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Abstract: Cases of a new emergent infectious disease caused by mutations in the coronavirus
family, called “COVID-19,” have spiked recently, affecting millions of people, and this has been
classified as a global pandemic due to the wide spread of the virus. Epidemiologically, humans are
the targeted hosts of COVID-19, whereby indirect/direct transmission pathways are mitigated by
social/spatial distancing. People naturally exist in dynamically cascading networks of social/spatial
interactions. Their rational actions and interactions have huge uncertainties in regard to common
social contagions with rapid network proliferations on a daily basis. Different parameters play
big roles in minimizing such uncertainties by shaping the understanding of such contagions to
include cultures, beliefs, norms, values, ethics, etc. Thus, this work is directed toward investigating
and predicting the viral spread of the current wave of COVID-19 based on human socio-behavioral
analyses in various community settings with unknown structural patterns. We examine the spreading
and social contagions in unstructured networks by proposing a model that should be able to (1)
reorganize and synthesize infected clusters of any networked agents, (2) clarify any noteworthy
members of the population through a series of analyses of their behavioral and cognitive capabilities,
(3) predict where the direction is heading with any possible outcomes, and (4) propose applicable
intervention tactics that can be helpful in creating strategies to mitigate the spread. Such properties
are essential in managing the rate of spread of viral infections. Furthermore, a novel spectra-based
methodology that leverages configuration models as a reference network is proposed to quantify
spreading in a given candidate network. We derive mathematical formulations to demonstrate the
viral spread in the network structures.

Keywords: multi-agent system; social behaviors; prediction model; network theory

1. Introduction

COVID-19 has recently been classified as a global pandemic by the World Health
Organization (WHO) [1]. Since the spark of the pandemic, there has been a strong contin-
ues international tendency to understand its spread and the fast pace of social contagions.
In general, the epidemiological triad is considered when studying infectious diseases:
(a) the virus itself to consider less virulent strains and the impact throughout the ge-
netic mutations within its lifecycle, (b) the environment where the virus propagates and
transmits—e.g., wind, heat, humidity, etc.—and (c) the host, as our primary focus, which
refers to any being in which the virus survives and flourishes. Viruses are able to naturally
mutate to spread and infect other hosts of different species ranging from insects to humans.
Unfortunately, COVID-19 has already reached humans and now is able to quickly transmit
from one human host to another. Different mediums of transfer are applicable to different
viruses that target suitable host systems with immunity deficiencies. The immune system
may be compromised due to pre-existing health conditions, some of which are chronic
diseases such as hypertension, diabetes, heart problems, etc. Studies on COVID-19 have
reported possible infection routes that are similar to those that have been observed for the
seasonal flu, i.e., transmission through contaminated services or through the air in the case
that the infected individual is at a close distance to others [2]. Thus, local and international
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agencies, i.e., the WHO and CDC [3], as well as governments have recommended social
distancing and self-quarantine to mitigate the spread of the virus. While the novel charac-
ter and contagiousness of COVID-19 are questionable, the current study is highlighted in
Figure 1 [4].

Figure 1. A general overview of the COVID-19 infection process and viral spreading.

Social contagions have changed the functioning of societies from physical spaces
to a more socially networked nature [5]. This requires understanding the social fabric
and values of predefined social networks amongst society members. However, data
generated from social interactions are not well defined or measured, and simple straight-
forward analysis along with the unavailability of proper tools and models to recognize
such spreading have been reported [6]. Hence, it becomes necessary to explore alternative
methods to achieve the best possible understanding of the spread of the virus. One of
these methods is the utilization of artificial intelligence and network science techniques to
understand current societal mobility and to suggest new applicable intervention tactics
that can be helpful to determine strategies to mitigate the spread [7]. The proposed system
architecture—outlined in Table 1—models the effects of social proliferation that result from
agents’ opportunistic explorations and exploitations via the fast interconnectivity to better
understand the current wave of the emergent network-centric spreading. The success of
the proposed system, which measures and predicts the viral spread to identify possible in-
terventions and reduce the mortality of infected patients, is demonstrated through succinct
evaluations of the effectiveness of modeling human individuals generically and cognitively
as intelligent agents and mapping their current social behaviors as an open multiagent
system while taking into account cultures, beliefs, norms, values, ethics, etc.

