjstdvdbt99zuwbp
Comonransomware 35m1zjhtati4iduufzena75ibyjoq9ibgf

Cryptolocker 1LfX1pFa2uSH6HDfH47zRDZgre4Ms7uZTk
Diamond 1L6PpSehR8V7YsZTc3L3F5RwbWoNma1nno

3.1.3. Bitmessage Address

Another method used by ransomware developers to communicate with their victims is
Bitmessage (Bitmessage:A PeertoPeer Message Authentication and Delivery System, https:
//bitmessage.org/bitmessage.pdf, accessed on 15 September 2021). It is a peer-to-peer
and decentralized communication protocol used by users to communicate anonymously
with other users. This method is used only by few ransomware. This address of 32 to
34 characters is a Base58 encoded public key hash that starts with the term BM-. Scarab
ransomware family is one of the seven families in our dataset that used this method to
communicate with the victims. It used the same address in the version seen in November
2017 and the version seen in October 2018. Table 3 shows three families of the seven
families that used the Bitmessage addresses in their ransom files.

Table 3. Bitmessage Addresses Used by Three Ransomware Families.

Family Version Bitmessage Address

Amnesia - BM-NBdUQmYVn43e3nK4amuoeaSm4ZStr8oZ
CryptoBit - BM-NAxZ29ouecw2Y7ibaXKus1vxDRDfheW6
Crypton - BM-2cwzhonfbjq3x8puliwsykhc6dedq54zq1

3.1.4. Web Payment Address

Other ransomware creates an onion web page to give the victims more instructions
to recover the encrypted files. The onion address is mentioned in the ransom file with
other instructions about how to access the onion page. Using the most used terms in the
web payment addresses like onion, torstorm, tor2web, onion2web, top and others,
we extracted at least one onion address correctly from all the 28 ransomware families that
added an onion address in their ransom files. Each extracted address identified correctly
the ransomware family associated with the ransom file. Generally, the ransomware does
not keep the same onion address during all their versions. Therefore, the extracted onion
URLs can be used only to identify the ransom files that are currently or were previously

https://www.technologyreview.com/s/610803/true-scale-of-bitcoin-ransomware-extortion-revealed/
https://www.technologyreview.com/s/610803/true-scale-of-bitcoin-ransomware-extortion-revealed/
https://bitmessage.org/bitmessage.pdf
https://bitmessage.org/bitmessage.pdf
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saved by the ransom note identifier. However, in some cases, they can be used to identify
the ransom files of the next versions. Table 4 shows some ransomware families that used
the same onion address in several versions.

Ransomware Tracker is an online service that tracks the IP addresses, domain names,
and URLs including C&C servers, botnet and payment sites that are linked to a specified ran-
somware. We used the Python API of Ransomware Tracker available in GitHub (PaulWeb-
Sec: Python API for Ransomware Tracker. https://github.com/PaulSec/ransomware-
tracker, accessed on 15 September 2021) to track the extracted URLs from the collected
ransom files. We were able to track only the used URLs in the ransom files of two versions
of Locky ransomware (Odin and Zepto). The ransom note identifier can use this service
to identify the extracted and unidentified URLs from the ransom files, then track these
addresses to associate them with a specified ransomware.

Table 4. Onion Addresses of some Ransomware Families.

Family Versions Onion address

Cerber 2017-01-05, 2017-01-26 p27dokhpz2n7nvgr.onion
2017-03-15, 2017-05-12

CryptoWall 2016-01-17, 2016-02-05 3wzn5p2yiumh7akj.onion

GandCrab v1 and v2 gdcbghvjyqy7jclk.onion.top
v5.0.1, v5.0.2, v5.0.3, v5.0.4 gandcrabmfe6mnef.onion

3.2. Keyword

Some ransomware families add their names and some specified keywords like the
extension of the encrypted files in the content of their ransom files. Any ransom note file
identifier must search for ransomware names and other specified keywords in the content
of these files. The names of the ransomware can be obfuscated in the content of the ransom
files. For example, some versions of Cerber seen in May 2017 used the word Cer&#98;er
instead of Cerber in their hta ransom files. The same ransomware used the term crbr in
the hta and the txt ransom files of its version seen in August 2017. In another way, some
ransomware like CryptoShield ransomware add the name of other ransomware in the
content. For these reasons:

• The identifier must be aware of the encoded ransomware names. We suggest storing
the previously encoded names by the ransomware in the ransom note identifier
database;

• Take the most cited ransomware names in the ransom file or the first cited name in the
case of equality between many cited ransomware names in the content;

• The identifier can search for the used extensions of the encrypted files in the con-
tent. Indeed, some ransomware adds these extensions to the content of their ransom
files. For example, Blind ransomware added the extension NAPOLEON and BTCWare
ransomware added the extension Gryphon.

Using the previous items, we tried to identify some ransom files using only the cited
ransomware names in the content. We were able to identify correctly 29 families from
31 families that added their names in their ransom files with two false predictions:

• The version of TeslaCrypt that was seen in July 2015. Our script identified this version
as a ransom file of CryptoWall ransomware. The reason for this false prediction is
that the ransom file of this version is an exact copy of the ransom file of CryptoWall
3.0 ransomware;

• An unknown version of CrypMic. Our script identified this version as a ransom file of
Alpha ransomware. This is due to the injected terms alpha in the content.

ID-Ransomware does not identify the ransom file of TeslaCrypt. It also cannot
identify the ransom file of CrypMic correctly. Moreover, ID-Ransomware fails to identify
correctly the ransom files of 29 families that add the name of the ransomware in the content.

https://github.com/PaulSec/ransomware-tracker
https://github.com/PaulSec/ransomware-tracker
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For these reasons, we suggest that the ID-Ransomware service adapts its process to identify
the ransom files by searching for the ransomware names in the content to improve its
efficiency in identifying the ransom files.

3.3. Names and Content of the Ransom Note Files

Several ransomwares name their ransom files with some specified names or a specified
combination of terms that make the identification of the ransom files possible using the
filenames. For example, Argus, Chip and GandCrab ransomware added their names in the
filenames of their ransom files. The ransom note identifier can search for the names of the
known ransomware in the filenames of a given ransom file to identify it. The filenames of
the ransom files of some ransomware contain the added extension to the encrypted files. For
example, the hta ransom file of the payday version of BTCWare ransomware is Payday.hta
and the htm ransom file of the asasin version of Locky ransomware is asasin.htm. For this
reason, we suggest that the ransom note identifier searches for some used extensions by
the ransomware in the filenames. As described in Section 4.2, the filenames of the ransom
files cannot classify the ransomware effectively into families because multiple ransomware
families change the filenames of their ransom notes in each version. Despite this weakness,
we think that the ransom note identifier can check the similarity of a given ransom note
filename and the other ransom filenames in its database as a secondary indicator to identify
the ransom files.

