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Abstract: Advancements in medical technology have created numerous large datasets including
many features. Usually, all captured features are not necessary, and there are redundant and irrelevant
features, which reduce the performance of algorithms. To tackle this challenge, many metaheuristic
algorithms are used to select effective features. However, most of them are not effective and scalable
enough to select effective features from large medical datasets as well as small ones. Therefore, in this
paper, a binary moth-flame optimization (B-MFO) is proposed to select effective features from small
and large medical datasets. Three categories of B-MFO were developed using S-shaped, V-shaped,
and U-shaped transfer functions to convert the canonical MFO from continuous to binary. These
categories of B-MFO were evaluated on seven medical datasets and the results were compared with
four well-known binary metaheuristic optimization algorithms: BPSO, bGWO, BDA, and BSSA. In
addition, the convergence behavior of the B-MFO and comparative algorithms were assessed, and
the results were statistically analyzed using the Friedman test. The experimental results demonstrate
a superior performance of B-MFO in solving the feature selection problem for different medical
datasets compared to other comparative algorithms.

Keywords: optimization; binary metaheuristic algorithms; swarm intelligence algorithms; feature
selection; medical datasets; transfer function

1. Introduction

Nowadays, with advances in science and medical technology, numerous large medical
datasets including many features have been created, which also contain redundant and
irrelevant features. Data-driven decision making in high-risk diseases such as heart dis-
eases [1] is a significant trend in which many data mining and machine learning methods
are introduced [2]. Since medical data are obtained from multiple sources, all captured
features are not necessary and some of them are irrelevant and redundant, which may
reduce algorithms’ performance in the data-driven decision-maker software. The irrelevant
and redundant data can be removed since they are useless in improving the accuracy’s
classification, because the irrelevant data have a weak correlation with class and the redun-
dant data have a strong correlation with one or more features. For instance, the FSBRR
algorithm [3] removes the feature of radius in the Breast Cancer Wisconsin Dataset as a
redundant feature because its correlation is very high with feature of smoothness. Feature
selection can address this problem, through which a subset of the relevant and effective
features must be found. Feature selection is used in a variety of real-world applications
such as disease diagnosis [4,5], email spam detection [6], text clustering [7,8], and human
activity recognition [9].
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Based on the strategy used for selecting features, the feature selection algorithms can
be categorized into three methods [10]: filter-based, wrapper-based, and hybrid methods.
The filter-based methods analyze features based on intrinsic properties of the data, without
using the classification algorithm [11], whereas wrapper-based methods use classifiers to
assess possible solutions [12]. Hybrid methods combine the benefits of both filter-based and
wrapper-based approaches. Although the wrapper-based methods are computationally
expensive and their performance depends on the utilized learning algorithm, they are
usually more accurate than the other two categories [13]. The wrapper-based methods use
different search approaches such as exhaustive, random, greedy, heuristic, and metaheuris-
tic [14], which, except for the last search approach, are impractical to select effective features
from medium and large datasets [15]. Thus, a wide range of metaheuristic optimization
algorithms is proposed to solve the feature selection problems for applications with large
datasets such as medicine [16].

Metaheuristic optimization algorithms are mostly inspired by nature, and can be
classified into three categories: evolutionary, physics-based, and swarm intelligence. The
simplicity in development and sufficient results of the swarm intelligence (SI) algorithms
for a variety of problems have made some of them very attractive and popular, such as
particle swarm optimization (PSO) [17], grey wolf optimizer (GWO) [18], whale optimiza-
tion algorithm (WOA) [19], moth-flame optimization (MFO) [20], and aquila optimizer
(AO) [21]. Since SI algorithms mimic the behavioral model of insects, aquatic animals,
terrestrial animals, and birds, these algorithms can share information between their swarms
that enhances their robustness [22]. Local optima trapping, premature convergence, and
unbalanced search strategy may all be disadvantages of these algorithms, despite their
benefits [23,24]. Hence, many improvements of these algorithms have been introduced
thus far, including optimal control strategies [25], chaotic whale optimization algorithm
(CWOA) [26], grasshopper optimization algorithm (GOA) based on the opposition-based
learning (OBLGOA) [27], improved grey wolf optimizer (I-GWO) [28], disruption bare-
bones particle swarm optimization (DBPSO) [29], improved krill herd (IKH) [30], particle
swarm optimization with backtracking search optimization algorithm (PSOBSA) [31], and
representative-based grey wolf optimizer (R-GWO) [32].

