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Abstract: Serverless computing is a new concept allowing developers to focus on the core functional-
ity of their code, while abstracting away the underlying infrastructure. Even though there are existing
commercial serverless cloud providers and open-source solutions, dealing with the explosive growth
of new Internet of Things (IoT) devices requires more efficient bandwidth utilization, reduced latency,
and data preprocessing closer to the source, thus reducing the overall data volume and meeting
privacy regulations. Moving serverless computing to the edge of the network is a topic that is actively
being researched with the aim of solving these issues. This study presents a systematic mapping
review of current progress made to this effect, analyzing work published between 1 January 2015 and
1 September 2021. Using a document selection methodology which emphasizes the quality of the
papers obtained through querying several popular databases with relevant search terms, we have
included 64 entries, which we then further categorized into eight main categories. Results show that
there is an increasing interest in this area with rapid progress being made to solve the remaining
open issues, which have also been summarized in this paper. Special attention is paid to open-source
efforts, as well as open-access contributions.

Keywords: serverless computing; edge computing; function as a service; Internet of Things; system-
atic review

1. Introduction

The ever increasing progress in hardware development and computer networking
paved the way for the introduction of cloud computing, which in turn has led to a new
revolution, allowing computing capacity to be perceived as just another utility, used on-
demand, with virtually limitless capacity [1]. Both academia and industry have invested
in the creation of different cloud computing infrastructure, depending on their needs,
currently available resources, and cost, resulting in the deployment of various private,
public, community, and hybrid clouds [2]. However, to allow regular users to benefit
from such vast computing capacity, additional abstractions are introduced, in the form of
infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service
(SaaS) offerings. IaaS provides the lowest level of abstraction, allowing users to rent
computing, networking, and storage capacity on-demand, usually in the form of virtual
machines (VMs), and utilize them as they see fit, building their own infrastructure on
top. PaaS goes a step further, and is primarily aimed at software developers, abstracting
away the necessary VM management, and instead providing the building blocks and
interfaces for directly hosting developed applications, along with any other prerequisites,
such as databases and message queues. Finally, SaaS, aimed at end-users, provides the
highest level of abstraction, where the service being offered is a finished software product,
ready to be used, without any additional requirements in terms of maintenance, updates,
or management.

These three offerings are by no means the only products available as a service today.
The idea of abstracting complicated tasks away from the users is natural and proved
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very popular, resulting in * (anything) as a service [3], which serves as a general term for
products that free the end-user from performing a demanding task, and instead offloading
it to a professional service provider, thus freeing up customers’ time and reducing the time
to market.

Even though most service providers support granular billing policies for all of the
above service offerings, and customers can be billed on a minute-by-minute or even per-
second intervals, costs are incurred for simply leaving the infrastructure running, no matter
the amount of visitors that it serves. Serverless computing is a recent paradigm shift that
aims to overcome these issues, while making the application development process even
simpler for developers. The major question faced by developers is no longer “where to
deploy”, but instead “how to create” the application, focusing foremost on its features.
Serverless is comprised of Function as a Service (FaaS) and Backend as a Service (BaaS),
and despite its name, it still relies on underlying servers for hosting the workload and
data processing. However, compared to the other as a service approaches, it provides an
even greater abstraction layer to the developers, who no longer have to think in terms
of the infrastructure, resource requirements, or even scaling, and can instead focus on
writing granular functions with a well defined role, and integrating their functionality
to achieve more complex systems or applications. Thus, the main point of function as a
service, and serverless computing in general, is to allow the developer to write functional
code with a well defined task, using the desired programming language, which can then be
uploaded and hosted as an atomic unit on a provider’s infrastructure. This FaaS approach
combined with common backend functionality such as databases, or message queues
which are offered as a service as part of BaaS offerings, accessible through provider-defined
APIs, unburdens users from any server management. Furthermore, by billing per function
invocation, and allowing function instances to be scaled down to zero replicas when not
being utilized, customers are billed only for the time that the function is active, while
having access to seamless scalability, monitoring, and security features. The serverless
approach is beneficial to service providers as well, since it advances the ever-present
ideal of executing more workload on the same amount of resources. By transferring the
responsibility for resource dimensioning away from the customers, service providers are
better able to manage their computing capacity, utilized resources, as well as power usage.

The first public FaaS offering dates to 2015, when Amazon AWS introduced its Lambda
computing service [4], aimed primarily at web developers. Others quickly followed [5–7]
by introducing competing services inspired by the initial success and the potential benefits
that the serverless approach might unlock. Open-source FaaS solutions are widely popular
as well [8–10], and there are even cases where commercial service providers have either
based their FaaS offerings on one of the existing open-source solutions, as is the case
with IBM and OpenWhisk [11], or have open-sourced either in part, or completely the
underlying components of their FaaS architecture [12], contributing to the open-source
community, and thus directly investing in the serverless ecosystem.