Moreover, another method to identify the ransom files is using their content. Indeed,
many ransomwares keep all or the same parts of the content of their ransom files for several
versions.

3.4. Ransom Note Files Identifier

To the best of our knowledge, ID-Ransomware (https://id-ransomware.malware
hunterteam.com/, accessed on 15 September 2021) is the unique service for the victims and
researchers to identify the ransom files. It is a free service to identify which ransomware
encrypted a submitted file to the service or the ransomware associated with a given
ransom file. The service is able to identify many known ransomware families like Cerber,
TeslaCrypt and the recent families like StopDjvu or REvil. ID-Ransomware identifies the
ransomware families using extensions, patterns, filenames, email, Bitcoin addresses and
others.

The contributions of this paper include some suggestions to make a ransomware
identifier or to improve the effectiveness of ID-Ransomware. In some cases, this service fails
to identify the associated ransomware with a given ransom file. Until now, ID-Ransomware
does not use the content of the ransom file to identify the ransom files. The responsible of
this service mentioned in a private conversation with us that using the content to identify
the ransom files is a future work for the owners of this service. Thus, we suggest using
Latent Semantic Analysis (LSA) as a solution to check similarities between the content
of the ransom files and the mentioned markers above to increase the effectiveness of this
service.

We developed some Python scripts to evaluate our ideas to identify the ransom files
in our dataset of 71 ransomware families. We get the following results:

• Using only the email addresses: 65 ransom files were correctly identified. ID-Ransomware
failed to identify seven ransom files;

• Using only the Bitmessage addresses: eight ransom files were correctly identified. ID-
Ransomware identified correctly only five ransom files and the others were identified
using the email addresses embedded in the content;

• Using only the URL addresses: 102 ransom files were correctly identified. ID-
Ransomware failed to identify 18 ransom files and 33 ransom files were identified
using other markers like the Bitcoin addresses and some custom rules;

https://id-ransomware.malwarehunterteam.com/
https://id-ransomware.malwarehunterteam.com/
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• Using only the Bitcoin addresses: 25 ransom files were correctly identified. ID-
Ransomware identified 14 ransom files, it failed to identify three ransom files and
eight ransom files were identified using other markers;

• Using only the ransomware tracker: two ransom files of one family were identified.
ID-Ransomware was able to identify more ransom files using the ransomware tracker.
We think that our script to identify the ransom files using the ransomware tracker
must be improved to identify the ransom files;

• Using only LSA on the content of the ransom files (with 0.99995 as a threshold of
similarity between the ransom files), only 13 ransom files (7% of 182 ransom files)
were not correctly identified. Table 5 shows these false positives. LSA matched the
ransom files of different versions of the same ransomware family. For example, the
txt ransom file of the version seen during May 2016 of Cerber has high similarity
with the ransom file of the version seen during August 2016. The hta ransom file of
the abido version of Dharma has high similarity with all the hta ransom files of the
other versions. Moreover, we tested LSA on the content of the ransom files of some
new versions have been seen during 2021 of Dharma and GlobImposter. We found
high similarity between the content of these ransom files and the content of their old
ransom files.

Table 5. False Positives Labels Using LSA on the Content.

Family Version Ransom Note Result by LSA (Label)

Cryptowall 3.0 HELP_DECRYPT.txt
TeslaCrypt (2 false

ransom notes)

CryptoLocker - HELP_RESTORE_FILES.txt
TeslaCrypt & Alpha

Crypt

Alpha Crypt 2015-04-30 HELP_TO_SAVE_FILES.txt
CryptoLocker &

TeslaCrypt

TeslaCrypt
2015-04-03 HELP_RESTORE_FILES.txt

Alpha Crypt &
CryptoLocker

2015-10-23 howto_recover_file_[].txt CryptoWall
V2.1 HOWTO_RESTORE_FILES.txt CryptoWall

CryptoMix 2016-11-28 - Cryptfile2

Cryptfile2 - - CryptoMix

CrypMIC - README.txt
Cryptxxx (2 false

ransom notes)

Rapid - _READ_ME_FOR_DECRYPT.txt StorageCrypt

Cryptxxx 2016-05-05 de_crypt_readme.html CrypMic
de_crypt_readme.txt CrypMic

StorageCrypt - - Rapid

13 ransom notes files 18 FP labels

ID-Ransomware searches for many markers to identify the ransom files without
searching for correlations between the used phrases in the content or analyzing the content
entirely. We tested the 182 ransom files in ID-Ransomware. It failed to identify or correctly
identify 24 ransom files. The combination of our scripts (without checking the filenames of
the ransom files) was able to identify 181 ransom files, including the unidentified ransom
files by ID-Ransomware. Only one ransom file could not be identified using our scripts.
It is the txt ransom file of Kee ransomware. This ransom file does not have high LSA
similarity on the content (similarity ≥ 0.99995) with the other ransom files. Related to these
results, we suggest that the ransom files identifier must combine and check all the discussed
markers in this section to identify the ransom files, including the content and filenames of
the ransom files. Indeed, the Kee ransomware can be identified by checking the filename
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of its ransom file (Hello There! Fellow @kee use!.txt) that contains its name. For
these reasons, we propose that ID-Ransomware or any new ransom note identifier service
analyses also the filenames and the content of the ransom files using for example LSA and
following this scenario:

1. The ransom note file identifier starts searching, then checking the Bitcoin addresses in
the content to associate them with the ransomware that used these addresses using
the saved Bitcoin addresses in its database or using any external service. We choose
that the ransom note identifier starts searching for Bitcoin addresses in the content
because several ransomware families are known by their Bitcoin addresses and they
keep them in several versions;

2. The identifier checks the Bitmessage addresses if it is not able to associate the Bitcoin
address with any known ransomware or the ransom file does not contain Bitcoin
addresses. Generally, the ransomware keeps the Bitmessage addresses for a long
period of time like the Bitcoin addresses despite that only few ransomware use them;

3. The identifier searches for any email address in the content. Moreover, the ransomware
identifier can search for any known ransomware name in the extracted email addresses
to identify the ransom file;

4. In the fourth step, the identifier searches for the URL addresses in the content. If it fails
to identify the ransom note from the extracted URLs, it submits them to a ransomware
tracker service;

5. If the identifier fails to identify the ransom file using the previous items, it can search
for the known ransomware names or any known keyword (extensions, patterns, . . .)
in the content. It can use the filename of the ransom file as a secondary indicator to
prove its choice between many suggestions;

6. If the identifier fails to identify the ransom file, it uses LSA (or other methods) on the
content to search any high similarity with the content of any known ransom file.