Since feature selection is an NP-complete problem [33], SI algorithms are widely
used to solve this problem. Many researchers have adapted different SI algorithms for
converting from the continuous form to binary, such as wrapper-based binary sine cosine
algorithm (WBSCA) [34], binary grasshopper optimization algorithm (BGOA) [35], binary
butterfly algorithm (BBA) [36], efficient binary symbiotic organisms search (EBSOS) [37],
binary grey wolf optimizer with support vector machine (GWOSVM) [38], and island
binary moth-flame optimization (IsBMFO) [39]. However, most binary SI algorithms are
not effective or scalable enough to select effective features from large datasets as well as
small ones.

Therefore, in this study, a binary moth-flame optimization (B-MFO) is proposed to
solve the feature selection problem. The canonical MFO was introduced by Mirjalili [20],
which was inspired by the transverse orientation mechanism of the moths in the night
around artificial lights. There have been many variants of MFO developed, such as
EMFO [40], IMFO [41], CLSGMFO [42], and improved MFO [43], given its simplicity, weak-
nesses, and applications. Several researchers have applied S-shaped and V-shaped transfer
functions to convert the continuous MFO to binary. In this study, in addition to the S-shape
and V-shaped transfer functions, another transfer function named U-shaped was adapted,
which is a novel transfer function with multiple alterable parameters for solving feature
selection problems. Each category contains four versions of transfer functions. Therefore,
twelve versions of B-MFO were introduced in three categories of transfer functions. Then,
they were evaluated by seven medical datasets: Pima, Lymphography, Breast-WBDC,
PenglungEw, Parkinson, Colon, and Leukemia. In addition, the winner versions of B-MFO
were compared with the best results gained by four well-known binary metaheuristic opti-
mization algorithms: BPSO [44], bGWO [45], BDA [46], and BSSA [47]. The convergence
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behavior of the winner versions of B-MFO and comparative algorithms was evaluated and
visualized. Finally, the results were statistically analyzed by the Friedman test.

In the rest of this study, Section 2 discusses the related works. Section 3 describes
the canonical MFO algorithm. Then, the proposed B-MFO is presented and evaluated in
Sections 4 and 5. Finally, the conclusion and future works are explained in Section 6.

2. Related Work

There are many different discrete problems such as feature selection [48,49], tour
planning [50], complex systems [51], and traveling salesman problems [52] that must be
solved with discrete optimization algorithms [53]. To solve feature selection problems,
wrapper-based methods widely apply discrete metaheuristic optimization algorithms
as search strategies to find effective feature subsets [47,54–57]. Since the majority of
metaheuristic optimization algorithms such as DA [58], SSA [59], HGSO [60], FFA [61],
MTDE [62], QANA [63], and AO [21] have been proposed to solve continuous problems
such as engineering [64–68], cloud computing [69], and rail-car fleet sizing [70], they
should be converted into binary algorithms for using in wrapper-based methods and
solving discrete problems. The continuous algorithm can be converted to a binary form in a
variety of ways [71]. The JayaX [72] and BitABC [73] use the logical operators for changing
to the binary form. Another way is using the transfer function (TF), which converts the
continuous search space to the binary one in which the search agents can shift to nearer
or farther corners of a hypercube by flipping various numbers of bits [44]. Thus, transfer
functions apply a mapping function to gain the probability of changing a solution from 0
to 1 or vice versa.

Many transfer functions were introduced such as S-shaped [44,74], V-shaped [74,75],
and U-shaped [76] to convert the continuous metaheuristic optimization algorithms to bi-
nary ones. The binary particle swarm optimization (BPSO) [44] was introduced by Kennedy
and Eberhart, which applied a sigmoid function to solve various discrete optimization
problems [77–79]. Yuan et al. [80] proposed a new improved binary PSO (IBPSO) in which
the BPSO is combined with the lambda-iteration method to solve the unit commitment
problem. The BPSO has been applied for various problems such as text clustering [81,82],
text feature selection [83], and disease diagnosis [84–86].