Hence, we aim to propose a system as an intelligent socio-behavioral analyzer using
date science and artificial intelligence techniques. The system encapsulates two segments:
(a) the intelligent socio-behavioral analysis part, which theoretically models the current
social behaviors of an individual and population as intelligent agents and multiagent
systems for precise evaluations of spreading and contagion, as well as for a better prediction
of the future trajectories; (b) the data science and artificial intelligence part, which takes
the multiagent systems as the inputs and analyzes the data to predict viral spread and
infection routes as early as possible. This novel system should be able to (1) reorganize and
synthesize infected clusters of any networked agents, (2) clarify any noteworthy members
of the population through a series of analyses of their behavioral and cognitive capabilities,
(3) predict where the direction is heading with any possible outcomes, and (4) propose
applicable intervention tactics that can be helpful in creating strategies to mitigate the
spread. Such properties are essential in managing the rate of spread of viral infections [4].
The system architecture should answer the following main questions: How can we model
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the viral spreading and predict social contingency in the time of a pandemic peak? (a)
How can human individuals be modeled generically and cognitively as intelligent agents
and their current social behaviors be mapped as an open multiagent system while taking
into account cultures, beliefs, norms, values, ethics, etc.? (b) How do we understand and
predict the trajectory of the viral spreading and possible infected regions in order to help
with orienting social contingencies and strategizing with the spreading?

Table 1. An outline of the three stages to be addressed in the proposed system.

Input Data Method Outcomes

Human Interactions
at Random Extracted

from the Environment

Conceptual and Theoretical
Modeling of an Open Multiagent

System Considering the Social
Fabric from Human Interactions

Artificially Modeled
Human Populated
Societies/Clusters

Sampled Population as an
Open Multiagent System

Prediction Model Utilizing
Innovative AI Techniques

Predicted Trajectories of
Infections Spreading and
Possible Contingencies

Uninfected/Infected
Real-Life Human Populations

Generic Evaluations to
Include Feature Extractions

and Predictions

Quantified Data of the
Viral Spreading for
Intervention Tactics

The remainder of the article is organized as follows: Section 2 highlights some of the
recent developments in the literature with a slightly similar focus. Section 3 presents two
artificial intelligence perspectives that complement each other to encapsulate a system
that understands the viral spreading of the current pandemic. Section 4 summarizes and
sheds light on possible future directions that are still to be explored to understand the
current pandemic.

2. Literature Review

A virus is a microscopic agent that can multiply only in living cells of animals, plants,
or bacteria [8]. A virus particle is formed of a genetic element, or genome, hosted inside a
protein shell. When some disease-causing viruses enter host cells, they begin producing
new copies of themselves instantly, often outpacing the immune system’s production of pro-
tective antibodies. This progressive and rapid (re-)production can result in cell death and
the transformation of the virus to nearby ones. Some viruses may cause worse scenarios by
replicating themselves and invading the host cell genome, leading to permanent illness or
harmful transformation and cancer [9]. While research shows that some of the viruses that
infect bacteria, plants, and animals (including humans), such as those of the bacteriophage
type, do not cause disease, many of them do. Of those viruses that cause illness, they can
be categorized into two main groups in terms of their time, short-term (acute) diseases, and
long-term (chronic) diseases. Human poliovirus and similar picornaviruses are instances of
severe infections that lock the protein structure in the host cell. Unfortunately, the infected
cell dies within hours of the attack. Another example includes the Vesicular Stomatitis
Virus (VSV) of the family Rhabdoviridae. On the other hand, some other viruses appear
to be less harmful in comparison to the above ones, but can still cause long-term sickness,
although the risk of severe illness may be different for everyone. Examples of this type
include the influenza viruses of the family Orthomyxoviridae, the Poxviruses, Reoviruses,
Togaviruses, Adenoviruses, and Herpesviruses. Some viruses’ danger comes from their
ability to distribute widely [10].
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Close to the end of 2019, a new strain of viruses was discovered in Wuhan City, Hubei,
China, and it is referred to by the WHO as SARS-CoV-2 or 2019 Corona Virus Disease
(“COVID-19”). As a family of RiboNucleic Acid (RNA) viruses, Coronaviruses (CoVs)
cause sicknesses ranging from common cold symptoms to serious critical diseases and
even death—e.g., reports on Middle East Respiratory Syndrome (MERS-CoV) and Severe
Acute Respiratory Syndrome (SARS-CoV) [8]. The source(s) of SARS-CoV-2 transmission is
still unknown. Yet, available genetic and epidemiological data suggest that COVID-19 is a
zoonotic pathogen with potential spillover directly from wildlife or via intermediate animal
hosts or their products. Continued human-to-human transmission has been confirmed
where many healthcare workers have been infected in clinical environments with clear
clinical sickness and fatalities [11]. Although most of the cases were reported in China at
that time, COVID-19 has expanded to more than 200 countries and territories around the
globe. As of 10 April, there have been more than 1,677,000 reported cases, 22% among them
having recovered, while more than 101,000 are reported dead [12]. Most of the reported
infected cases are associated with fever and respiratory symptoms (coughing, shortness of
breath, and pneumonia). However, there is not much information about SARS-CoV-2 to
draw precise conclusions about the transmission mode, clinical presentation, or the degree
and extent to which it has spread [13].