As we have shown in this section, the ransom note files can be associated with
their ransomware using the shared addresses by the ransomware developers to their
victims. The Bitcoin/Bitmessage/Email/URL addresses, the ransomware tracker service,
the filenames and contents must be combined correctly to make an efficient ransom file
identifier. Generally, the identifier can add other methods, patterns or custom rules to
increase its effectiveness.

4. Filenames of the Ransom Files

The filenames of the ransom files of many ransomwares are in uppercase, including
some symbols like #, !, @ or =. Some ransomware like Cryptowall, CryptXXX include the
victim ID. Others add to the filenames the used extension for the encrypted files. During
our research, we found that Scarab ransomware has the long ransom note filename: IF
YOU WANT TO GET ALL YOUR FILES BACK, PLEASE READ THIS.

4.1. Ransom Names Pre-analysis

The focus of this part is to create some statistics on the used terms in the filenames
before the semantic analysis in the following parts of this section. The filenames of the
ransom notes in our dataset were tokenized to involve the unit of a filename to analyze.
Each unit of the filename (named word or term) was standardized, cleaned, removed stop
words from the units, then stemmed or lemmatized. These steps are often used in text
preparing and pre-processing that precede text analysis of a documents corpus:

1. Tokenization: extension, ransomware name, victim ID, unknown or random characters
used in the filenames were changed to [ext], [ransomwarename], [id], [unknown] or
[random]. Some filenames such as _R_E_A_D___T_H_I_S__[random] of Cerber were
changed to _READ___THIS__[random]. After these modifications, we used each word
in the filename as a unit in our analysis;

2. Standardization and Cleaning: the words were converted to lowercase. We do not
want Read me, READ ME, and READ Me to be considered as separate terms. The non-
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alphanumeric characters were stripped, concatenated terms in the filenames were
split (readme to read me). Some filenames were corrected, for example Thi$ to This
or bl0cked to blocked;

3. Stop word removal: this step is used to drop frequently used words that did not add
value to our test. Firstly, we used a predefined stop words list from the Python library
Nltk, but it removed some interesting words like the interrogative pronouns. For
this reason, we made a list containing the words to avoid: to, me, your, this, if,
you, all, my, it, for and with;

4. Stemming or lemmatization: this step tries to transform the evaluated words to their
root form [23]. Table 6 displays an example of stemming using PorterStemmer and
lemmatization using WordNetLemmatizer. We applied PorterStemmer, WordNetLe-
mmatizer, LancasterStemmer and SnowballStemmer from Nltk on the words. The
latter gave us the desired results.

Table 6. Example Using PorterStemmer and WordNetLemmatizer.

Before After

Stemming restoring files restor file
Lemmatization restoring files restoring file

Figure 2 presents the most used terms in the filenames of the ransom notes. The
word file is the most used word, followed by the word decrypt. In some filenames, the
ransomware developers ask a theoretical question which consists in asking a question
that does not wait for an answer from the victims like how return/restore/back... my
files. The answer is known by the developers and mentioned in the content of the
ransom files. Almost 20 samples of 13 families used this question in the filenames. Around
45 ransomwares mentioned the extension of the encrypted files or the ID victim in the
filenames. Generally, the number of ransomware that adds the extension to the filenames
is greater than the number of ransomware that adds the ID victim. Other ransomware
include the term please in the filenames. Including this term in the filenames is only a
social norm from the ransomware developers to establish a relationship with the victim
to pay the ransom. In summary, the used words in the filenames of the ransom notes are
limited to only a few words. These words are not often used by the users in the filenames
of their files. For these reasons, we think that the ransom files can be detected during
their creations using their filenames. The following part presents some tests to prove the
discrimination between the filenames of the ransom files and benign files.

Figure 2. Term Frequency of the Most Used Terms in the Filenames.
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4.2. Unsupervised and Classification Analysis on the Ransom Filenames

Unsupervised analysis, such as Latent Semantic Analysis LSA, is different from the
classification analysis. The latter is a type of supervised learning model used to automati-
cally classify data (sentences, malware, documents, reviews...) and build predictive models
when the true classification of data is known. In contrast, no prior knowledge on the real
categories is used in the unsupervised analysis methods. In this section, we recall the
Latent Semantic Analysis (LSA) from [24]. Using the text pre-analysis in the previous part,
we built a filename-term matrix based on the filenames of the ransom notes the rows of
which correspond to the filenames and columns correspond to the extracted terms from
the filenames. To evaluate the importance of each extracted term in the filename individu-
ally and in the corpus of filenames, Tf-Idf (Term Frequenc-Inverse document Frequency)
weighting that assembles local and global weighting was used to the Filename-Term Matrix
(NTM). It is often used in LSA and text analytics.

The weighted matrix was decomposed into three matrices using Singular Value De-
composition (SVD). Indeed, LSA performs an analysis of co-occurrence across the corpus
of filenames using SVD to reduce the dimensionality of the Filename-Term matrix to a
dimension k. This dimension is lower than the minimal number between the number of
rows and columns of our NTM. This reduction has the effect of preserving the strongest
semantic information in the filenames and it throws away the noise. After this step, LSA
identifies the related terms and puts them under one topic (among the k topics) without
any prior knowledge on their real classifications. An interesting example that supposes
the case of each word means only one concept, and each concept is described by one word.
In this case, there is a simple mapping from words to concepts. In reality, however, this
mapping is impossible because each language has different words that mean the same
thing, named synonyms. Therefore, LSA tries to identify similar and related terms and
puts them under one topic. We present the result of applying LSA in three parts:

1. On a corpus of filenames of the ransom files;
2. On a corpus of filenames of the ransom files and user files;
3. On a corpus of filenames of files collected from an infected machine by ransomware.