Web development is not the only area where serverless computing unlocks interesting
new opportunities. Another research area which has seen an enormous growth in recent
years is the Internet of Things (IoT). Serverless for IoT would be particularly beneficial
as a result of the inherently real-time and event-based workload of these systems [13,14].
However, IoT faces a different set of challenges in comparison to the typical client-server
applications that were the primary targets for the initial serverless push. Even though
the cloud has been utilized to a great extent in IoT scenarios, offering endless computing
capacity, and data storage, means of actually transferring the data in an acceptable time-
frame, without much delay, have always proved a challenge. While the cloud is an excellent
choice for applications that run at human perception speed and response times of hundreds
of milliseconds or even seconds are acceptable, optimizations have to be made to meet
requirements for real-time IoT applications, running at machine perception speed [15].
This latency and network capacity problem will become even more pronounced with
the advent of billions of new IoT devices that will find their way in our lives. Moving
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the computing capacity towards the devices that actually generate the data is one of the
solutions attracting great research interest. Edge computing reduces the network latency
by allowing time-sensitive computations to be executed on compute infrastructure close to
the data sources and can be seen as the missing piece to bring the simplicity of serverless
computing to the event driven IoT world. Utilizing serverless edge computing transforms
the previously utilized ship-data-to-code paradigm, which incurred high network latency
and transmission costs, to a ship-code-to-data paradigm [16]. Furthermore, by initially
preprocessing the data at the edge, not only can network bandwidth be saved and faster
response time obtained, but compliance with data protection laws can be ensured as well.
In this manner, customer data can be anonymized closer to the data source, in the same
jurisdiction before being shipped to the cloud for long term storage and aggregation.

Many infrastructure providers have adapted their service offerings to include server-
less products aimed at the network edge, such as AWS Greengrass [17], and Azure IoT
Hub [18], bringing the associated benefits such as fast development, easy deployment,
and seamless scalability to this part of the network. A number of open-source initiatives
are also present, either adapting the existing open-source serverless platforms for the
network edge, or starting from a clean slate, without any pre-existing technical debt, and
developing entirely new solutions. While there is a perpetual discussion of centralized
versus decentralized architectures, and the cycle seems to reverse itself during the years,
serverless at the edge is still a novel research area with many outstanding issues left to
be resolved.

The aim of this review paper is to describe and examine the current state of serverless
research in relation to IoT and outline the open issues. Throughout the paper we use the
widely accepted definition for serverless computing as introduced before, combining the
function as a service, and backend as a service offerings. When moving to the edge, we
use the term serverless edge computing to refer to such serverless workloads that can be
executed either on the data generating devices themselves, or on infrastructure deployed
in their vicinity.

The rest of the paper is structured as follows: in Section 2 we present related research
papers to this topic and how they have tackled the associated problems. In Section 3
we present the research method that we have used, outlining the searching procedure,
inclusion criteria for papers, as well as the analysis and classification processes. In Section 4
we describe the results, showcasing the developed categorization framework and outlining
the state-of-the-art research for applying serverless computing to the edge of the network
in an IoT context. We then proceed with Section 5 where we analyze the current trends
and offer a discussion regarding open issues and threats to validity. We conclude with
Section 6, where we summarize our research findings.

2. Related Work

Serverless computing is an active research topic which has attracted a noticeable
research interest in recent years with a large number of both primary and secondary
literature. The majority of this work is focused on serverless computing in the cloud,
categorizing it as an emerging technology with potentially great impact to various fields
and use-cases in the future.

Varghese et al. [19] argue that with further advancements to the serverless paradigm,
it can become a viable alternative for many more applications, including IoT ones which
are primarily event driven. The authors of [13] share this vision for serverless computing,
classifying it as the driving force behind sensor networks at the edge in the future, together
with the help of blockchain and artificial intelligence (AI). The large applicability of this
new paradigm is evident even now, with vastly different use-cases available today, such as
the ability to run JavaScript serverless functions on provider edge infrastructure, offering
faster response time to web users across the globe [20]. Other areas that might benefit
from serverless are further discussed by Shafiei [21] et al. and Hassan et al. [22], including
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real-time collaboration and analytics, video processing, scientific computing, serving of
machine learning models, file processing, smart grid, information retrieval, and chatbots.

By leveraging the effortless scalability that it offers, serverless computing can also be
used for on-demand data processing and execution of resource intensive tasks which can
be sped up by parallelly executing the same function on various compute nodes, where
each instance would work on a smaller partition of the original data. Buyya et al. [23] drive
this concept even further, describing serverless pipelines comprised of multiple functions
chained together with the aim of modeling complex data analysis workflows. Real world
examples are already available in this case as well [24,25]. The data processing does not
need to take place exclusively on serverless platform in the cloud, and instead can be
migrated to the edge as well, optimizing bandwidth usage should the computing resources
meet the required performance [26].

All these different workloads that have unpredictable load levels and need to cope
efficiently with large increases in the number of requests emphasize the need for advanced
resource allocation and scheduling algorithms that can better meet the FaaS quality of
service (QoS) expectations during peaks [23]. A review of existing scheduling optimizations
is offered in [27]. Even though it primarily focusses on the cloud, it is also relevant in
network edge environments.

When it comes to the network edge, the authors of [28] argue that there are significant
benefits to moving serverless computing to this part of the network, and that it should not
be limited to the cloud environment only. The establishment of an edge–cloud continuum
which would allow dynamic workload migration and be transparent to the end users
would bring the best of both worlds, data preprocessing at the edge when reduced latency
is needed, and the vast compute capacity of the cloud for further analysis and long term
storage. Unfortunately, before establishing a true edge–cloud continuum, further research
is needed into efficiency optimizations in terms of runtime environments, their performance
at the edge, and the feasibility of on-the-fly data migration. Hellerstein et al. [16] outline
all of the efficiency problems affecting first generation serverless implementations, such
as the limited execution time of functions imposed by serverless platforms, slow first
invocation of the functions, low performance of input/output (I/O) operations, and limited
support for specialized hardware, such as graphics cards. Discussion about potential
solutions to the initial start up delay is offered by Kratzke et al. in [29], while reviewing
cloud application architectures. Apart from comparing the advantages and disadvantages
of serverless, the utilization of unikernels is proposed as a more lightweight runtime
environment for serverless function execution. However, in order to effectively test any
performance improvements, adequate and standardized benchmarks are needed which
would be capable of cross platform execution. The authors of [30] provide a review of
existing efforts made to benchmark FaaS platforms.