The utilization of artificial intelligence can help in observing the trends in COVID-19
at the national and global level, by analyzing the daily collected data, classifying them,
and predicting the next potential wave of the spread [6]. AI would also be a useful tool in
providing a rapid detection of new cases in countries where the virus is not circulating and
to monitor cases in countries where the virus has started to circulate [14]. Nonetheless, AI
can accelerate the processes of getting epidemiological data and information to conduct
risk assessments at the national, regional, and global levels. Thus, it helps to present
epidemiological information to guide preparation and response measures [15]. Since the
beginning of this pandemic, several research papers discussing COVID-19 from the AI
point of view have been published [16,17]. The work in [15] proposed a simple mathe-
matical model for an early prediction of the outbreak in Mainland China based on limited
epidemiological data. The authors considered finding what they called “unreasonable
data”, which they tried to rule out to come up with a clearer prediction model. The daily
statistics showed that the study succeeded in predicting the cases range in Mainland China
as it was about 80,778 cases as of 10 March. However, it focused on the early state of the
virus spread and did not take into account the long-term changes and waves. Another
work that discussed and predicted the spreading in Mainland China was [18]. To do so,
the study used five statistical methods with the well-known Chinese search engine, Baidu,
to analyze a dataset of social media search indexes for words including fever, dry cough,
chest distress, coronavirus, and pneumonia. Results showed that the new suspected case
numbers were associated significantly with the lagged series of social media search indexes.

The work in [19] offered an analysis and data mining for social media public opinion
related to COVID-19 in China. It used another dataset of related virus keyword from Baidu
with a greater concentration on some provinces. Similar to the previous one, it only studied
the reaction of the public to the virus spread, where there was no true effect of the virus
contagion or spread. The study in [20] offered an overview of the potential area of research
and digital technologies with their possible impact on public health strategies. It discussed
the capability of using the Internet of Things, big data, AI, and blockchain whether directly
related to COVID-19 as in monitoring, surveillance, detection, and prevention of COVID-19
on the one hand or indirectly by analyzing the collected data to mitigate the impact of
the virus. Yet, the study provided no particular method nor model, rather offering a
likely field to examine. Reference [21] provided a mathematical model for calculating the
transmissibility of COVID-19 in South Korea. It presented a simulation and statistical
analysis with the assumption of the probable infection source as a bat, to an unknown host,
to a seafood market reservoir, until it reached humans. However, the authors admitted that
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the accuracy of the mathematical model needs more investigation and verification since
the study was conducted based on limited available data.

The impromptu formations, adaptations, and functioning of human-based networks
have been scientifically impacted by the underlining social interactions [22]. Spatial agents’
interactions evaluate the viral flow of infections to enable, constrain, or limit the trans-
mission [23]. Beneficence and trust are some of the common social traits in homologous
structures formed from continuous cooperative interactions to construct cohesive soci-
eties [24]. Interactions within a cluster/a society are, on the one hand, intra-societal
communications as bonding measures to consider the operations of frequent changes in the
social and economic landscape. On the other hand, inter-societal interactions as bridging
measures are common in traditional societies in order to strengthen social communications
across different clusters for agile adaptations and access to critical resources available in
the social environment [25–27]. Both views of interactions allow the society to synthesize
and recognize social and information demands, i.e., internally or externally, to plastically
adapt to those changes, which in turn influence its members [28].

Socio-behavioral formations are influenced by continues patterns of interactions led
by agents performing complex activities [29], which may affect the individual, as well
as the society’s performance features [30–32]. Interaction protocols characterize working
structures to include hierarchies, holarchies, coalitions, teams, etc. [33]. Those arrangement
patterns define the operation segments of a society since they exhibit very limited explicit
abstract features [34]. Network-centric design stimulates the oversight of operations
through self-integrating coordination, as well as asynchronous temporal freedom, e.g., US-
DDF embraced this paradigm to accommodate collaboration and resource sharing across
work units [35]. The literature guides us to model a society at a generalized level to permit
arrangements of command and control by cutting across domains without functionally
altering internal operations [36,37]. The model should be applicable to understand other
systems besides the spreading of infectious diseases [38], e.g., factory cells, river dam
control, organized labor unions, electrical power grids, and traffic control. In the area of
crowd management, current researchers face difficulty in crowd control and in proposing
efficient algorithms to manage movements and directions [39]. Thus, we embark on
modeling artificial, agent-based networks that possess the features of human counterparts
by exploring and exploiting significant advancements in current deep learning algorithms
and in the field of multiagent systems, which have shown promising results in overcoming
the limitations in strategizing with the crowd [40,41]. The proposed artificial model may
lack long-term temporal history when used to address certain problems in contrast with
the benefit of collective memories and temporal resilience in dynamic human societies.