Binary grey wolf optimizer (bGWO) is another wrapper method for feature selection
which was proposed by Emary et al. [45]. The binary version of GWO was performed using
the sigmoid transfer function and was utilized to fix the feature selection problems and
large-scale unit commitment [87,88], and text classification [89]. To enhance the solution
quality of transfer functions, Hu et al. in [90] introduced new transfer functions and
improved them based on analysis parameters of GWO. Al-tashi et al. [87] proposed a new
hybrid optimization algorithm named (BPSOGWO) to find the best feature subset.

Zamani et al. [91] proposed a new metaheuristic algorithm named feature selection
based on whale optimization algorithm (FSWOA) to reduce the dimensionality of medical
datasets. Hussien et al. proposed two binary variants of WOA (bWOA) [92,93] based on V-
shaped and S-shaped to use for dimensionality reduction and classification problems. The
binary WOA (BWOA) [94] was suggested by Reddy et al. for solving the PBUC problem,
which mapped the continuous WOA to the binary one through various transfer functions.

The binary dragonfly algorithm (BDA) [95] was proposed by Mafarja to solve discrete
problems. The BDFA [96] was proposed by Sawhney et al. which incorporates a penalty
function for optimal feature selection. Although BDA has good exploitation ability, it
suffers from being trapped in local optima. Thus, a wrapper-based approach named hyper
learning binary dragonfly algorithm (HLBDA) [97] was developed by Too et al. to solve
the feature selection problem. The HLBDA used the hyper learning strategy to learn from
the personal and global best solutions during the search process.

Faris et al. employed the binary salp swarm algorithm (BSSA) [47] in the wrapper
feature selection method. Ibrahim et al. proposed a hybrid optimization method for the
feature selection problem which combines the slap swarm algorithm with the particle
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swarm optimization (SSAPSO) [98]. The chaotic binary salp swarm algorithm (CBSSA) [99]
was introduced by Meraihi et al. to solve the graph coloring problem. The CBSSA applies
a logistic map to replace the random variables used in the SSA, which causes it to avoid
the stagnation to local optima and improves exploration and exploitation. A time-varying
hierarchal BSSA (TVBSSA) was proposed in [15] by Faris et al. to design an improved
wrapper feature selection method, combined with the RWN classifier.

3. The Canonical Moth-Flame Optimization

Moth-flame optimization (MFO) [20] is a nature-inspired algorithm that imitates
the transverse orientation mechanism of moths in the night around artificial lights. This
mechanism applies to navigation, and forces moths to fly in a straight line and maintain a
constant angle with the light. MFO’s mathematical model assumes that the moths’ position
in the search space corresponds to the candidate solutions, which are represented in a
matrix, and the corresponding fitness of the moths are stored in an array. In addition, a
flame matrix shows the best positions obtained by the moths so far, and an array is used to
indicate the corresponding fitness of the best positions. To find the best result, moths search
around their corresponding flame and update their positions; therefore, moths never lose
their best position. Equation (1) shows the position updating of each moth relative to the
corresponding flame.

Mi = S
(

Mi, Fj
)

(1)

where S is the spiral function, and Mi and Fj represent the i-th moth and the j-th flame,
respectively. The main update mechanism is a logarithmic spiral, which is defined by
Equation (2):

S
(

Mi, Fj
)
= Di.ebt. cos(2πt) + Fj (2)

where Di is the distance between the i-th moth and the j-th flame, which is computed by
Equation (3), and b is a constant value for defining the shape of the logarithmic spiral. The
parameter t is a random number in the range [−r, 1], in which r is a convergence factor
and linearly decreases from −1 to −2 during the course of iterations.

Di =
∣∣Mi − Fj

∣∣ (3)

To avoid trapping in local optima, each moth updates its position using one flame. In
each iteration, the list of flames is updated and sorted based on their fitness values. The
first moth updates its position according to the best flame and the last moth updates its
position according to the worst flame. In addition, to increase the exploitation of the best
promising solutions, the number of flames is reduced in the course of iterations by an
adaptive mechanism, which is shown in Equation (4):

f lameNo = round (N − iter·(N − 1)/MaxIter) (4)

where N indicates the maximum number of moths, and iter and MaxIter are the current
and maximum number of iterations, respectively.