Real-world serverless platforms that are ready to be used also play an important role
in the serverless adoption across its different realms of usage, and they are responsible
for implementing all the other advancements in terms of security, scheduling, and effi-
ciency in a comprehensive, ready to use package. Bocci et al. provide [31] a systematic
review of serverless computing platforms, focusing on supported languages, models, and
methodologies to define FaaS orchestrations. Special attention is also given to security
issues, but single node serverless platforms are purposefully excluded. In our opinion,
even though not natively scalable, single node platforms are still a valuable resource and
can act as a guidance in relevant platform development trends. In a future work they can be
expanded to encompass multiple nodes or can serve as an inspiration to other platforms by
repurposing individual components. Additional analysis, but in a wider context, reviewing
general features of existing popular serverless edge platforms is also available in [20],
which can aid the decision making process when choosing a new serverless solution for
the network edge.

Even though there are research papers that deal with serverless security and eval-
uate isolation levels of the various platforms available today [31], the analysis of Stack
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Overflow [32] questions related to FaaS products suggests that developers rarely concern
themselves with such topics, focusing more on the implementation and functional aspects
of their applications instead. Still, many serverless platforms mandate strong runtime
isolation between different serverless functions, in part mitigating such security concerns,
albeit leading to reduced performance, additional function non-portability, and vendor
lock-in [22].

In conclusion, multiple reviews have identified serverless computing as an emerging
technology with prospects of being utilized in a variety of different contexts, including
IoT. However, to the best of our knowledge, no comprehensive review exists focusing
primarily on serverless edge computing from an IoT perspective. In our opinion, IoT is not
just another use-case for this new paradigm, instead it is the killer application with a great
potential, should the identified open issues be solved.

3. Research Method

In this section we first define the main aim of our systematic review and then proceed
to explain in detail the undertaken steps for searching, classifying, and analyzing the
relevant papers. The applied research method closely follows the guidelines for systematic
mapping studies by Petersen et al. presented in [33].

3.1. Research Aim

The aim of this review paper is to determine the current state-of-the-art research
for applying serverless computing to IoT workloads. To do so, we first examine the
range, direction, and nature of current research in this subject area related to applying
function as a service or backend as a service in an IoT environment. We then proceed to
create a classification framework for serverless computing at the network edge, derived by
analyzing relevant papers to this topic, and through this framework determine open issues
and research gaps, with a focus on scenarios in which serverless computing is applied to
resource constrained environments. Apart from identifying future research opportunities,
this categorization can also aid new researchers who look for an introduction to the subject
area by presenting the recent research on a given subtopic. A detailed explanation of each
step performed to derive the classification framework is available in the subsections below.

3.2. Search

We have used 6 different databases for the initial search of relevant articles. The
databases that we have selected are: IEEEXplore (https://ieeexplore.ieee.org/Xplore/
home.jsp (accessed on 3 September 2021)), ACM Digital Library (https://dl.acm.org/
(accessed on 3 September 2021)), Arxiv (https://arxiv.org/ (accessed on 3 September 2021)),
Google Scholar (https://scholar.google.com/ (accessed on 3 September 2021)), Springer
Link (https://link.springer.com/ (accessed on 3 September 2021)), and Science Direct
(https://www.sciencedirect.com/ (accessed on 3 September 2021)). The database selection
decision was based on past experiences by other authors, and public recommendations [34,35].
We have considered all returned articles for inclusion, and have stopped searching once all
results have been exhausted [36]. The following searching criteria were applied to article
titles, abstracts, and author-provided keywords:

• Studies containing the keywords: “serverless” or “faas” or “function-as-a-service” or
“function as a service” or “baas” or “backend-as-a-service” or “backend as a service”
AND

• Studies containing the keywords: “IoT” or “internet of things” or “internet-of-things”

Multiple variants of the same search term were provided to account for difference
in spelling and the use of abbreviations. In cases where case sensitivity was enabled by
default, it was disabled manually, to mitigate any capitalization variations in the spelling
of the abbreviations. Table 1 provides more details in terms of the utilized search query,
as well as the number of returned results by each source. Grey literature is purposefully
omitted from this review since it is not peer reviewed and wider industry trends can

https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://dl.acm.org/
https://arxiv.org/
https://scholar.google.com/
https://link.springer.com/
https://www.sciencedirect.com/
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be captured from the included articles themselves, taking into account the high level of
interest and number of published items on this topic.

We have avoided more specific keywords relating to the analyzed subject area such
as: edge computing, sensors, service architecture, service oriented architecture, or sensor networks
because we have determined that mandating their presence together with the different
variations of IoT and serverless significantly decreased the number of returned results.
We have instead opted for a more laborious, albeit more precise analysis process where
a general search query was used, and then resorted to individual systematic analysis
of the content, as described in the subsections that follow. This approach allowed us
to manually determine the relevancy of each entry to serverless edge computing in an
IoT context, minimizing the threats to validity imposed by the accuracy of the original
keyword categorization. This has led to an inclusion of additional relevant entries which
would have been excluded, should more specific terms had been used. Finally, by not
requiring the explicit presence of edge as a key classifier, we have avoided the problem
where authors frequently describe serverless issues in a wider context, not necessarily
mentioning or categorizing them as edge-related problems, which in this case would have
led to their omission. Nonetheless, in our opinion, a large number of these issues are
indeed applicable to the network edge as well, and we deem that they provide a valuable
contribution to this review, so they have been included after careful consideration for their
relevancy, respectively.