Recently, we have been witnessing an increasing interest of scientific research to tackle
COVID-19 from different perspectives, ranging from micro-analysis of the virus itself and
how the hosts react internally to it to more generic ways of understanding infections and
transmissions [42]. Some related works discussed in this section set aside the rapid release
of scientific pieces of evidences contributing to the body of knowledge, which has been
estimated to be close to 10 scientific peer-reviewed papers each week. To keep up with
such a rapid pace, this section focused on the systematic reviews of relevant studies to
contribute to our system by assessing, synthesizing, and interpreting the findings with
an impartial summary. Although research discussing the COVID-19 pandemic has been
proposed recently, the number of research works that employ effective AI models is still low.
Even with the existing AI related papers on the virus, those models face many challenges
to be addressed and solved such as limited data resources and a thorough analysis of the
still emergent virus. For such reasons, we aim to study the COVID-19 virus from different
perspectives to overcome the gap in the literature and provide an efficient and reliable
systematic model that can reflect humans and their rapid social behaviors for better and
quicker analysis, studying the factors that may have an impact on the social spreading of
the virus, and proposing an accurate and effective understanding of the viral spreading of
the COVID-19 pandemic.
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3. The Underlying Intelligent Socio-Behavioral Architecture

We have observed the need for an intelligent system that analyzes the social activities
of people on a daily basis. This system plays the role of an intelligent socio-behavioral
analyzer that utilizes date science and artificial intelligence techniques to encapsulate
two segments:

A. The intelligent socio-behavioral analysis part, which maps the current social behaviors
of an individual and population to intelligent agents and multiagent systems for
precise evaluations of spreading and contagions, as well as for a better prediction of
the streams’ future trajectories.

B. The prediction model part, which takes the multiagent systems as inputs and analyzes
the data to predict viral spreading and infection streams as early as possible.

The encapsulation of those two segments will lead us to form an intelligent system that
helps to understand the spreading of the virus and to predict its future trajectory as early
as possible. The features of the system include adaptiveness, smartness, responsiveness,
and accuracy. The system should assist a non-medical/health specialist to understand the
viral spreading of the virus.

3.1. Segment A: The Socio-Behavioral MAS Model

COVID-19, as stated in the literature, is mainly aerosolized and transmitted from one
host to another [43]. Social distancing has been encouraged to overcome mass infection
and to stabilize the curve of new cases. Here, socio-behavioral analysis comes to a place
where the social activities of the population are the main focus. The aim is to model the
current population as a multiagent system taking into consideration their values, norms,
culture, and beliefs. The field of agents and multiagent systems has proven its efficacy in
modeling human behavior and social interactions ranging from individual entities to crowd
evacuation, control, and management. Different stages are considered for this objective to
generally include,

1. Formally modeling individual human beings as rational agents with properties
essential for building collective intelligence. Such intelligent agents are aware of
their surroundings and are able to socialize with their peers, as well as act upon
climate/societal changes.

2. Modeling societies as intelligent multiagent systems while taking into consideration
the social engagement factors. This is obvious from the literature, and possibly due to
our limited knowledge, some cultures have been overlooked when modeling societies,
yet many existing models may not applicable in real life.

3. Those models will ease the understanding of the socio-behavioral system within the
society in focus besides other useful aspects in analysis and predictions. Multiple fac-
tors are to be considered in the modeling of a social system including links-prediction,
social-structure/-topology, organizations/team formation, etc. Figure 2 depicts a
generic social multilayered model of a society in progressive motion.
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Figure 2. Generic multilayered model of a society in progressive motion.

To formally model human society in a progressive motion of changing topologies, three
main dimensions are considered. In general, agents reflect entities within a society who live
on or are a part of some sort of invisible/implicit networked fabric that intertwines them
together even though they may not be aware of it. Such a substrate allows entities/nodes
to link up in any form with each other, when possible, forming a network that is not fully
connected naturally. Different connections will form different networks, and each network
has its own properties that distinguish it from others. Major properties should naturally
be noticeable in their to-be-defined profiles in order to allow different agents in the open
system to easily navigate through the network. The network generically forms a graph of
nodes as agents and edges that link them together. The number of edges will change as a
result of changes in the connections graph. Edges may richly or weakly capture ties among
individuals because ties are most likely to appear when a mutual event occurs. Networks
should be aware of major changes in their structures so that they maintain updated profiles
with the important essence of their existence (e.g., agents and links). Important concepts of
the network profile are presented in Definition 1.