4.2.1. LSA on a Corpus of Filenames of the Ransom Files

The filename preparation and pre-analysis applied in this part have some differences
to the pre-analysis of Section 4.1. We changed the random characters, the ID or the
Bitcoin addresses in the filenames to []. Therefore, the filenames that contain only these
markers were removed from the list (empty filenames). After some LSA tests, we removed
from the filenames the added extensions of the encrypted files. We did not know if
given ransomware keeps the same extension in all its infections, generated for each target
machine or it is a random extension. To obtain only alphanumeric filenames, we substituted
a space for any special character. We replaced the uppercase letters with their lowercase
form. Then the obtained results were filtered to avoid the digit filenames and any term
in the filenames with one character. To split the terms, we used probabilistic splitter
words (Wordninja: https://github.com/keredson/wordninja, accessed on 15 September
2021). We also tested another splitter (A compound word splitter for Python: https:
//github.com/TimKam/compound-word-splitter, accessed on 15 September 2021) named
Compound Word Splitter. In our case, we found that the first splitter split the terms more
correctly than the second splitter did. We did not use the stop words removal because these
words are mostly used in the filenames. Finally, the obtained terms were stemmed using
Snowball stemmer.

The results of LSA are related to the number k of dimensions (also named singular
values or latent factors). Choosing few singular values can lose valuable information. On
the contrary, choosing many latent factors may not be meaningful. Among the proposed
solutions to find the number of latent factors, we used the percentage of variance explained
by retaining k factors [23]. Then we visualized the results to determine how many latent
factors to keep in our LSA by looking for an elbow in the plot. The results appear in

https://github.com/keredson/wordninja
https://github.com/TimKam/compound-word-splitter
https://github.com/TimKam/compound-word-splitter
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Figure 3. We found that the value k = 16 is an optimal dimension. The LSA similarities
between the filenames shows that we cannot find large similarities, neither between all the
filenames of the collected ransom files, nor between the filenames of the ransom files used
by the same family in all its versions. Indeed, the filenames of the ransom files of some
families have high similarities with the ransom filenames of other families.

Figure 3. Variance Explained by Number of Singular Vectors.

Table 7 shows an example. The ransom filename HELP_DECRYPT of CryptoWall 3.0
does not have high similarities with the ransom filenames of the other versions of this
ransomware. On the other hand, this filename has high similarities with the ransom
filenames of other ransomware families like Cerber, Sad and Mr.Dec. Therefore, the
identification or the classification of the ransom files using only their filenames can give
wrong results. Related to Section 3.4, ID-Ransomware or any ransom notes identifier must
be aware about these wrong identifications using only the filenames of the ransom files.
The top ten terms of the 16 topics (k = 16) are mentioned in Table A2 in Appendix A.
We found that several terms like decrypt, help and readm are into more than one topic.
Viewing several terms in more than one topic means that they are related between them in
several filenames. In other words, this result can allow us to classify the filenames into two
groups: ransom filenames and benign filenames.

Table 7. Similar Filenames to HELP_DECRYPT of CryptoWall 3.0.

Ransom Note Sim. Ransom Note Sim.

HELP_YOUR_FILES 0.500 _HELP_HELP_HELP_[random]_ 0.770(Cryptowall 2016-01-17) (Cerber 2017-01-26)

DECRYPT_INSTRUCTION 0.350 _HELPME_DECRYPT_ 0.750(Cryptowall 2.0) (Sad)

INSTRUCTIONS_[ID] 0.005 Decoding help 0.740(Cryptowall 2016-02-05) (Mr.Dec)

4.2.2. LSA Applied on Files of an Uninfected Machine

We took 3000 filenames of several files from an uninfected machine running Windows
7. We added to this list the filenames of the ransom notes of our dataset. A pre-analysis
process like the previous subsection was applied to all these filenames. Then we applied
LSA using a splitter and without splitter on this corpus of filenames to extract any similarity
between the benign filenames and ransom filenames. The percentage of variance explained
by retaining k factors in both cases did not display a clear elbow to find an optimal k.
For these reasons, we calculated the similarities between the words defined as ransom
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filenames and the words defined as benign filenames. Then we took for different singular
values the number of queries that corresponded to some cases of similarities. Table 8 shows
the results of our tests. For example, the gray cell means that for k = 1100 without splitter,
we have 209 queries that have similarities between 0.5 and 0.8. For our test, we consider
only the similarities s > 0.8:

• In the case with splitter, the number of queries tends to be 62 queries that have
similarities > 0.8 approximately from k = 943;

• Without splitter, the number of queries tends to be 60 queries that have similarities
> 0.8 approximately from k = 1509.

Table 8. Number of Queries with Similarity < 0.5, and ≥ 0.5.

Number of Queries

s ≤ 0.5 0.5 < s ≤ 0.8 0.8 < s ≤ 0.9 0.9 < s < 1 s = 1

k = 1000 S 240245 (96.92%) 311 (0.129%) 1 (0.0004%) 1 (0.0004%) 60 (0.025%)
NS 247556 (99.87%) 214 (0.089%) 11 (0.004%) 19 (0.007%) 60 (0.025%)

k = 1100 S 240245 (96.92%) 311 (0.129%) 1 (0.0004%) 2 (0.0008%) 59 (0.024%)
NS 247561 (99.88%) 209 (0.086%) 11 (0.004%) 23 (0.009%) 56 (0.023%)

k = 1400 NS 247590 (99.89%) 208 (0.086%) 1 (0.0004%) 5 (0.002%) 56 (0.023%)

k = 1700 NS 247634 (99.90%) 166 (0.069%) 0 (0.0%) 46 (0.019%) 14 (0.005%)
s = similarity, NS = without splitter, S = with splitter.

Even though there were no ransom files within the benign files and the number of
queries was a minimum for k maximal, some benign filenames were similar to ransom
filenames (false positives). In this case, the ransom note detector can use other ransom file
characteristics like the content to avoid these false positives. Table 9 shows for a similarity
> 0.8 the ransom note filenames and their similar benign filenames for k = 943 with splitter
and k = 1509 without splitter. The number of queries that have similarities > 0.8 in the
case without the splitter is less (60 queries) than the case with the splitter (62 queries). In
other words, the case with splitter can add other false positives. For example, the word
asasin is divided into the words as as in, then it is similar to the benign file named
“ASF.pm” (“asf” is divided into as f). In summary, despite the machine not being infected
by ransomware, we found some false positives for LSA. Compared to the number of benign
filenames (3000 filenames), we had only 20 filenames in the case with the splitter and
18 filenames without the splitter, which makes our idea promising to be used with other
monitored behaviors to detect the ransomware like checking the content of these files. The
next subsection presents the same test, but on an infected machine by a ransomware.