Table 1. Database results and search query.

Database Results Accepted Query

IEEEXplore 77 29 (“serverless” or “faas” or “function as a service”
or “function-as-a-service” or “baas”
or “backend-as-a-service” or “backend as a service”)
and (“iot” or “internet of things”
or “internet-of-things”)

ACM 27 14
Arxiv 10 2

Google Scholar 45 6
Springer 56 3

Science Direct 2 0

3.3. Study Selection and Quality Assessment

The keyword search using the query shown in Table 1 across all of the selected
databases yielded 217 results. However, attention must be paid to the discussion above
regarding the choice of keywords and their prospective effect on the final results. The
introduction of the AND (“edge” OR “edge computing”) condition would have reduced the
number of results from 217 to 162, whereas the introduction of AND “sensors” OR ”sensor
networks“ would have produced 92 entries. Mandating the presence of AND (”service” OR

“service architecture”) in the existing search query would have resulted in the fewest number
of entries, only 18. These results would have had great impact on the number of accepted
papers after the selection process as well. The presence of edge computing would have
reduced the number of papers by 12, sensors by 42, and services by 51.

The criteria for considering a given paper for further analysis were:

• English language conference papers, journal papers or scientific magazine articles;
• Publish date between 1 January 2015 and 1 September 2021;
• Full-text accessible to the authors of this paper;
• Clear relation to serverless computing in an IoT context at the network edge.

The initial 217 results were narrowed down to 206 after excluding duplicates and
non-English titles. These were then further analyzed by their titles, abstracts, and in cases
of ambiguity, their conclusions as well. This analysis led to a discovery of one paper
that had a title in English, but the full-text itself was written in a foreign language, thus
bypassing the initial language filter. Another 30 results represented incompatible media,
such as: bachelor theses, master theses, doctoral theses, book chapters, or books. Additional
4 papers had to be excluded because even though their content was relevant, they have
not underwent a formal review process, and were published only as preprints, thus being
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grey literature. An interesting phenomenon was the amount of results that did match the
initial search terms, but were not relevant to the topic of interest. This was because the
various abbreviations such as “FaaS” or “BaaS” have been used in a different context, such
as “blockchain as a service”. Their removal reduced the number of results by 21. A number
of results did not focus on serverless computing in either an IoT, sensor network, service
architecture, or edge context, only briefly mentioning some of the search terms, leading
to the exclusion of 79 entries. Finally, even though 6 papers did pass the title and abstract
screening, we were not able to obtain their full-text due to our lack of appropriate publisher
access, and them not being open-access, which led to their exclusion. After these selection
activities, 141 entries were excluded in total, while leaving 65, which further underwent
a full-text analysis. The full-text analysis resulted in the exclusion of 11 papers: 6 as a
result of not being relevant to the researched topic, which was only concluded after they
have been completely read; 3 as a result of low quality and ambiguity; 2 since they were
duplicates with other already included papers, bearing different titles, while keeping large
portion of the content unchanged. During this full-text analysis, 10 additional papers were
identified by applying the snowballing technique [37] scouring the references of the read
papers for additional relevant content. All of these activities resulted in the final acceptance
of 64 records, which were further classified according to the methodology described in
Section 3.5.

Figure 1 shows a graphical representation of the quality assessment process, providing
detailed information about each undertaken step, and the resulting changes in terms of the
number of accepted records.

Figure 1. Number of included and excluded records during study selection.

3.4. Data Extraction

To aid the classification effort and to allow us to develop summary statistics for
the accepted entries, we have manually maintained a list of parameters, containing the
information described in Table 2.
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Table 2. Extracted parameters through database searching and full-text reading.

ID Name Description

1 Paper ID Sequential number of the entry

2 Source The database containing the entry

3 Type Article type (Conference, Journal, Magazine, Thesis, Other)

4 Venue Name of the publication where the entry is published

5 Publication year Publish year of the entry

6 Name Full name of the entry

7 Open-Access Whether the publication supports open-access (True/False)

8 DOI DOI of the entry, if applicable

9 A-Keywords Keywords as specified by the authors

10 Keywords Classification keywords, derived after full-text reading

11 Short Note Structured short description for the acceptance/rejection of the entry

12 Description Short free-text description of the article content

13 Full-text Whether full-text is available (True/False)

Based on the gathered data in terms of publication media for the selected papers
presented in Figure 2, it can be clearly seen that more records are published as confer-
ence papers, with journals following. The number of records published in magazines is
the lowest, which is understandable, taking into account the wider target audience that
they have.

Figure 2. Publication medium for the selected papers.