4. Binary Moth-Flame Optimization (B-MFO)

In this study, three different categories of S-shaped, V-shaped, and U-shaped transfer
functions are applied to convert the MFO algorithm from continuous to binary for solving
the feature selection problem. First, in Section 4.1, these different categories of transfer
functions and how to apply them to develop different variants of B-MFO are described
in detail accompanied by their flowchart and pseudo-code. Then, in Section 4.2, solving
feature selection problem using B-MFO is explained.
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4.1. Developing Different Variants of B-MFO
4.1.1. B-MFO Using S-Shaped Transfer Function

The sigmoid (S-shaped) function shown in Equation (5) is a usual transfer func-
tion named S2 [100], which was originally introduced for developing the binary PSO
(BPSO) [44].

TFs

(
vd

i (t + 1)
)
= 1/

(
1 + exp−vd

i (t)
)

(5)

where vi
d(t) is the i-th search agent’s velocity in dimension d at iteration t. The TFs converts

the velocity to a probability value and the next position xi
d(t + 1) is obtained with the

probability value of its velocity as given in Equation (6), where r is a random value between
0 and 1.

xd
i (t + 1) =


0 I f r < TFs

(
vd

i (t + 1)
)

1 I f r ≥ TFs

(
vd

i (t + 1)
) (6)

According to Equation (6), the position updating of each search agent is computed by
the current velocity and the previous position. In some binary metaheuristic algorithms
such as BPSO [44] and BGSA [101], the velocity is used in transfer functions to calculate the
probability value of changing the position. In some other algorithms such as bGWO [45]
and BMFO [102], transfer functions apply the updated position of each search agent to cal-
culate the probability value. In addition to the S2 function introduced in Equation (5), three
variants of the S-shaped function named S1, S3, and S4 [74] are developed by manipulating
the coefficient of the velocity value in Equation (5). All variants of the S-shaped transfer
function are shown in Table 1 and visualized in Figure 1, which shows that if the slope of
the S-shaped transfer function increases, the probability value of changing the position
value increases. Thus, among of S-shaped functions, the S1 obtains the highest probability
and the S4 provides the lowest value for the same velocity, which can affect the position
updating of search agents and finding the optimum solution. In addition to the advantages
of S-shaped, this category of transfer functions has a shortcoming in those metaheuristic
algorithms that search agents are updated considering by their velocity value. The zero
value of velocity is converted to one or zero with a probability of 0.5, while the search
agents should not be moved with the zero value of velocity [103]. Several researchers tried
to resolve this shortcoming, but they could not avoid trapping into local optima.

Table 1. The variants of S-shaped, V-shaped, and U-shaped transfer functions.

S-Shaped Transfer Function V-Shaped Transfer Function U-Shaped Transfer Function

No. Transfer Function No. Transfer Function No. Transfer Function

S1
TFs(x) =
1/
(
1 + exp−2x) V1

TFv(x) =∣∣∣er f
(√

π
2 x
)∣∣∣ =∣∣∣∣(√π

2
∫ √π

2 x
0 e−t2

dt
)∣∣∣∣

U1 TFu(x) = α
∣∣x1.5

∣∣

S2
TFs(x) =
1/
(
1 + exp−x) V2 TFv(x) = |tan h(x)| U2 TFu(x) = α

∣∣x2
∣∣

S3
TFs(x) =
1/
(

1 + exp(−x/2)
) V3

TFv(x) =∣∣∣(x)/
√

1 + x2
∣∣∣ U3 TFu(x) = α

∣∣x3
∣∣

S4
TFs(x) =
1/
(

1 + exp(−x/3)
) V4

TFv(x) =∣∣∣ 2
π arctan

(
π
2 x
)∣∣∣ U4 TFu(x) = α

∣∣x4
∣∣
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4.1.2. B-MFO Using V-Shaped Transfer Function

The hyperbolic (V-shaped) function [104] named V2 was presented for developing
BGSA [101] which has new position updating as shown in Equation (7).

TFv

(
vd

i (t + 1)
)
=
∣∣∣tanh

(
vd

i (t)
)∣∣∣ (7)

where vi
d(t) shows the i-th search agent’s velocity in dimension d at iteration t. Since the

V-shaped function is different from the S-shaped function, this function is updated with
new rules that are shown in Equation (8).

xd
i (t + 1) =


¬
(

xd
i (t)

)
I f r < TFv

(
vd

i (t + 1)
)

xd
i (t) I f r ≥ TFv

(
vd

i (t + 1)
) (8)

where xi
d(t) indicates the i-th search agent’s position in dimension d at iteration t and

