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Abstract: In the past, peritoneal metastasis (PM) was considered as a terminal stage of cancer.
From the early 1990s, however, a new comprehensive treatment consisting of cytoreductive surgery
and perioperative chemotherapy has been established to improve long-term survival for selected
patients with PM. Among prognostic indicators after the treatment, completeness of cytoreduction
is the most independent predictors of survival. However, peritoneal recurrence is a main cause of
recurrence, even after complete cytoreduction. As a cause of peritoneal recurrence, small PM may be
overlooked at the time of cytoreductive surgery (CRS), therefore, development of a new method to
detect small PM is desired. Recently, photodynamic diagnosis (PDD) was developed for detection of
PM. The objectives of this review were to evaluate whether PDD using 5-aminolevulinic acid (ALA)
could improve detection of small PM.

Keywords: aminolevulinic acid; photodynamic diagnosis (PDD); peritoneal surface malignancies;
PEPT1; ABCG2; ferrochelatase

1. Introduction

In the past, peritoneal metastasis (PM) was considered as a terminal stage of cancer, and patients
were treated with palliative surgery or chemotherapy. From the early 1990s a new comprehensive
treatment consisting of cytoreductive surgery (CRS) and perioperativeintraperitoneal and systemic
chemotherapy has been considered as an effective treatment modality that can provide long-term
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survival for select patients with PM [1–4]. Among prognostic indicators after comprehensive
treatment, completeness of cytoreduction and extent of disease are the most independent predictors
of survival. However, peritoneal recurrence develops in about 70% of patients, even after complete
cytoreduction [5,6]. As a cause of peritoneal recurrence after complete resection, small PM may be
overlooked at the time of CRS. Therefore, the development of a new method to detect small PM
is desired. Recently, photodynamic diagnosis (PDD) using aminolevulinic acid was developed for
detection of PM from gastrointestinal cancer, ovarian cancer, and mesothelioma. The present review
represents recent results of PDD to detect PM. The literature in PubMedwas searched in June 2016 by
combining synonyms of “PDD”, cancer and peritoneal metastasis.

2. Rationale of Photodynamic Diagnosis (PDD) to Detect Peritoneal Metastasis Using
5-Amino-levulinic Acid

Initially, PDD for peritoneal malignancy had been proposed in animal models [7]. In those
studies the identification of small PM was significantly increased by 5-aminolevulinic acid (ALA)
administration followed by fluorescence detection (Figure 1) [8]. ALA is the natural precursor of
protoporphyrin (Pp)IX and heme. Intrinsic ALA is synthesized from succinyl-CoA and glycine by
ALA synthase, and ALA synthase is controlled by heme through a feedback mechanism. In the heme
synthesis pathway, ALA is converted to porphobilinogen by ALA dehydratase as a rate-limiting
enzyme, and metabolized to PpIX by 6 processes (Figure 2). After excess administration of ALA, ALA
is accumulated in cancer cells through ALA influx transporter, expressed on cancer cell membrane.
As a result, intracellular PpIX synthesis increases, and PpIX accumulates in cancer cells. PpIX in cancer
cells emits a red fluorescence under violet light at 405 nm (Figure 3) [9–11].

Yonemura et al. reported that PpIX contents (0.0098 ± 0.0081 nm/mg-protein) of ALA-positive
PM were significantly higher than those of ALA-negative PM (0.0019±0.0015 nm/mg-protein)
(p = 0.0095) [12]. (I changed the reference)

Cancers 2017, 9, 23 2 of 13 

 

of survival. However, peritoneal recurrence develops in about 70% of patients, even after complete 
cytoreduction [5,6]. As a cause of peritoneal recurrence after complete resection, small PM may be 
overlooked at the time of CRS. Therefore, the development of a new method to detect small PM is 
desired. Recently, photodynamic diagnosis (PDD) using aminolevulinic acid was developed for 
detection of PM from gastrointestinal cancer, ovarian cancer, and mesothelioma. The present 
review represents recent results of PDD to detect PM. The literature in PubMedwas searched in 
June 2016 by combining synonyms of “PDD”, cancer and peritoneal metastasis. 

2. Rationale of Photodynamic Diagnosis (PDD) to Detect Peritoneal Metastasis Using 
5-Amino-levulinic Acid 

Initially, PDD for peritoneal malignancy had been proposed in animal models [7]. In those 
studies the identification of small PM was significantly increased by 5-aminolevulinic acid (ALA) 
administration followed by fluorescence detection (Figure 1) [8]. ALA is the natural precursor of 
protoporphyrin (Pp)IX and heme. Intrinsic ALA is synthesized from succinyl-CoA and glycine by 
ALA synthase, and ALA synthase is controlled by heme through a feedback mechanism. In the 
heme synthesis pathway, ALA is converted to porphobilinogen by ALA dehydratase as a 
rate-limiting enzyme, and metabolized to PpIX by 6 processes (Figure 2). After excess 
administration of ALA, ALA is accumulated in cancer cells through ALA influx transporter, 
expressed on cancer cell membrane. As a result, intracellular PpIX synthesis increases, and PpIX 
accumulates in cancer cells. PpIX in cancer cells emits a red fluorescence under violet light at 405 
nm (Figure 3) [9–11]. 