3.5. Analysis and Classification

The 54 papers that were identified as relevant through the initial database search,
as well as the 10 additional ones that were snowballed were fully read. We used the
keywording technique as described in [38] to assign relevant and descriptive keywords to
each paper, not taking into account the initial keywords specified by the authors. During
the reading process, for each paper the following information was independently extracted:

• Classification notes—applicable keywords, as well as relevancy to other selected papers;
• Summary—paper summary, limited to 3 sentences, outlining the main topics;
• General notes—general information about the paper, used technologies, tackled problems;
• Technical notes—technical information regarding the research, detailed description

and implementation details for the proposed solution;
• Citations—potentially relevant articles that have been cited by the analyzed paper,

subject to further analysis.
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Based on the acquired data, and the applied keywords, the relevant columns were
filled in the table whose structure is given in Table 2. This aided the process of identifying
the main topic of each paper, as well as discovering further related subtopics related to the
main one, allowing us to perform more granular classification. Additional details about
the derived classification framework are available in the results section below.

An extra classification criteria that was used, albeit not directly relevant to the paper
content, was the support for open-access, and whether the analyzed dataset or implemen-
tation were publicly available, thus directly contributing to the cause of open-science. As
providing open-access were classified all publications that had either a full-text or a preprint
available on the official venue web page or at some other relevant location, such as the
researchers’ home institution, their personal profile pages, or on some pre-print database.

4. Results
4.1. Range and Direction of Existing Research

Figure 3 shows the yearly distribution of published articles, based on the data gath-
ered though database searching and snowballing. It is evident that the idea of applying
serverless computing in an IoT context is new and attracts an increasing interest with every
passing year. While it is true that there is a slight decrease in the number of published
papers in 2020, to an extent this can be attributed to external factors as well, such as the
COVID-19 pandemic. The number of papers published so far in 2021 looks promising
and by the end of the year it might prove to be the most popular for IoT serverless edge
research yet.

Of the 64 analyzed papers, 50 in total, or 78 per cent offer some kind of an open-access,
which is very encouraging. However, of these, only 16 were officially made available as
open-access by their publisher or conference organizer, while the remainder were found in
various online libraries and repositories of the researchers’ host institutions, or personal
portfolio web pages of the authors. Figure 4 presents the article distribution in terms of
the location where they are available for download, while Figure 3 shows the number of
open-access articles published per year.

Figure 3. Number of publications per year.
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Figure 4. Availability of open-access papers.

4.2. Classification Framework

As a result of the full-text reading, the article summarization, and attached keywords
to each included paper, we have derived a classification framework containing eight main
topics, and 30 unique subtopics in total. This classification framework is presented in
Figure 5, showcasing the relationship between the various categories and subcategories.

Figure 5. Derived IoT serverless categories and related subcategories.

Some of the subcategories are mapped to more than one category, such as: edge, fog,
cloud, where they are present in the Platform Implementation, Application Implementation,
and Continuum categories. In the case of platform and application implementation the
distinction is clear, a given paper might discuss a new platform architecture capable of
hosting various applications at either of these various locations in the network, or just a
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single novel application hostable at either the edge, fog or cloud. On the other hand, the
Continuum category is reserved for articles that offer a strategy for dynamic workload
migration from one part of the network to another, exploiting their respective advantages,
such as network latency in the case of the network edge or processing capacity for the
cloud case. In this way, it is clear from a given paper’s classification whether different
execution locations are supported, albeit at the discretion of the administrator with no
dynamic migration between them, or the workload execution location can be dynamically
selected based on some rules and conditions.

Similarly, containers, native execution, and WebAssembly are shared between both the
Efficiency and Platform Implementation categories. When discussing Efficiency, these
subcategories relate to a novel approach or optimization made to these runtimes, potentially
applicable to existing serverless solutions as well. On the other hand, in the Platform
Implementation case, the subcategories are used simply for explaining the choice for an
existing runtime architecture. Additionally, AI & ML is also present in both the Scheduling
and Application Implementation categories. In the first case, AI is used in the process of
workload scheduling, optimizing metrics such as latency, price or bandwidth and has no
direct relation to the functionality of the instantiated applications whatsoever. However, in
the second case, AI is simply part of the introduced application, aiding its use-case, and
is not related to the runtime efficiency of the platform itself. A similar discussion can be
made about the presence of blockchain and MEC in both Application Implementation and
Platform Implementation.

Finally, even though there is a complete overlap between the subcategories of Bench-
marking and Application Implementation, their meaning is once again very distinctive.
Both private infrastructure and public infrastructure can be related to the execution location
where an application can be run, describing whether a commercial service is required as
in the case of public infrastructure, or the use of private, self-hosted infrastructure is also
supported. Contrary to this, the same two subcategories present in the Benchmarking sec-
tion relate to specific performance tests developed to evaluate the capabilities of the given
infrastructure where they are performed, and thus have no direct use-case for end-users.
Migration guidelines & benefits from the application perspective relates to tips and recom-
mendations for how the serverless paradigm can benefit various applications, discussing
the associated benefits. From the benchmarking perspective, however, the presence of this
subcategory designates that the presented solution within the research article, such as an
application, new platform, or an advanced scheduling algorithm is evaluated in terms of
the performance that it offers in comparison to existing products.

4.3. Classification of Existing Literature

Using the previously described framework, all 64 papers were categorized according
to the topics that they discuss. Each entry is rated on a scale from 0 to 3 in terms of how
relevant it is to the given category. One primary category is assigned to each entry, denoted
by underlining the three stars representing the rating. The other ratings are derived by
counting the number of subtopics that the entry tackles within the given parent category,
as per the relationships in Figure 5. The primary category selection process does not follow
this rule—it is instead manually assigned based on the entry’s content and discussion
among the authors of this survey, and always has a star rating of three. Due to space
constraints, papers that tackle only a single category are included in Table 3, while the
remaining ones are part of Table 4, grouped by their primary category. Note that some
categories are omitted from Table 3, since no paper representatives tackling solely that
topic were present. We next provide an overview in terms of the content and tackled
subcategories of the papers presented in Tables 3 and 4.
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Table 3. Classification of papers discussing a single serverless issue.