4.2.3. LSA Applied on Files of an Infected Machine

We infected the same machine by zoro ransomware which adds in each target direc-
tory three txt ransom files: !-GET_MY_FILES-!-.txt, #RECOVERY-PC#.txt and @_RESTORE-
FILES_@.txt. Our dataset does not contain the second and the third ransom files. We tried
to find the ransom files of Zoro using LSA.

• All ransom files !-GET_MY_FILES-!.txt and @_RESTORE-FILES_@.txt were detected.
However, the txt files of #RECOVERY-PC#.txt were not detected because their file-
names contain the word PC, which did not exist in any ransom filename of our dataset
and the chosen threshold of similarity (>0.8) was not sufficient to detect this filename
without false positives. Generally, we can detect this ransom file by adjusting the used
stemmer to include recovery and recover in the some word recov. Therefore, the
stemming method on the filenames has some effects on the results: using one word,
we can detect other related words.
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Table 9. Ransom Filenames and their Similar Filenames.

With Splitter (k = 943) Without Splitter (k = 1509)

Ransom Note Nbr of Queries Similar Files Ransom Note Nbr of Queries Similar Files

“ReadMe” 14 for ExifTool\README “ReadMe” 14 for same files
“_[]_README_” each Recent\readme.lnk "_[]_READ each like with

“README” ransom hexrays\readme.txt ME_" ransom splitter
“@README” name IDAscope\README.md “README” name

ExeinfoPE\readme.txt “@README”
plugsdk\readme.txt
PeiD\readme.txt

WebAdmin\Readme.html
Doc\ReadMe.txt

PESpin\ReadMe.txt
odbg\readme.txt

upx\README
upx\README.1ST

reghost\readme.txt

“_HELP_HELP_
HELP_[]_”

5

Mnt\Help.lnk
epydoc\help.html
IDA\idahelp.chm
odbg\help.pdf
odbg2\help.pdf

“_HELP _HELP_
HELP_[]_”

4

same files like with
splitter case but

without
idahelp.chm

“asasin” 1 ExifTool\ASF.pm

Table 10 shows the false positive filenames in both states: infected machine state and
uninfected state (FPmeans that the file was detected as a false positive ransom file. TNmeans
that the file is a true negative file). Comparing the two states, the last 11 files that were
detected in the uninfected state as false positives are detected in the infected state as true
negatives. The reason for these changes is related to the added extension to the encrypted
files. Indeed, Zoro ransomware adds the extension aurora. A file named book.txt will
be book.txt.aurora. This behavior of adding new extensions to the encrypted files is
helpful for any ransom filename detector supposes that the filename is all the words in
the filename until the last dot. Indeed, the detector will remove the extension (last word
after the last dot), then takes the rest as a filename. For example, the filename of a file
not encrypted by ransomware like test.sys is test and the filename of an encrypted
file like book.txt.aurora is book.txt. In our test, this effect reduced the number of false
positives seen in the previous part like the readme or help files of some tools. A ransom
filename searched by the detector, such as readme.html, is readme which had a different
LSA similarity to the filename of an encrypted file readme.txt.aurora. The last was
evaluated by (LSA) as a readme.txt. The false positive filenames in the infected case are
less than the uninfected case which means that our approach to use the ransom filenames
to detect the ransomware is correct.
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Table 10. FP and TN files in the Infected/Uninfected State with Splitter.

File Name Uninfected State Infected State

..\Maintenance\Help.lnk FP FP

..\epydoc\help.html FP FP

..\ExifTool\README FP FP

..\Recent\readme.lnk FP FP

..\IDAscope\README.md FP FP

..\WebAdmin\Readme.html FP FP

..\upx\README FP FP

..\upx\README.1ST FP FP

..\Recover My Files.lnk TN FP

..\Recover My Files v5.lnk TN FP

..\ExifTool\ASF.pm FP FP

..\hexrays_sdk\readme.txt FP TN

..\ExeinfoPe\readme.txt FP TN

..\pluginsdk\readme.txt FP TN

..\PeiD\readme.txt FP TN

..\Documentation\ReadMe.txt FP TN

..\PESpin\ReadMe.txt FP TN

..\odbg\readme.txt FP TN

..\regshot\readme.txt FP TN

..\IDA\idahelp.chm FP TN

..\odbg\help.pdf FP TN

..\odbg2\help.pdf FP TN

4.2.4. Machines Learning on Ransom Names

In this section, we describe how we used Machine Learning models to classify file-
names as ransom filenames or benign filenames. The same pre-analysis presented above
was used. The evaluated filenames were separated into two groups based on the chosen
split rule: training set and testing set. A popular split [23] is to put 70% of the filenames
in the training set and the rest in the testing set. The distribution of the filenames in
our dataset was imbalanced, more benign filenames than ransom filenames. To solve
this problem, we used Synthetic Minority Over-sampling Technique (SMOTE) [25] and
Neighborhood Cleaning Rule (NCR) [26]. The first generated minor examples to be added
to the original set. The second performs under-sampling based on the condensed nearest
neighbor (k = 1 default case) method. The chosen learning models in this test were: Lo-
gistic Regression, Decision Tree, K-Nearest Neighbor, Naive Bayes, Random Forests and
Support Vector Machine. The classification method was applied to the Tf-Idf weighted
NTM (Filenames-Term Matrix) of the training set. Once the classifier was created, it was
applied to the Tf-Idf weighted NTM of the testing set.

Among several ways to evaluate which model to choose, we have the accuracy of the
models. Table 11 presents the overall accuracy in descending order (with F-measure) in the
case without a splitter. We conclude that the Random Forests model is an optimal choice to
detect the ransom filenames in our dataset due to its best accuracy value. Random forests
(RF) are a part of the tree based model family. These models try to build a combination of
tree predictors with different initial variables. Precision, recall and F-measure are described
in Table 12 in the case without splitter. The overall accuracy of this model is 98.32%, and the
overall F-measure is 0.920. The model misclassifies 13 filenames: nine ransom filenames are
classified as benign filenames and four benign filenames are classified ransom filenames.

In summary, the detection of the ransom files using LSA or Machine Learning models
on the filenames is possible. However, it must be combined with other indicators to detect
the ransomware. ID-Ransomware service uses the saved filenames in its database without
any check of similarity of the filenames to identify the associated ransomware to a given
ransom file. However, checking the similarity of the ransom filenames can be used (with
other patterns in the ransom files) to identify the ransomware associated to a given ransom
file.
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Table 11. Overall Accuracy in Descending Order.