¬(xi
d(t)) represents the complement of (xi

d(t)). In addition, r is a random value between
0 and 1. If the velocity is low, the TFv encourages the search agents to stay in their current
positions; otherwise, if the velocity is high, the search agents switch to complement. In
addition to the function introduced in Equation (7), three variants of V-shaped function
named V1, V3, and V4 are introduced [74], which are shown in Table 1 and Figure 1. It can
be seen that V1 provides a higher probability than V2, V3, and V4 for the same velocity,
which can affect the position updating of search agents and finding the optimum solution.
The V-shaped transfer function was proposed to tackle some shortcomings of the S-shaped.
Although this transfer function can solve the problem of metaheuristic algorithms with the
velocity by zero value, they still suffer from falling into local optima. If in an iteration, the
velocity of a search agent is low, in the next iteration, the search agent remains the same
with high probability [103]. In this study, in addition to the transfer functions mentioned
so far, we utilized a novel U-shaped transfer function to convert the continuous MFO to
binary form.

4.1.3. B-MFO Using U-Shaped Transfer Function

The U-shaped transfer function [76] was proposed with two control parameters α
and β that define the slope and width of the U-shaped function’s basin, respectively.
Equations (9) and (10) indicate the U-shaped function.

TFu

(
vd

i (t + 1)
)
= α

∣∣∣(vd
i (t))

β
∣∣∣ α = 1, β = 1.5, 2, 3, 4 (9)
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xd
i (t + 1) =


¬
(

xd
i (t)

)
I f r < TFu

(
vd

i (t + 1)
)

xd
i (t) I f r ≥ TFu

(
vd

i (t + 1)
) (10)

where vi
d(t) shows the i-th search agent’s velocity in dimension d at iteration t, and the r

is a uniform random number between 0 and 1. We used the U-shaped transfer function
accompanied by two main conditions shown in Equations (11) and (12) in which the lower
and upper bounds are limited by 1.

lim
vi→∞

U
(

vd
i (t)

)
= 1 (11)

lim
vi→−∞

U
(

vd
i (t)

)
= 1 (12)

The variants of the U-shaped transfer function named U1, U2, U3, and U4 were
introduced using a different control parameter β [76], shown in Table 1 and Figure 1. In
the initial iterations, the exploration is an important step to seek the whole search space
and after switching from exploration to exploitation, in the final iterations, the exploitation
step is essential to find better solutions. The U-shaped transfer functions with different
shapes have different exploratory and exploitative behaviors. As illustrated in Figure 1,
the U-shaped is comparable to V-shaped; however, variants of U-shaped have a higher
exploration in contrast to variants of V-shaped. The U1 function and variants of V-shaped
intersect around +0.7 and −0.7; before this point, the exploration of V-shaped is higher, and
after it, variants of U-shaped display a higher exploration. Therefore, U-shaped transfer
functions have sufficient potential to outperform the other transfer functions.

To map the continuous MFO to the binary one, each search agents’ dimension obtained
by Equation (2) is converted to a probability value in the range [0, 1] using all variants of
TFs, TFv, and TFu. Therefore, we adapted twelve different transfer functions from the three
categories, S-shaped, V-shaped, and U-shaped. By using these transfer functions, each
search agents’ position is mapped to the probability value using Equations (5), (7), and (9).
Finally, this probability value is updated using Equations (6), (8), and (10), and a new search
agent’s position is created. Thus, we compare twelve versions of proposed B-MFO to find
the suitable version. It is important to apply a proper transfer function, since converting a
continuous search space to a binary one is significant in the results of classifier of feature
selection problems. Algorithm 1 and Figure 2 show the pseudo-code and the flowchart of
B-MFO, respectively. The time complexity of B-MFO is O(NDT) where N, D, and T signify
the population size, dimension, and maximum number of iterations, respectively.

4.2. B-MFO for Solving Feature Selection Problem

The feature selection problem is to select an optimum subset of the relevant and
effective features to construct a more accurate data model. To formulate the feature selection
problem, a vector of one or zero as a subset of features is defined by using a transfer function,
which obtains probability values to change elements in the vector that can be 0 (not selected)
or 1 (selected). The length of the vector is equal to the dimensions of the dataset. In addition,
a fitness function is determined to evaluate the subset of features. The problem of feature
selection is referred to as a multi-objective optimization problem [105,106] since it usually
aims to minimize the number of selected features and maximize the data model accuracy.
As shown in Equation (13), the objectives are represented in a fitness function, where
CE shows the classification error. Nsf and Ntf are the number of selected features and
total features of the dataset, respectively. η and λ (1 − η) demonstrate the significance of
classification quality and feature reduction, respectively [46].