Category Name Discussed By

Application Implementation [13,14,16,19,21–23,32,39–41]
Efficiency [29]

Benchmarks [42]

Table 4. Classification of Papers Discussing Multiple Serverless Issues.

Paper A. Impl. Eff. Sched. Bench. P. Impl. Cont. SIP OSS

[43] 888 889 999 899 889 999 999 999

[44] 888 899 999 899 999 999 999 999

[45] 888 999 999 899 888 999 999 899

[46] 888 999 999 899 999 999 999 889

[47] 888 999 999 899 999 999 999 999

[48] 888 999 999 899 999 999 999 999

[49] 888 999 999 899 999 999 999 999

[50] 888 999 999 999 999 999 899 999

[51] 899 888 899 899 889 999 999 899

[52] 899 888 999 899 889 999 999 999

[15] 999 888 899 899 889 999 999 899

[53] 889 999 888 899 888 999 999 899

[54] 899 999 888 899 999 889 999 999

[27] 899 999 888 999 999 999 999 999

[55] 999 889 888 899 999 999 999 889

[56] 999 899 888 899 888 889 999 999

[57] 999 899 888 899 999 889 899 999

[58] 999 899 888 899 999 889 999 999

[59] 999 999 888 899 888 999 999 899

[60] 999 999 888 899 889 999 999 999

[61] 999 999 888 899 899 889 999 999

[62] 999 999 888 899 999 999 999 899

[63] 999 999 888 899 999 999 999 899

[64] 889 999 999 888 999 999 999 899

[65] 999 999 999 888 999 999 999 899

[66] 999 999 999 888 999 999 999 899

[67] 888 999 899 899 888 999 999 899

[68] 888 999 899 899 888 888 999 889

[69] 889 999 889 899 888 999 999 899

[70] 889 999 899 999 888 889 999 899

[26] 889 999 999 899 888 888 999 889

[71] 899 999 889 899 888 888 999 899

[72] 899 999 899 899 888 889 999 899

[73] 899 999 999 899 888 999 999 899

[74] 999 999 889 899 888 888 899 999
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Table 4. Cont.

Paper A. Impl. Eff. Sched. Bench. P. Impl. Cont. SIP OSS

[75] 999 999 899 899 888 888 999 899

[76] 999 999 899 899 888 889 999 899

[77] 999 999 899 899 888 999 999 899

[78] 999 999 999 899 888 889 999 899

[79] 999 999 999 899 888 889 999 999

[80] 999 999 999 899 888 999 999 889

[81] 999 999 999 899 888 999 999 899

[82] 999 999 999 999 888 889 999 999

[20] 999 999 999 999 888 999 899 899

[83] 999 999 999 999 888 999 999 899

[84] 899 999 889 899 999 888 999 999

[28] 899 999 999 999 999 888 999 999

[85] 999 999 999 999 888 888 999 999

[31] 899 999 999 999 999 999 888 899

[86] 999 999 999 899 889 888 888 889

[87] 999 999 999 899 889 999 888 899

Abbreviations: A. Impl—Application Implementation; Eff.—Efficiency; Sched.—Scheduling;
Bench.—Benchmarks; P. Impl—Platform Implementation; Cont.—Continuum; SIP—Security, Integrity,
Policy; OSS.—Open-Source Software.

Application Implementation is the topic with most published papers in the reviewed
period, with 19 entries in total or 30 per cent of all analyzed papers, as per Tables 3 and 4.
Even though serverless computing was initially targeted primarily at web developers to
simplify the development process, recently novel use-cases have emerged demanding
lower latency and the deployment of edge infrastructure. Serverless computing is espe-
cially suitable for event-driven scenarios [14] involving IoT devices. One such area is
cyber-physical systems, where a successful implementation of a power grid monitoring
solution capable of dynamically responding to unpredicted events and balancing sup-
ply according to current demand has been described [41]. Smart city applications like
monitoring garbage disposal [39], energy usage optimization [47,48], or improving public
transportation systems [49] have also been discussed. However, serverless computing at
the edge can also be utilized without a dedicated infrastructure, by harvesting the com-
puting power of nearby devices instead. Using portable JavaScript runtimes, the authors
of [43] have created a system which can offload processing to devices in the close vicinity
for an AR/VR application [45]. Reports on converting existing serverful applications to
a serverless architecture have also been published [46], with the intention of driving a
higher adoption and outlining the benefits. Nonetheless, a recent survey on Stack Over-
flow, analyzing questions related to the topic of serverless computing [32], shows that the
majority of encountered problems by developers are related particularly to application
implementation. To solve this and to drive a higher level of adoption, formal guidelines
should be published educating developers about the limitations of the network edge.

Efficiency improvements have been made to serverless edge platforms, trying to over-
come the fact that existing serverless platforms developed initially for environments with
plentiful resources are not a good fit for the resource constrained edge. The focus of this
research area is finding alternative runtime environments that do not rely on container-
ization, thus avoiding the slow start-up incurred during the first invocation of a given
function. A promising option is WebAssembly [52] with its portability and fast function
start-up time [51], albeit further work is needed on improving the execution speed of the
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deployed functions. Alternatives include the introduction of unikernels, a surprisingly
under researched topic today, and the development of micro virtual machines [29], with
some implementations already being open-sourced [88].