Order Model Overall F-Measure Overall Accuracy

1 Random Forests 0.920 98.32%

2 Support Vector
Machine 0.895 97.81%

3 Decision Tree 0.900 97.81%
4 Naive Bayes 0.900 97.68%
5 Logistic Regression 0.890 97.55%
6 k-Nearest Neighbor 0.425 52.89%

Table 12. RF Contingency Matrix and Goodness of F-Measure (without splitter).

Actual

(47 Ransom Filenames + 730 File Filenames)

Ransom Filename Benign Filename

Predicted Ransom Name 38 4
Benign Name 9 726

Precision Recall F-measure

Ransom Filename 0.90 0.80 0.85
Benign Filename 0.98 0.99 0.99

5. LSA on the Content of Ransom Files

Ransomware developers use the ransom files to contact their victims and notify them
that their files have been encrypted. In some cases, the ransomware developers try to be
creative in the content and the receipt addressed to their victims. The ransom files have
a fixed objective which is to draw the attention of the victim in order to pay the ransom.
Some ransomware families distinguish themselves from other families by adding some
features in their ransom files. For example, Spora ransomware conducts its victims to a
payment portal. This portal offers many services to the victims like deadline extensions and
free decryption for some files. The most interesting feature is the real-time chat window
where victims can contact the Spora developers. It was a unique feature compared to other
ransomware seen in 2017. Another example is White Rose ransomware that was spread at
the end of March 2018. The ransom note of this ransomware tells a strange story about its
developer. He offers to share a white roses with the victims which results in encrypting the
files. Despite the fact that there are several ransomware families in the world, the main
aim of the ransom files of all ransomware has a fixed objective to inform the victim that
his files are encrypted and the single way to restore the files is the payment of the ransom.
This section is a continuation of the previous section that suggests the use of LSA on the
filenames of the ransom files to identify the ransom files and detect the ransomware.

5.1. The Content to Identify the Ransom File

The exploration and application of the previous pre-analysis done above was applied,
with some differences, in the stop word removal step. Contrary to the pre-analysis of the
filenames where we used a created stop word list, we used the predefined stop words
dictionary from the Python module Nltk. Table 13 presents the top ten of the used terms in
the content of the ransom files.

The most used term is file and this term is the most used in the filenames. This
term is followed by tor, browser, encrypt, then decrypt. These terms summarize the
content of most ransom files: files are encrypted to decrypt them and use the address in the Tor
browser then follow the instructions.
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Table 13. Top 10 of the Used Terms in the Content of the Ransom Files.

Term Count Term Cont

1 file 1417 6 instruct 409
2 tor 951 7 key 371
3 browser 910 8 instal 359
4 decrypt 617 9 address 353
5 encrypt 419 10 internet 346

As in Section 4.2.1, we used the percentage of variance explained by retaining k factors.
Then we visualized the results to determine how many latent factors to keep in our LSA by
looking for an elbow in the plot. The results appear in Figure 4. We found that 3 and 6 are two
optimal values for k. Figure 5 shows a part of the document–document (ransom file–ransom
file) similarities in the six-dimensional LSA space. An example of pairs of documents with
highest similarity value is the pair of the ransom file [HOW_TO_DECRYPT_FILES].html of
Locker ransomware and the two ransom files ReadMe.txt/.html of Sigma ransomware.
Other examples are framed in the same figure. Many ransom files of the same family
(multiple versions) have high similarity between them. The results seem reasonable
because the little reformulations/modifications in the content of these files have no effect
on the results of LSA.

Figure 4. Variance Explained by the Number of Singular Vectors (k).

Section 3.4 describes the proposed process to identify the ransom files and to associate
them with their ransomware by checking the similarity of the content in the last step of
the process. The reason that checking the similarities of the content in the last step is due
to few false positives ransom files. Indeed, we calculated for different thresholds s ≥ 0.9
and for k ∈ {3, 6} the number of similar ransom files for each ransom file in the corpus.
Table 14 shows the number of false positives (FP) and true positives (TP) for some chosen
thresholds of similarities (s).

Figure 5. Part of the Doc–Doc Similarities in the Six-dimensional LSA Space.

The optimal values of s and k can be found approximately from a threshold s ≥ 0.999
for k = 3 and from s ≥ 0.99 for k = 6. Indeed, approximately from these thresholds, the
number of false positive is less than the number of true positive. The two cases tend to the
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same number of false positives and true positives. We can say that the case k = 6 converges
more quickly to eight false positives than case k = 3.

Table 14. Number of FP and TP Labels for k = 3 and k = 6.

Threshold
k = 3 k = 6

FP TP FP TP

0.9 ≤ s 6926 1180 2586 954
0.99 ≤ s 1512 826 390 742

0.999 ≤ s 332 582 86 486
0.999995 ≤ s 14 376 8 372
0.999999 ≤ s 8 372 8 372
0.9999999 ≤ s 8 372 8 372

Table 15 shows the eight false positives. For example, the ransom file HELP_RESTORE_
FILES.txt of CryptoLocker is labeled as a ransom file of TeslaCrypt or Alpha ransomware.
For this reason, we choose that checking the content of the ransom files is the last used step
by the ransom note identifier to identify the ransom files. On the other hand, it can be used
to choose between multiple ransomware suggested by the ransomware identifier.

Table 15. The Eight False Positive Labels.

Ransom Note File False Positive Ransomware Label

HELP_RESTORE_FILES.txt of CryptoLocker TeslaCrypt & Alpha Crypt

HELP_TO_SAVE_FILES.txt of the version TeslaCrypt & CryptoLockerseen on 2015-04-30 of Alpha Crypt

HELP_RESTORE_FILES.txt of the version CryptoLocker & Alpha Cryptseen on 2015-04-03 of TeslaCrypt

_READ_ME_FOR_DECRYPT.txt of Rapid StorageCrypt

_READ_ME_FOR_DECRYPT of StorageCrypt Rapid

5.2. The Content to Detect the Ransomware

Our proposition to increase the effectiveness of the ransomware detection tools can
be based on the following scenario. The reader can use more convincing and elaborate
description of its detection/prevention scenario than our proposed scenario:

Let us suggest a ransomware detector that detects the ransomware using its malicious
behaviors. For each behavior, a value v is added to a malice score m of a given monitored
process. This detector concludes that the monitored process is a ransomware if m reaches a
threshold t:

1. By checking the filenames of the created txt, htm(l), hta and rtf files by LSA,
the detector focuses only on the filenames of these files than focusing on the whole
content of all the created files;

2. The detector applies LSA again on the content of any created file marked by the first
item as a ransom filename;

3. If the content is marked as a ransom note content, the owner process that created this
file is suspicious and it is probably ransomware. In this case, v is added to the malice
score of this process. For this behavior, we suggest that the added value v is high such
that m reaches the threshold t.