Fitness = η.CE + λ
Ns f

Nt f
(13)
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Algorithm 1. The pseudo-code of B-MFO.

Algorithm of binary moth-flame optimization (B-MFO)

Input: N (Population size), MaxIter (Maximum number of iterations), dim (the number of
dimensions).
Output: The global optimum (best flame).
1: Procedure B-MFO
2: Initializing the moth population.
3: While iter < MaxIter
4: Updating number of flames (flameNo) using Equation (4).
5: Calculating the fitness function M as OM.
6: If iter==1
7: OF = sort (OM1).
8: F = sort (M1).
9: Else
10: OF = sort (OMiter-1, OMiter).
11: F = sort (Miter-1, Miter).
12: End if
13: Determining the best flame.
14: For i = 1: N
15: For j = 1: dim
16 Updating r and t.
17: Calculating D using Equation (3).
18: Updating M(i, j) using Equation (1) and Equation (2).
19: End for
20: End for
21: Calculating the probability value of M(i, j) using TFs in Equation (5), TFv in

Equation (7), and TFu in Equation (9).
22: Updating new position using Equation (6), Equation (8), and Equation (10).
23: iter = iter +1.
24: End while
25: Return the global optimum (best flame).
26: End Procedure

5. Experimental Assessment

To execute the proposed B-MFO and other comparative algorithms in a fair condition,
all algorithms were implemented using the MATLAB 2018a platform. They were conducted
on Windows 10 with a processor Intel Core i7-6500U CPU (2.50 GHz) with 8 GB on main
memory. In addition, the population size (N) and the maximum number of iterations
(MaxIter) were considered as 20 and 300, respectively, and each algorithm was run 30 times.
The proposed B-MFO is experimentally evaluated on all transfer functions of the three
categories of S-shaped [44], V-shaped [101], and U-shaped [76] to solve the feature selection
problem. The experimental results were compared with the best result gained by four well-
known binary metaheuristic algorithms: BPSO [44], bGWO [45], BDA [46], and BSSA [47].
The parameters of BPSO and bGWO were set to be the same as original studies such as
that for BPSO w = [0.9 to 0.4] and C1 = C2 = 2, and for bGWO a = [2 to 0]. In addition, the
other algorithms did not need any parameter setting.

5.1. Data Description

In this study, seven medical datasets [107,108] were applied to evaluate the B-MFO
and comparative algorithms in the feature selection problem. Table 2 shows the details of
datasets in terms of the number of features, number of samples, and size that is considered
large if the number of features is more than 100. In our evaluation, a k-nearest neighbor
(k-NN) classifier with a Euclidean distance metric and kneighbor = 5 [56] was applied as a
fitness function to assess the quality of selected features subsets. To reduce the overfitting
problem, the k-fold cross-validation with kfold = 10 was utilized, which divides datasets
into k folds, and the classifier used the k-1 folds for training data and the 1 fold for test
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data. This process was repeated for each of the k folds, and all folds were selected once as
test data.

Table 2. The datasets’ descriptions.

No. Medical Datasets No. Features No. Samples Size

1 Pima 8 768 Small
2 Lymphography 18 148 Small
3 Breast-WDBC 30 569 Small
4 PenglungEW 325 73 Large
5 Parkinson 754 756 Large
6 Colon 2000 62 Large
7 Leukemia 7129 72 Large

5.2. Evaluation Criteria

The proposed B-MFO was compared with comparative algorithms using various
metrics consisting of average accuracy, the standard deviation of accuracy, average fitness,
the standard deviation of fitness, and the average number of selected features. Moreover,
the performance of the k-NN classifier was measured using sensitivity and specificity
derived from the confusion matrix, which includes the information about actual and
predicted classifications given by the classifier. The sensitivity is a metric that evaluates the
ability of the model to predict true positives, and the specificity is the metric that measures
the ability of the model to predict true negatives. The average accuracy gained by B-MFO
and comparative algorithms was statistically analyzed by the nonparametric Friedman
test [109]. In addition, the convergence behavior of B-MFO and comparative algorithms
were visualized.