Yonemura et al. reported that PpIX contents (0.0098 ± 0.0081 nm/mg-protein) of ALA-positive 
PM were significantly higher than those of ALA-negative PM (0.0019±0.0015 nm/mg-protein)  
(p = 0.0095) [12]. (I changed the reference) 

 
Figure 1. Peritoneal metastasis from ovarian cancer emitted strong red fluorescence under 
irradiation of violet light after oral administration of 5-aminolevulinic acid. Peritoneal metastases 
were emitted as red color. 
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of violet light after oral administration of 5-aminolevulinic acid. Peritoneal metastases were emitted as
red color.
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Figure 2. Biosynthesis pathway of PpIX and heme. 

 
Figure 3. Molecular structure of 5-ALA, and 5-ALA-based PDD. Following excitation with blue light 
(λ = 400–410 nm), the PpIX emits a red-violet light of 635 nm. This phenomenon is potentially 
exploitable to detect tumor and is named 5-ALA fluorescence-guided surgery. 

3. Molecular Mechanisms of Selective Accumulation of 5-ALA and PpIX in Cancer Cells and 
Cancer Tissues 

The reasons why PpIX excessively accumulates in cancer cells remain unclear. The following 
two hypotheses have been proposed. (1) PpIX accumulates due to decreased ferrochelatase activity 
in cancer cells [10]; (2) ALA has a high affinity for the malignant cells [11]. 

As shown in Figure 2, 8 enzymes contribute in the heme synthesis pathway, and up-regulation 
or down-regulation of these enzymes may influence the ALA fluorescence. In 5 gastric cancer cell 
lines, Hagiya et al. reported that expression level of these 8 enzymes were same and did not 
correlated with ALA fluorescence [13]. In the malignant glioma cells, the ferrochelatase activity was 
lower than in normal brain tissue [10]. In the normal brain cells, a large amount of PpIX was 
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Figure 3. Molecular structure of 5-ALA, and 5-ALA-based PDD. Following excitation with blue
light (λ = 400–410 nm), the PpIX emits a red-violet light of 635 nm. This phenomenon is potentially
exploitable to detect tumor and is named 5-ALA fluorescence-guided surgery.

3. Molecular Mechanisms of Selective Accumulation of 5-ALA and PpIX in Cancer Cells and
Cancer Tissues

The reasons why PpIX excessively accumulates in cancer cells remain unclear. The following
two hypotheses have been proposed. (1) PpIX accumulates due to decreased ferrochelatase activity in
cancer cells [10]; (2) ALA has a high affinity for the malignant cells [11].

As shown in Figure 2, 8 enzymes contribute in the heme synthesis pathway, and up-regulation or
down-regulation of these enzymes may influence the ALA fluorescence. In 5 gastric cancer cell
lines, Hagiya et al. reported that expression level of these 8 enzymes were same and did not
correlated with ALA fluorescence [13]. In the malignant glioma cells, the ferrochelatase activity
was lower than in normal brain tissue [10]. In the normal brain cells, a large amount of PpIX was



Cancers 2017, 9, 23 4 of 13

biosynthesized in the mitochondria after administration of ALA, but an excessive amount of PpIX
metabolized into heme by ferrochelatase, resulting in the decrease of the PpIX contents. In contrast,
PpIX accumulated in malignant glioma cells, because of lower content of ferrochelatase. In bladder
cancer, ferrochelatase expression was downregulated, and the PpIX contents of tumor tissue increased
after ALA administration [13].

Different from malignant glioma and bladder cancer, Yonemura et al. reported no correlation
between ferrochelatase expression and ALA PDD fluorescence status in PM tissues [12]. Additionally,
they reported that no relation was found between ferrochelatase expression and PpIX contents in PM
tissues [12]. Accordingly, PpIX contents in PM did not depend on the ferrochelatase activities.

Recently, the expressions of transporters of ALA and its metabolites were reported to contribute to
the accumulation of PpIX [14,15]. ALA influx transporter (peptide transporter PEPT1) and porphyrin
efflux transporter (ATP-binding cassette (ABC) transporter ABCG2) have important roles in regulating
intracellular PpIX levels [11,13,16]. Our experimental study using gastric cancer cell lines suggested
that upregulation of PEPT1 (ALA influx transporter) and downregulation of ABCG2 (porphyrin efflux
transporter) genes could play pivotal roles in ALA-induced tumor specific PpIX accumulation [16].
PEPT1 is reportedly involved in the cellular uptake of ALA coupled with the co-transporter of
H+/H3O+ [16,17]. PEPT1 immunoreactivity was found on the cancer cell membrane (Figure 4).
Yonemura et al. reported that a significant increase of PpIX contents was found in PM showing
up-regulation of PEPT1 expression [12]. Additionally, a significant correlation between PEPT1 mRNA
expression and ALA PDD fluorescence status was found in clinical samples from PM [12,18].
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Figure 4. Immunohistologic finding of PEPT1 in peritoneal metastasis, using anti-PEPT1 rabbit
polyclonal antibody H-235 (1:200 dilution; Santa Cruz Biotech, Santa Cruz, CA, USA).