Definition 1. A network structure of continuous social interaction presents a tuple of 〈{Members},
Interactions, {Policy}, Localization〉, where:

• {Members} is a set of every being involved in the societal graph that is a reflection of a set of
agents in the MAS. An agent profile that is i ∈ {Members} is presented in 2.

• Interactions reflects the social topologies of the network that connects agents together.

• {Policy} is a set of rules to govern members’ activities, which include and may be superseded
by more specific norms, rules, and roles.

• Localization defines the current range and orientation for the area of focus to help in the
control and perhaps in providing a better reflection of the spreading.

As a part of the network, agents have various parameters and qualities that identify
and differentiate them from others. Those parameters may change over time based on
previous experiences that agents may acquire through their existence (i.e., life-cycle). When
it comes to competing activities, such parameters play an important role in the final
determination. Agents provide their parameters publicly in order to participate or to join
mutual activities with others. Since agents’ parameters will envision their expected actions,
we describe them as profiles. Thus, each agent will have a public profile that contains all



Computers 2021, 10, 12 8 of 15

pertinent agent attributes including their allegiances, capabilities, fitness, etc. This profile
is presented in Definition 2.

Definition 2. Every member agent within a societal graph (i.e., ∀i ∈ {Members}) possesses a
profile that is a tuple of 〈 {Relationships}, {Fitness}, {Pre f erence}, Autonomy, Inheritance,
Position 〉, where:

• {Relationships} is a set of relations that an agent has previously formed with other agents or
organizations, e.g., wife/husband, household members, coworkers, etc.

• {Fitness} is the set of agent’s initial fitness values for different types of actions based on
previous experiences.

• {Pre f erence} is an agent’s ordered preference for certain activities while avoiding others. It
takes into consideration the individual initial state of norms, values, roles, and ethics.

• Autonomy is the autonomy level at which an agent can perform actions independently of
others. A highly autonomous agent works more independently while another with a lower
autonomy seeks joint actions with others.

• Inheritance refers to the preexisting health conditions and possibly inherited and yet hid-
den ones.

• Position presents a current location and a possible orientation considering close relations and
preferences.

The agent profile presented in Definition 2 is not static. Agents should update their
profiles continuously to include possible improvements of gain or loss while performing
actions. Agents may include more information in their profiles that may not fall into any of
the parameters listed above; however, those parameters are only highlights of the most
common requirements for possible interactions. Profiling daily activities to ease possible
interactions is revealed next.

There are many reasons that compel agents to socially interact with each other.
The most pertinent reason for our formulation is to gather for a common activity. The size
of an activity is based on the action that agents aim to pursue. Each distinct action will
correspond to a distinct associated activity profile that is used in selecting best-fit agents to
perform certain activities. An activity profile must contain action decomposition details
that provide precedence and coordination requirements. With enough details, a plan can
be retrieved from the storage of prior plans. If no plans match, a new plan is conceived.
Most often, activities will have corresponding procedures/plans that will be retrieved from
a case history. We have a set of actions that represent different activities’ profiles, where
every activity profile is based on one action (i.e., Actionj ∈ {Action}). Definition 3 shows
the components required for each activity profile.

Definition 3. An activity profile for a member agent that performs persistent actions is considered
to be a tuple of 〈Protocol,

#                            »

Coordination, Actionj, Precedence, Independence〉, where:

• Protocol stands for controlling participants and available positions (i.e., roles).

•
#                            »

Coordination is a vector of coordination rules for each agent or an agent group based on an
agent profile.

• Actionj is the action for which the activity profile exists, which includes a set of tasks and
a set of plans that should be followed to achieve this action. More details about Action are
presented in Definition 4.

• Precedence is the precedence of the activity domain compared with others. That is, the priority
level of this activity, to be addressed next, must be less than or equal to one, where one is the
highest priority.

• Independence stands for the independence of Actionj in the activity-profile from other com-
peting actions that can be executed at the same time.
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There exists an action profile for each activity to be assigned that differentiates it from
other competing activities. Such a profile allows an agent to prioritize actions considering
the eagerness and duration. When an activity is chosen, the action profile must identify
different components presented in Definition 4.