Scheduling algorithms optimally determining where and when a given function needs
to be executed [53] are another way in which the cold-start problem [63] typical for con-
tainer based serverless systems can be overcome, apart from introducing new runtime
environments. Further optimizations in terms of reduced latency [59], bandwidth [69],
and cost [58] have also been described, depending on the use-case and priorities of the
administrators. Recently, efforts have been made to develop alternative scheduling systems
to popular serverless platforms, utilizing machine learning algorithms [55,62] with the
aim of analyzing historical function metric data and adapting the scheduling decisions
accordingly. However, scheduling decisions are not limited only to the initial placement of
the functions, but can also be extended to live function migration, alleviating unexpected
memory pressure, or dynamically pausing and then resuming function execution on the
same node while waiting for a synchronous operation to complete [60].

Benchmarks can be used to measure and compare the performance of different efficiency
optimizations, scheduling algorithms, and complete serverless platforms in terms of other
alternatives. Multiple benchmarking suites have been proposed [64,66] to this effect,
utilizing a number of different tests, ranging from purpose built microbenchmarks targeted
at measuring raw compute, network, or I/O performance, to all encompassing serverless
applications. Unfortunately, lacking a unified abstraction layer that would be supported
across all serverless platforms, these benchmarking suites are limited in the number of
environments that they support. The addition of a new supported platform is often a
tedious process as a result of the different provider application programming interfaces
(APIs) available or runtime restrictions. Researchers have attempted to solve this issue by
open-sourcing their code and relying on the community to introduce support for popular
solutions. This leads to problems where the majority of authors do publish performance
results about their implementation, but they are hard to verify, replicate, and compare to
other platforms that have not been included in their analysis.

Platform Implementations have decided to adopt the API interfaces of popular cloud-
based serverless products [78] with the aim of solving the issue of vendor lock-in and
cross-platform incompatibility, thus making all existing functions automatically compatible
with the newly presented solution. The development of new serverless edge platforms
using existing commercial solutions is not uncommon, and is mostly focused on features
that are lacking by default. The authors of [79] extend the AWS Greengrass software to
be able to automatically fetch AWS Lambda functions for local execution when there is
such demand. This behavior is possible since both AWS Lambda and Greengrass support
the same function languages and constructs. Others have instead focused on improving
existing open-source serverless platforms and optimizing them for the network edge [67,77].
AI, as one popular use-case of serverless functions, has also incentivized the development of
specialized platforms satisfying its requirements [70,72]. However, by offering easy-to-use
interfaces, and integration with the cloud, it is possible to leverage the proximity of the edge
not only for reduced latency, but also for increased privacy, to preprocess data that would
ultimately be analyzed and aggregated in the cloud. This is especially useful for research
studies that gather various sensor data containing personally identifiable information,
which needs to be anonymized first [26]. A persistent issue faced by all serverless edge
platforms is how to connect with the end-users and end-devices who would invoke the
available functions. With the continuous improvement in mobile network infrastructure
and introduction of new generations of connectivity, the idea of collocating compute
infrastructure with providers’ base stations becomes a reality. The concept of mobile edge
computing (MEC) [73], coupled with serverless can play an important role both for service
providers and end-users alike [69]. By deploying serverless platforms capable of offering
FaaS to prospective customers [53], operators can rent their in-place edge infrastructure,
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while enabling additional IoT use-cases without the need for standalone deployment of
new compute or networking equipment.

Continuum describes a hierarchical execution environment comprised of edge, fog,
and cloud resources, working in tandem with dynamic workload migration between them.
Many serverless edge platforms are not limited to only running at the edge, instead their
aim is to develop versatile products that can be run anywhere, at either the edge, fog, or
cloud, offering the same function syntax across the whole network [68,75]. When coupled
with intelligent scheduling algorithms that can automatically determine the optimal execu-
tion location, as opposed to relying on the administrator to make the right decision [85], a
true edge-fog-cloud continuum [28] can be established. Attempts have been made to offer
such continuums even for commercial products with both cloud and edge counterparts,
but not providing a native integration between them [84].

Security, Integrity, Policy is one of the least researched serverless edge topics, even
though it is of paramount importance, especially in multi-tenant environments where
multiple customers share the same infrastructure for function execution, as depicted by
Table 4. Careful attention is warranted to the level of isolation that the chosen runtime offers,
as well as the behavior for serving new requests. Aiming to reduce the cold-start latency,
many platforms forgo per-invocation isolation, instead reusing the same environment
without clearing it and spawning a new one, leaving leftover files or processes [87]. Another
problem with serverless execution in scenarios where multiple functions are chained
together in a pipeline is the prospect of intermediate data corruption which would require
the repeated execution of the whole pipeline to alleviate the problem. Lin et al. [86]
describe an append-only system storing function inputs and results, allowing granular
reexecution of downstream functions, without affecting the upstream ones in the pipeline,
thus minimizing the effects of any data corruption as well as reducing the time needed for
repair, with low performance overhead.