5.3. Discussion of the Results

In this section, the best results achieved by B-MFO using three categories S-shaped,
V-shaped, and U-shaped for each dataset are compared to comparative algorithms in
terms of various metrics. Table 3 reports the average accuracy, the standard deviation of
accuracy, and the average number of selected features. The average fitness and the standard
deviation of fitness are indicated in Table 4, where the bold letters characterize the best
results. In addition, Table 5 demonstrates achieved specificity and sensitivity by the k-NN
classifier on large datasets, which proves that B-MFO has presented better results than the
comparative algorithms. Our hypothesis is that the sensitivity and specificity of B-MFO
are more reliable than other comparative algorithms when the size of datasets is increased.
According to Figure 3 and the average accuracy obtained, the B-MFO outperforms the
comparative algorithms, especially on large datasets. In addition, in most datasets, the
minimum number of features selected by B-MFO shows that B-MFO could avoid the local
optima trapping and obtain the optimum solution. Figure 4 presents the average number
of selected features in large datasets: PenglungEW, Parkinson, Colon, and Leukemia. These
results indicate the significant effect of transfer functions on algorithms’ behavior in the
position updating of search agents and finding the optimum solution in the feature selection
problem. Among the three categories of transfer functions used by B-MFO, the U-shaped
transfer functions outperform the V-shaped and S-shaped in terms of maximizing the
classification accuracy and minimizing the number of selected features, especially for
large datasets.
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Table 3. The accuracy and selected features’ number gained by winner versions of B-MFO and comparative algorithms.

Datasets
(Winner) Metrics BPSO bGWO BDA BSSA B-MFO

Pima
(B-MFO-S1)

Avg accuracy 0.7922 0.7726 0.7849 0.7798 0.7902

Std accuracy 0.0033 0.0063 0.0119 0.0079 0.0046

Avg no. features 4.7333 7.6000 3.2667 4.7667 5.2667

Lymphography
(B-MFO-V3)

Avg accuracy 0.9163 0.8694 0.9041 0.8882 0.9095

Std accuracy 0.0099 0.0108 0.0182 0.8882 0.0089

Avg no. features 8.9333 16.9667 5.5333 9.1000 5.3667

Breast-WDBC
(B-MFO-U3)

Avg accuracy 0.9710 0.9626 0.9666 0.9655 0.9719

Std accuracy 0.0021 0.0028 0.0078 0.0030 0.0020

Avg no. features 12.8333 27.6000 2.4000 13.8000 3.2333

PenglungEW
(B-MFO-U2)

Avg accuracy 0.9626 0.9541 0.9507 0.9567 0.9692

Std accuracy 0.0040 0.0044 0.0126 0.0058 0.0063

Avg no. features 161.0667 322.6667 83.5667 199.5000 81.5333

Parkinson
(B-MFO-V2)

Avg accuracy 0.7952 0.7736 0.7643 0.7793 0.8603

Std accuracy 0.0243 0.0036 0.0056 0.0126 0.0094

Avg no. features 376.4333 741.2333 192.7333 332.7667 79.1000

Colon
(B-MFO-U2)

Avg accuracy 0.9625 0.9526 0.9296 0.9535 0.9694

Std accuracy 0.0056 0.0048 0.0207 0.0051 0.0059

Avg no. features 999.9333 1948.8667 618.4333 1152.2000 350.7667

Leukemia
(B-MFO-U2)

Avg accuracy 0.9988 0.9901 0.9703 0.9954 0.9998

Std accuracy 0.0013 0.0021 0.0167 0.0023 0.0005

Avg no. features 3542.0670 6746.9670 2283.7330 3435.2330 669.2333

Table 4. The comparison results between winner versions of B-MFO and comparative algorithms on fitness.

Datasets
(Winner) Metrics BPSO bGWO BDA BSSA B-MFO

Pima
(B-MFO-S1)

Avg fitness 0.2117 0.2347 0.2456 0.2240 0.2143

Std fitness 0.0034 0.0068 0.0052 0.0076 0.0046

Lymphography
(B-MFO-V3)

Avg fitness 0.0878 0.1387 0.1503 0.1157 0.0925

Std fitness 0.0095 0.0110 0.0189 0.0106 0.0084

Breast-WDBC
(B-MFO-U3)

Avg fitness 0.0330 0.0462 0.0571 0.0387 0.0289

Std fitness 0.0019 0.0027 0.0111 0.0033 0.0021

PenglungEW
(B-MFO-U2)