Definition 4. Each action, i.e., ∀Actionj ∈ {Action}, is a tuple: 〈 #»

Ψ, {Procedure}, {Externality},
ξ, {Internality}〉, where:

• {Procedure} is a set of structured steps needed for achieving the Actionj. It should lead to the
easiest and most safe way to complete an action in the least execution time possible.

•
#»

Ψ is a set of sub-actions that agents need to handle for executing a procedure, which is a
set of consecutive sub-actions : 〈ψ1, ψ2, . . . , ψm〉, and m is a unique independent number
of sub-actions. Each sub-action will have its own Precedence, which is the temporal order
of this sub-action among all other sub-actions in the next set of sub-actions to be assigned
to agents, and Independence reflects the level-of-dependency that indicates which sub-action
can be achieved alone without any other requirement of prior sub-actions or in overlapping
completion times.

• {Externality} is the set of external events upon which an agent generates reactions in order to
address certain internal events with the {Internality}.

• ξ is a mapping function to perceive the relevance of an external event to multiple internal ones,
e.g., ∃ex1 → {in3, in5} where ex1 is an external event of the set {Externality} and in3 and
in5 are random internal events within the set {Internality} that have been affected by the
external one. It helps an agent to decide on which reaction it should perform as a result of a
certain outside action.

• {Internality} is the set of internal planned statuses to be achieved for the sub-action’ completion.
Internal event-based actions and interactions result in social effects such as synergies and social
capitals, which are of importance to new link generation, i.e., collaboration and adaptation of
emergent formations.

A general consideration of the procedure is to be built of And-Orgraphs of actions.
Naturally, behavior dependency is a factor since mutual actions may sometimes have
overlapping durations. Some actions are dependent on the completion of others or to
be completed in parallel with them both internally or externally. Both internality and
externality play major roles in agents’ current and future social engagements, which
may help in the prediction of future social behaviors and possibly link formation and
interactions. At this stage, it becomes very obvious that modeling human society as an
open multiagent system helps in the understanding of the current wave of the pandemic
affecting human populations. We introduced four profiles that when modularly combined
will better reflect a society in an abstract form in order to help us follow where the current
wave is right now and where the stream is heading. The following subsection proposes
generic steps to predict the trajectories of the streams and introduces a novel spectra-based
process that allows us to mirror what happens in one population or another without a
baseline spark of the infection stream.

3.2. Segment B: Prediction and Orientation

The second stage of the system is to utilize state-of-the-art deep learning methodolo-
gies in order to take advantage of the modeled data to predict possible infected individuals
and the trajectory of the spreading stream. The inputs will be replicated and distributed to
four modules for further analysis. The four modules are as follows:

1. The first module is a social behavior analysis module where suitable AI algorithms are
modified to detect direct social engagements and predict the level of contact taking
into account the distortion that may occur. The algorithm aims to measure how long
a person has stayed in the radius of approximately less that two meters of an infected
person as a means of getting infected.
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2. The second module is the immunity detection module where the second AI algorithm
detects and predicts the preexisting health conditions of a patient. The algorithm
should measure and analyze the patients’ recent medical tests and reports. The aim of
this algorithm is to measure the estimated immunity level of a patient based on his/her
medical records. Multiple clinical conditions have been reported to be contributing to
the severity of infection including hypertension, heart problems, diabetes, cancer, etc.
For simplicity, one of them can be considered as the most common chronic disease,
e.g., diabetes, throughout the evaluation process.

3. The third module is a close network analyzer module as an additional module for the
sole purpose of looking at the immunity aspect of a patient. It is a simple algorithm
that analyzes the patient’s household members and close social networks. The close
nets analysis algorithm looks at answers from a fixed set of questions provided by the
patients or their medical records.

4. The last module is the severity time stamp analyzer module. IT is a simple algorithm
that analyzes the current severity of infections within a predefined radius. Due to
COVID-19’s transition range and period, patients with higher intensity areas are at
higher risk of being infected than those in rural areas.

The output from these four modules is forwarded to an artificial classifier module.
This module implements a fusion classifier algorithm, where the inputs from the four
modules are fused first based on some weightings, and then, a pre-trained classifier model
can decide and provide the probability of whether the person has been infected or not.
Figure 3 highlights the process of Segment B of the system from receiving inputs to the
predictive outcomes.

Figure 3. A simplified framework that depicts the process of feature extractions up to predictions.

The implementation of the above theoretical framework in an expert software system
is through the following five modules.

• The first one is responsible for performing standard pre-processing to the input data
to minimize bias reporting.

• The second module is a specific output generator module as a reference for a few of the
algorithms implemented as part of the proposed AI theoretical detection framework.