As described in Table 14, the similarity between the ransom files of different families
is high despite a threshold s ≥ 0.9. For this reason, we have calculated using LSA the
similarities between the ransom files and benign files. The benign files were collected from
different machines searching for any txt or pdf file named readme or containing the term
help in the filename. We added to these files several files from different corpora like [26]
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or [27] to construct a corpus of 200 randomly benign files. Using the same pre-analysis of
Section 4.2.1, we found three optimal values for k, which are 6, 10 and 11. Table 16 shows
the number of similar ransom files to benign files for each k.

Table 16. Number of Similar Ransom Files to Benign Files for some Thresholds.

Threshold of Similarity
Dimensions

6 10 11

s ≥ 0.90 234 3 1
s ≥ 0.91 199 1 1
s ≥ 0.92 160 1 1
s ≥ 0.94 94 1 1
s ≥ 0.95 46 0 0
s ≥ 0.97 6 0 0
s ≥ 0.99 0 0 0

As shown in Table 16, we can differentiate between the benign files and ransom files.
Indeed, the number of similar ransom files to benign files is null for k = 6 from a threshold
s ≥ 0.99 and k ∈ {10, 11} from s ≥ 0.95. Effectively, the content of the ransom files cannot
evade from their objective and their context. To prove our idea, we collected three spread
ransomware during 2020 and 2021. Then we tried to check their similarities with the benign
files and ransom files of the same dataset. The collected ransomware were:

• CryptoMix that adds a ransom note file named _HELP_INSTRUCTION.txt at the begin-
ning of infection (before encryption) in the root directory;

• French101 adds the ransom file HOW TO RECOVER ENCRYPTED FILES.txt in any target
directory containing target files before encrypting its content;

• StopDjvu ransomware adds _readme.txt in the Desktop of the current user before
encrypting its content.

The three ransomwares add their ransom files before encryption. We compared the
similarities of the ransom files of these ransomware with our dataset of benign files and
ransom files. Table 17 shows for k = 10 and s ≥ 0.95 the files that are similar to these
ransom files. These ransom files of these ransomwares are similar only to the other ransom
files. No similarities to benign files were seen.

We explored other ransomware seen in 2020 and 2021 that add their ransom files be-
fore encryption like ChaCha, JSWorm, GlobImposter, StopDjvu and Buran ransomware.
Their ransom files have high LSA similarity (≥0.90) with the other ransom files like the
ransom files of Dharma, and Querty. Their LSA similarity with the benign files is low.
Moreover, we tried to detect these ransomware using some ransomware detection tools like
AntiRansomV3 (Security Projects: AntiRansom,http://www.security-projects.com/?Anti_
Ransom, accessed on 15 September 2021), CryptoDrop [3], DaD [12], Acronis Ransomware
protection (Acronis Ransomware Protection, https://www.acronis.com/fr-fr/personal/
free-data-protection/, accessed on 15 September 2021), Kaspersky Anti-Ransomware
(Kaspersky Anti-Ransomware Tool, https://www.kaspersky.fr/anti-ransomware-tool, ac-
cessed on 15 September 2021) (without updates) and CyberReason RansomFree (Cyberea-
son: Cybereason RansomFree, (https://www.cybereason.com/solutions/ransomware-
protection, accessed on 15 September 2021). Most of these tools detected these ransomware
after encrypting some files in the target directories and after they created the ransom files.
Only the updated version of Kaspersky Anti-Ransomware detected these ransomware.
This tool uses the signature scans with a behavioral analysis to detect the ransomware.

http://www.security-projects.com/?Anti_Ransom
http://www.security-projects.com/?Anti_Ransom
https://www.acronis.com/fr-fr/personal/free-data-protection/
https://www.acronis.com/fr-fr/personal/free-data-protection/
https://www.kaspersky.fr/anti-ransomware-tool
https://www.cybereason.com/solutions/ransomware-protection
https://www.cybereason.com/solutions/ransomware-protection
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Table 17. Similar Files for k = 10 and s ≥ 0.95.

Ransom Note Name Sim. Similar Files

_HELP_INSTRUCTION.txt 0.9858 helloreadmenow23.txt
(CryptoMix) of CryptoBit ransomware

0.9817
READ THIS IF YOU WANT TO GET

ALL YOUR FILES BACK.txt of Omerta
ransomware

0.9872 How to decrypt files.txt of Vendetta
ransomware

0.9869 all info.hta files of Dharma ransomware

0.9902 !! RETURN FILES !!.txt and
Payday.hta of BTCWare ransomware

HOW TO RECOVER
ENCRYPTED FILES.txt

(French101)
0.9884 !#_READ_ME_#!.hta BTCWare

ransomware

0.9974 HOW TO RECOVER ENCRYPTED FILES.txt
of Scarab ransomware (2018-10-12)

0.9930
IF YOU WANT TO GET ALL YOUR FILES

BACK, PLEASE READ THIS.txt
of scarab ransomware (2017-11-23)

0.9923 DECRYPTING.txt of Comonransomware
ransomware

0.9829 README_DECRYPT.html of striked
ransomware

0.9592 RECOVER.txt of hc7 ransomware

0.9755 ransom_pay.html (unknown
ransomware)

_readme.txt (StopDjvu) 0.9813 how_to_back_files.html of
GlobImposter

0.9768 How to restore your files.hta
of GlobImposter ransomware

0.9503 [unknown].txt of Amnesia

0.9706 DECRYPT.[].txt of rapid

0.9734 README_BACK_FILES.htm of Eq

In this section, the LSA tests on the content of the ransom files is detailed. Applying
this method must be preceded by a pre-analysis on the content to filter it and keep only
the significant terms. The results of applying LSA on the content are promising. Indeed,
the identification of the ransom files using LSA as the last method to identify the ransom
files can give more interesting results using a large database of ransom files. On another
hand, the high similarities between the ransom files differentiate them from the benign
files, which make their detection possible. Generally, a ransom note remains a file that
notifies the victim to pay a ransom and the same content is repeated in most ransom files.