Avg fitness 0.0420 0.0554 0.8845 0.0490 0.0330

Std fitness 0.0040 0.0043 0.1006 0.0059 0.0061

Parkinson
(B-MFO-V2)

Avg fitness 0.2078 0.2340 2.1607 0.2229 0.1393

Std fitness 0.0241 0.0035 0.2104 0.0135 0.0095

Colon
(B-MFO-U2)

Avg fitness 0.0421 0.0567 6.2540 0.0518 0.0321

Std fitness 0.0055 0.0048 0.5740 0.0051 0.0056

Leukemia
(B-MFO-U2)

Avg fitness 0.0062 0.0192 22.8667 0.0094 0.0011

Std fitness 0.0013 0.0022 2.6745 0.0023 0.0006
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Table 5. The comparison results between winner versions of B-MFO and comparative algorithms on specificity and sensitivity.

Datasets
(Winner) Metrics BPSO bGWO BDA BSSA B-MFO

PenglungEW
(B-MFO-U2)

Avg specificity 0.9975 1.0000 0.9940 0.9980 0.9945

Avg sensitivity 0.9722 0.9444 0.9333 0.9500 0.9722

Parkinson
(B-MFO-V2)

Avg specificity 0.9004 0.8898 0.8876 0.8915 0.9321

Avg sensitivity 0.3882 0.2913 0.3002 0.3686 0.5510

Colon
(B-MFO-U2)

Avg specificity 0.9467 0.9500 0.9392 0.9467 0.9475

Avg sensitivity 0.7712 0.6970 0.6606 0.7227 0.8227

Leukemia
(B-MFO-U2)

Avg specificity 1.0000 1.0000 0.9972 0.9957 1.0000

Avg sensitivity 0.9667 0.8413 0.7800 0.9267 0.9947
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Figure 4. Average features’ number selected by B-MFO and comparative algorithms on large datasets.
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Figure 5 shows convergence curves of average fitness achieved by the winner version
of B-MFO and comparative algorithms. The curves show that B-MFO can find better solu-
tions and provide a balance between exploration and exploitation. To statistically analyze
the results, the Friedman test was applied to rank B-MFO and comparative algorithms.
Table 6 presents the results of the Friedman test on average accuracy achieved by B-MFO
and comparative algorithms, which shows B-MFO has the first rank in comparison with
other algorithms.
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Table 6. Friedman test for the accuracy obtained by winner versions of B-MFO and comparative algorithms.

Dataset BPSO bGWO BDA BSSA B-MFO

Pima 4.27 1.47 3.17 2.33 3.77
Lymphography 3.17 7.17 2.33 8.73 3.77
Breast-WDBC 7.17 2.33 14.30 8.73 3.77
PenglungEW 2.33 17.40 18.90 8.73 3.77
Parkinson 10.10 22.40 23.90 13.70 7.10
Colon 10.10 26.50 28.60 13.90 7.10
Leukemia 10.10 27.00 29.10 13.90 7.10

Average rank 6.76 14.90 17.20 10.00 5.20

Overall rank 2 4 5 3 1

6. Conclusions and Future Work

Numerous large datasets that include redundant and irrelevant features have been
created in the field of medical technology. To select effective features from different
medical datasets, this study proposed three categories of binary moth-flame optimization
(B-MFO). Consequently, the canonical MFO was converted from continuous to binary
using variants of S-shaped, V-shaped, and U-shaped transfer functions. Each category
contains four versions of transfer functions; accordingly, twelve versions of B-MFO were
experimentally evaluated on seven medical datasets. Finally, the winner versions of B-MFO
were compared with the best results achieved by four well-known binary metaheuristic
optimization algorithms: BPSO, bGWO, BDA, and BSSA. The results show that the B-MFO
algorithm outperforms other comparative algorithms in terms of classification accuracy
and minimizing the number of selected features, especially for large medical datasets. In
addition, among variants of transfer functions used by B-MFO, the U-shaped functions
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outperform the V-shaped and S-shaped in terms of classification accuracy and minimized
the number of selected features. For future works, B-MFO particularly using U-shaped
transfer functions can be applied to select effective features in large-scale optimization
problems, since it showed sufficient results for large datasets. In addition, B-MFO can be
applied to other applications such as various engineering applications.
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