• The third module is an intelligent prediction module in which the proposed theoretical
framework is implemented.
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• The fourth and most important module for clinicians and health professional would
be the reporting module. Upon receiving the output decision from the intelligent
prediction module, it extracts data from various sources such as the social contacts,
immunity levels, close nets, and severity time stamp. The generated report is meant
also to give some insights on how the decision making was made.

• The last module incorporated into the system is a database of records including the
input and output, i.e., reports. The multi-sensory data captured are used to provide
quantitative support for the diagnosis, care, and treatment, replacing the current
labor-intensive techniques.

At this point, member agents, as well as their social behavioral activities have been
modeled as a complex open multiagent system. We also introduced a prediction method-
ology that utilizes state-of-the-art deep learning methods to predict the trajectory of the
viral spreading. Next, we observe the possibility of mirroring the current modeling on a
different segment of the population to reflect the possibility of upcoming trajectories and
future intervention tactics beforehand.

3.3. Mirroring and Prediction

In order to understand the spreading within a social complex network, the consider-
ation in this study is of two small segments of networks: (a) a candidate network graph
represented as a finite matrix and (b) a sampled network graph of the same size reflecting
the current wave of spreading. The purpose is to understand the extent to which a candi-
date network reflects the current spreading of the already infected network. We benefit
form graph-spectra-based formulations. Therefore, to model a small segment of a network,
we consider a graph G = (Members, Relationships) with a set of vertices as network mem-
bers and edges to reflect interactions among these member entities. The adjacency matrix
for the graph G that includes n members is described as follows:

An,n =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n


where ai,j ∈ {0, 1}, i.e., “1” if the two members have a relationship and “0” otherwise.
The term “spectra” refers to the eigenvalues of A with standard notations denoted by
λ1(A), λ2(A), λ3(A), · · · , λn(A) in descending order, respectively, i.e., λ1(A) ≥ λ2(A) ≥
λ3(A) ≥ · · · ≥ λn(A).

Spectra have been studied before in the literature [44]. The authors in [44] compiled
several signatures of the underlining network structures, e.g., triad for scale-free networks.
In a similar perspective, the diffusion dynamics is governed by the largest eigenvalue,
and the initial spectra reflect the threshold of diffusion [45]. Other parameters related to the
spectra of a network are volumes, degrees, chromatics, cliques, cycles, and diameters [46].
Besides the adjacency matrix, spectral analysis of a graph Laplacian (L) of a network is
another important matrix to analyze the structure of the underlining network; readers
are advised to see [47]. As we focus on the adjacency matrix, the Laplacian in short
subtracts the adjacency matrix from the diagonal degree matrix (diag(·)) of each node,
i.e., the ith node has a degree ki that is {diag(v) : v ∈ Rn

≥0} in some non-negative tuples
va, vb, vc, · · · ∈ Rn

≥0.
We compare the ideal network with the infected one in order to model an infected

segment overlaying the defined network. We take advantage of the configuration model,
which generates random networks from a given degree sequence. The degree sequence is
not restricted to having a specific degree distribution and prompts choosing any desired
one. Interested readers are referred to [48].

Consider the network graph G and the corresponding configuration model network
as Gα. Let {λ1, λ2, λ3, · · · , λn} represent the spectra of G in the descending order of values.
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Similarly, {λα
1 , λα

2 , λα
3 , · · · , λα

n} represents the spectra of Gα in the descending order of
values. The possible spreading Ps(G) of G is measured by:

Ps(G) = ∑
∀i∈$

(λi − λα
i )

where $ is the number of small sets presented in the candidate network of graph G.
At this point, we consider the modularity of the graph. Therefore, let there be a new

matrix (B) that excludes the configuration model matrix from the adjacency matrix, i.e., let
B = A− C where A and C correspond to the adjacency matrix of G and Gα, respectively.
The expectation of matrix C is denoted by another matrix S, where the ijth entry of matrix

S is S[ij] =
kikj
2m , and ki and k j are the degree of node members i and j, respectively, and m

is the total number of edges/relationships in the network graph G. In our consideration
of a given network G, while the adjacency matrix (A) is a constant matrix, the following
equality holds for the expectation of a matrix:

E[B] = E[A− C]

E[B] = E[A]− E[C]

2mM = A− S

where matrixM is modularity matrix corresponding to A withMij =
1

2m · (Aij −
kikj
2m ) [49].