5. Discussion

It is evident that there is a large interest in employing serverless computing at the edge
of the network, with various research topics tackled. Figure 6 shows the primary category
distribution of the selected papers, with the inclusion of review papers as well. The x-axis
represents the percentage of all papers published in the given year. The y-axis represents
the percentage of all papers which have a connection to the given category. Please note that
the numbers on the y-axis do not add up to 100 per cent because one paper can be relevant
to multiple categories, as shown in Table 4. The color coding of the bubbles relates to the
open-access policy of the papers, with green denoting that all associated papers within the
given category are open-access and yellow representing mixed policy—both open-access
and closed-access are present.

The majority of analyzed papers (67 per cent) have been classified as offering some
level of benchmarking and comparison with existing solutions, which is understandable
taking into account the high representation of both platform implementation (50 per
cent) and application implementation (56 per cent), two categories where performance
discussion and comparison is commonplace. Open-source is also a highly popular category,
accounting for 48 per cent of all entries, with many papers either basing their work on
existing open-source code or publishing their implementation in turn. On the other hand,
very few papers deal with the security aspects of using FaaS platforms, the integrity of
the analyzed and produced data, or with policy in general, such as avoiding vendor
lock-in problems.

A topic that is under active research especially is the past few years is the establishment
of a true edge-fog-continuum. However, additional advancements are needed in the area
of intelligent scheduling algorithms and efficiency optimizations before such erasure of
network boundaries can become commonplace. We present a list of open issues which
we deem need to be solved in order for serverless computing to achieve an even wider
adoption at the edge of the network:
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Figure 6. Primary category distribution per year and open-access classification.

• Development of efficient scheduling algorithms that are capable of handling high
volumes of function instantiations and deletions in short amounts of times, across
different infrastructures, providing an edge–cloud continuum.

• Safe migration of running serverless functions across different environments, allowing
for better resiliency and cost effectiveness.

• Performance improvement of existing serverless function runtimes to make them
suitable for resource constrained devices located at the edge, and migration away from
containerization technologies altogether, by adopting more lightweight alternatives,
such as WebAssembly, and unikernels. However, further research is needed in terms
of execution speed performance, and development of easy-to-use solutions, which
would in turn lead to an increase in popularity.

• Eliminating the cold start problem associated with the dynamic nature of serverless
functions and the scale-to-zero feature.

• Eliminating vendor lock-in, as a prerequisite for a wider adoption, as well as con-
structing more elaborate hierarchical infrastructures, which would include both com-
mercial and private elements. This is also the main issue preventing the establishment
of cross-platform function marketplaces where users can freely exchange existing
serverless functions.

• Improvements to serverless function security and isolation, especially in multi-tenant
environments. Even though security is of great concern for resource constrained
IoT devices, innovative ways in which greater function isolation can be established,
without resulting in increased execution or start-up time are needed. Exhaustion of
resources as a result of ever more present denial of service attacks is also an open issue,
especially for serverless functions utilizing a commercial platform, where billing is
done depending on the number of invocations and the total runtime. An increase
in denial of service attacks aiming to take a given service offline by incurring large
monetary cost to its owners is not excluded.

• Improvements to function chaining, and shift to asynchronous execution where pos-
sible. One of the main benefits of serverless, the scale-down-to-zero feature, cannot
be realized when a chain of subsequent functions is executed in a serial manner, all
waiting for an intermediate result before they can be terminated. Not only does this
lead to less efficient resource utiliziation, but also to increased cost, as a result of each
function being billed independently, even when it is stuck waiting on another one.
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• Lack of comprehensive guidelines for development of new serverless IoT applications,
or migration of existing ones, taking into account the specifics of this new paradigm.

• Support for hardware-acceleration and utilization of specific hardware, essential for
artificial intelligence and video processing workloads.

Finally, limitations to the applied approach must be stated. We have searched six
different databases, evaluating the returned results for relevancy to the given topic. This
limits the exposure to content not indexed by the selected sources, but we have tried to
mitigate this issue by performing a forward snowballing of papers referenced within the
obtained results. Furthermore, our exploration focused only on English language papers.
In terms of the categorization process, the included papers were classified solely on their
actual content, without confirming the feasibility or accuracy of the outlined results, instead
relying on the peer review that they have underwent as part of their submission process.
For this reason, grey literature has been purposefully omitted, as it is not peer reviewed.
We strove to eliminate individual bias during the categorization process by cross checking
the decisions made and discussing differences until a consensus was reached. When no
consensus was possible, majority voting was performed.

6. Conclusions

Using a systematic mapping approach, we have reviewed the state-of-the-art research
in terms of serverless computing in an IoT context, applied at the edge. By searching
six popular paper databases, we have identified 64 papers relevant to the topic, from
an initial pool of 217 results. After performing a full-text analysis on the accepted en-
tries, we have identified eight areas in which existing serverless edge research is focused,
many of them intertwined with one another, blurring the lines between them. These
areas are: (i) application implementation; (ii) efficiency; (iii) scheduling; (iv) benchmarks;
(v) platform implementation; (vi) continuum; (vii) security, integration, policy; (viii) open-
source software.

Using the derived categories in the analysis of the selected papers, we have identified
an increasing interest in applying serverless computing at the edge of the network especially
in the past three years, with 81 per cent of all included papers published within this time
frame. Another interesting trend is the move towards providing support for open-access
for recent research, with 50 of the included papers available in this manner either officially
through their publishers, as pre-prints, or uploaded to an institutional repository.

Even though IoT has the potential to become the killer use-case for serverless comput-
ing at the network edge, nonetheless, a number of discussed issues are unresolved and a
suitable solution needs to be found before a wider adoption can be made possible.
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