6. Conclusions

Through LSA and the extracted markers from the ransom files, we present our ap-
proaches to identify the ransom files and associate them with their ransomware. The
results are promising and can be very promising by assembling all markers by checking
the similarities of the filenames and the content of the ransom files in a real ransom note
identifier with a large database of ransom files. On the other hand, we found that the used
terms in the filenames of the ransom files are limited to a few terms, which make their
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detection possible compared to the filenames of benign files on a target machine. However,
using LSA or Machine Learning models such as Random Forest to differentiate between
the filenames of benign files and ransom files shows interesting and encouraging results.
Our idea to detect ransomware is based on using the ransom files. Indeed, we propose
the use of LSA for the content of any file labeled as a ransom file by checking its filename.
Most ransom files keep the same context in their ransom files to notify the users and pay
the ransom. For this reason, the LSA similarity between the content of the ransom files and
the content of benign files is not high. The continuation of this paper and future works
should focus on:

• Assembling all the markers cited in the third section to make a complete and automatic
ransomware identifier;

• Proving our approach to detect ransomware using the ransom files with other ran-
somware suspicious behaviors in a real ransomware detection tool like CryptoDrop,
ShieldFS, DaD and other tools. We have started the first tests on DaD by checking the
filenames of the ransom files. Firstly, we tested this detection tool on 60 arbitrary
samples of several ransomware families, including some known families like Dharma,
Spora, StopDjvu, GandGrab and GlobImposter. Dad detected all the 60 ransomware
except five ransomware. One of these ransomware adds the ransom file before encryp-
tion. Three ransomware add the ransom file after encrypting the content of one target
directory. The last ransomware is a multi-threading ransomware that adds the ransom
file after encrypting at least one file. By adding our approach to DaD, we were able to
detect all these ransomwares with few encrypted files. The result of using DaD and
checking the ransom files to detect ransomware will be published in our future work;

• Using LSA on other features such as dumps memory of the running process on
a target machine. Indeed, until the date of writing this paper, most ransomwares
use the ransom files to notify the victims. However, with our detection technique
using LSA on the filenames, the content of the ransom files is useful for fighting
future ransomware. This detection technique can show some limits to detecting
more ingenious future ransomware such as the ones that use encoded content for
their ransom files or new communication channels through URL links. As proven in
this paper, LSA has shown its effectiveness to differentiate between benign files and
ransom files. For these reasons, we suppose that LSA can differentiate between the
dump memory of a ransomware process and other benign processes.
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Appendix A

Table A1 shows the used ransom files in this paper organized by ransomware families
and extensions. The most used extension of the ransom files is txt followed by htm(l).
More than 30 families use the txt or htm(l) files as ransom note. Other ransomware like
Blind, Mr.Dec and NemucodAES ransomware use hta files. Matrix ransomware family is
the unique family in our collection that uses rtf files.
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Table A1. Used Ransom Files.

Families Number of Ransom Files
Extensions

TXT HTM (L) HTA RTF

Alpha 1 1 - - -
Alpha Crypt 2 2 - - -

Argus 1 - 1 - -
BadBlock 1 - 1 - -
Blind 1 - - 1 1
BTCWare 4 2 - 2 -
Cerber 17 6 3 8 -
Chip 1 1 - - -

Comonransomware 1 1 - - -
CrypMIC 2 1 1 - -

Crypt0l0cker 1 - 1 - -
Cryptfile2 1 1 - - -
CryptoBit 1 1 - - -

Cryptolocker 1 1 - - -
CryptoMix 2 2 - - -
Crypton 1 - 1 - -

CryptoShield 6 3 3 - -
CryptoWall 7 4 3 - -
Cryptxxx 13 6 7 - -
Dharma 16 6 - 10 -
Diamond 1 - 1 - -
Dr.Fucker 1 - 1 - -

Eq 1 - 1 - -
Everbe 1 - 1 - -

Evil locker 1 1 - - -
GandCrab 7 6 1 - -
Gibon 1 1 - - -

GlobeImposter 4 - 3 1 -
HC7 2 2 - - -

Hermes 1 - 1 - -
HydraCrypt 1 1 - - -

JAFF 4 2 2 - -
Keyholder 1 - 1 - -
LockeR 1 - 1 - -
Locky 8 1 7 - -
Matrix 4 - - 2 1
MMM 2 - 2 - -
Mole 1 1 - - -
Mr.Dec 1 - - 1 -

NemucodAES 1 - - 1 -
Omerta 1 1 - - -

PrincessLocker 4 2 2 - -
Qwerty 1 1 - - -
Rapid 1 1 - - -

RaRansomware 1 - 1 - -
Sad 3 1 1 1 -
Sage 2 - 1 1 -
Satana 1 1 - - -
Saturn 1 1 - - -
Scarab 2 2 - - -
Sigma 2 1 1 - -
Sigrun 1 - 1 - -
Spora 2 - 2 - -
Striked 1 - 1 - -

TeslaCrypt 18 11 7 - -
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Table A1. Cont.

Families Number of Ransom Files
Extensions

TXT HTM (L) HTA RTF

UIWIX 1 1 - - -
Unknown 5 4 1 - -
Velso 1 1 - - -

Vendetta 1 1 - - -
WhiteRose 1 1 - - -

X3m 1 - 1 - -
Zoro 1 1 - - -
Total 176 84 62 28 2

The top ten terms of the sixteen topics (k = 16) are mentioned in Table A2. We found
that several terms like decrypt, help and readm into more than one topic.

Table A2. Top Ten Terms in the 16 Dimensions.

Dim. Terms

0 decrypt, file, how, restor, to, help, my, readm, your, encrypt
1 decrypt, help, my, readm, me, inform, argus, de, crypt, sos
2 readm, save, to, your, crypt, de, back, cke, bl, 23
3 info, as, in, get, this, do, text, repair, use, payday
4 recoveri, how, decrypt, to, my, ra, ware, ransom, do, text
5 recoveri, instruct, help, recov, your, readm, me, save, decod, sos,
6 recov, how, instruct, decrypt, to, encrypt, my, for, it, read,
7 encrypt, file, read, my, this, your, get, me, recoveri, thi,
8 restor, instruct, my, file, readm, recoveri, encrypt, decrypt, run, sig,
9 read, me, this, instruct, restor, thi, how, now, if, you,
10 instruct, encrypt, to, how, my, save, back, get, file, this,
11 encrypt, me, how, decrypt, help, restor, readm, read, now, inform,
12 my, me, help, how, readm, encrypt, get, decod, now, sos,
13 me, save, to, your, restor, encrypt, now, repair, use, my,
14 your, back, how, me, get, about, if, you, all, want,
15 back, get, repair, use, to, if, you, want, all, this
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