Let θ be the unit eigenvector for the adjacency matrix A and θTθ = 1. Let λ be the
associated eigenvalue, then:

Aθ = λθ

(2mM+ S)θ = λθ

2mMθ + Sθ = λθ

2mθTMθ+ θTSθ = λθTθ

∴ 2mθTMθ+ θTSθ = λ

Let β and γ be eigenvectors/unit-vectors corresponding to matricesM and S, respec-
tively, and the corresponding eigenvalues are λM and λS. Consider θ = β + ∆β = γ + ∆γ.
The above equation results in:

2m(β + ∆β)TM(β + ∆β) + (γ + ∆γ)TS(Γ + ∆γ) = λ

After performing standard linear algebraic operations, we have the following:

2mλM + 4mλMβT∆β + 2λSγT∆γ

+ 2m∆βTM∆β + ∆γTS∆γ = λ− λS
(1)

The modularity in spreading is stated in Equation 1, where we have the following:

• λ− λS contributes to an expected spreading Ps of the given network G.

• λM corresponds to the contribution of modularity in determining the matching
trajectory of the spreading.

• λMβT∆β signifies the change in the membership of nodes in different groups if
clustering is performed using the eigenvectors of the modularity matrix against the
eigenvectors of the adjacency matrix.

• 2λSγT∆γ signifies the change in the membership of nodes in different groups if
clustering is performed using the eigenvectors of the S (expected partitioning under
the configuration model) matrix against the eigenvectors of the adjacency matrix.
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• λS signifies the number of self-loops generated in the configuration model correspond-
ing to the given network, and it includes the effect of the higher growth rate of the
maximum degree node in the network.

• ∆βTM∆β corresponds to the contribution of the re-distribution of edges while parti-
tioning is done using the modularity matrix.

• ∆γTS∆γ corresponds to the contribution of the re-distribution of edges while parti-
tioning is done using the S matrix.

To this end, we observed the current behavior of the viral spreading from two per-
spectives: (a) from a micro-perspective by modeling an individual as a single intelligent
cognitive agent entity, and any future collective intelligence it entails is considered an
open multiagent system; and (b) from a macro-perspective by observing the population
as a system of nested systems, where the macro-entities are agents’ societies with rational
behaviors and slightly complex uncertainties—examples surpass micro-organisms going
through the crowd like behaviors to discuss complex adaptive systems. In future work,
several empirical evaluations will be conducted throughout the construction process going
to the validation of the proposed system using statistically collected real-life data from
datasets available online, as well as extracted specialized data.

4. Summary and Future Work

The disruptive nature of the COVID-19 pandemic, observed recently, demands rapid
deployments of effective interventions. In the time of a pandemic, traditional approaches
such as experimental testing, iterative development, and clinical validation are not feasible.
A more realistic strategy relies on contagion control, requiring us to identify spreading
strategies in order to manage the transmission of the virus. The fields of network science
and artificial intelligence have developed and validated a series of computational tools
to identify and strategize the spreading of infections. Here, we step across the domains
to propose an intelligent system that not only understands the current nascent collective
human behaviors in comparison with the spreading, but further to predict the stream of
infections, which will hopefully prevent the spreading by providing detailed strategies and
tactics applicable for each specific scenario.

The future work should validate the effectiveness of the proposed system through a
series of empirical evaluations using real-life data in comparison with current state-of-the-
art methodologies. Empirical evaluation is simply an examination and proof of a theory by
experimental observation. The core to a suitable empirical evaluation is the precise design,
planning, and implementation of the experiments in a way that the specified factors to be
examined can be simply distinguished from other unrelated ones. As a global pandemic,
there have been multiple releases of real-life open source data for researchers to validate
their proposed methodologies on them. As this article considers a more generic design,
future work should take advantage of such available data to evaluate and validate the
effectiveness of the model and see if such a model is applicable to different regions, cultures,
or groups. Data analysis can be carried out using regression analysis or another proper
statistical method to test the hypotheses proposed in this study and to compare the findings
with the available results. This will help to further understand how precise the proposed
system is and to what extent it can be applied.

Moreover, state-of-the-art epidemiological studies can be considered in order to evalu-
ate the proposed system through the study of what has caused the spreading and where
the stream is heading. Different types of epidemiological studies are still open to be im-
plemented for data collection using suitable analysis for later interpretations. Different
phases of the research can also run on different validation methodologies in that cross-
sectional (prevalence) studies, on one side of the spectrum, can be used for the first stage of
development to understand the representative cluster at a specific time due to the wider
coverage of information with an inexpensive and quick implementation. On the other
side of the spectrum, randomized control trials are suitable in the second section of the
system where the prediction takes place since this interventional study will highlight
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and compare changes in the symptoms and vitality rate. In general, targeted testing for
COVID-19 should begin for a predetermined period of time and involve people who are
more susceptible to being infected due to recent travel to high risk countries or have been
in contact with infected patients.
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