ABCG2 is known as an PpIX efflux transporter [14,15]. ABCG2 is expressed on the cell membrane
of cancer cells (Figure 5). A significant correlation of ABCG2 mRNA expression and ALA PDD
fluorescence status was reported [12]. Yonemura et al. also reported a significant correlation between
PEPT1 mRNA and ABCG2 mRNA expression in PM tissues [12]. In PM with simultaneous expression
of ABCG2 and PEPT1 mRNA, 88.2% (15/17) of PM showed positive fluorescence. In PM with
upregulation of ABCG2 and downregulation of PEPT1 gene, fluorescence was not detected in 75%
(6/8) [12].

As shown in Figure 2, ABCB6 has a role to transport coproporphyrinogen III from cytoplasm to
mitochondria. If ABCB6 is up-regulated, ALA fluorescence may be enhanced. In clinical sampls of
bladder cancer showing ALA fluorescence, however, ABCB6 was downregulated [13]. In contrast,
expression of ABCB6 did not correlated with ALA fluorescence in gastric cancer cell lines [16].
Accordingly, expression of ABCB6 may not have an important role role in ALA fluorescence.
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Figure 5. Immunohistologic finding of ABCG2 in peritoneal metastasis, using anti-ABCG2 mouse
monoclonal antibody BXP-21 (1:200 dilution; Convance Research 152 Products, Emeryville, CA, USA).
ABCG2 expression is detected on the cell membrane.

After administration of an excess amount of ALA, ALA is transported into cancer cells in PM
through PEPT1. The heme synthesis pathway is then activated by ALA dehydratase, which is a
rate-limiting enzyme, and the intracellular PpIX contents increase (Figure 2). Yonemura et al. reported
that most of PM with PEPT1 overexpression upregulated ferrochelatase and ABCG2 mRNA [12,18,19].
Accordingly, a part of PpIX is rapidly metabolized to heme by ferrochelatase. At the same time, PpIX
is excreted from cancer cells into the stromal tissue through ABCG2 (PpIX efflux transporter), resulting
in the accumulation of excess PpIX in the stromal tissue in the vicinity of cancer cells. The typical
finding was observed in a case of appendiceal mucinous neoplasm expressing ABCG2 and PEPT1
(Figure 6). Cancer cells in PM tissue of appendiceal mucinous neoplasm are scarce, and mucinous
materials produced from cancer cells extensively occupies the stromal tissue. PpIX accumulated in the
mucinous material (Figures 6 and 7) emitted strong red fluorescence by PDD.

In bladder cancer [13] and gastric cancer cell lines [16], ALA fluorescence status closely correlates
with up-regulation of PEPT1 and down-regulation of ABCG2 gene. Accordingly, PDD status of these
tumors depends on the expression of ferrochelatase. In PM tissues, however, positive ALA fluorescence
depends on the simultaneous up-regulation of PEPT1 and ABCG2 gene, which increase PpIX contents
in PM tissues.
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Figure 7. Histologic finding of peritoneal metastasis from appendiceal mucinous neoplasm (Figure 7).
Mucinous materials (*) produced from cancer cells (→) extensively occupied stromal tissue.

Normal peritoneal tissue does not show photoemission under violet light at ALA PDD. Yonemura
et al. reported that PpIX contents in the normal peritoneal tissue (0.0073 ± 0.0041 nm/mg/protein)
were significantly lower than those in PM tissues (0.0109 ± 0.0031 nm/mg/protein) [12]. In the
normal peritoneal tissues PEPT1, ABCG2 and ferrochelatase mRNA are expressed in 25.0% (10/40),
48.4% (18/40) and 70.0% (28/40) [20]. In normal mesothelial cells, PpIXmay be excreted into the
peritoneal cavity by ABCG2 transporter and is metabolized to heme by ferrochelatase, resulting in the
low PpIX contents [12]. Accordingly, the PpIX contents in normal peritoneal tissues are not sufficient
to emit red fluorescence by violet light.

3.1. Immuhohistological Expressions of PEPT1 and ABCG2 Protein

Table 1 shows the correlation between PEPT1 immunoreactivity and ALA fluorescence status in
75 clinical samples of PM. PEPT1 immunoreactivity was significantly associated with ALA fluorescence
status (p = 0.0019). Additionally, ALA fluorescence status was significantly related to ABCG2
immunoreactivity (Table 2, p = 0.0048) [12]. These results indicate that patients who are indicated for
ALA PDD can be selected by PEPT1 and ABCG2 tissue status using immuno-histochemistry [12].

However, some ALA-positive PM express neither PEPT1 nor ABCG2, and ALA-negative PM
showed simultaneous expression of PEPT1 and ABCG2. Little is known about how the PpIX crosses
the mitochondria membrane back into the cytoplasm. Other unknown ALA influx or porphyrin efflux
transporters may associate with accumulation of PpIX. In addition, changes in Fe2+ availability and
environmental factors such as pH, blood supply and lymphatic circulation may be responsible for the
selective accumulation of PpIX in PM tissues.

Table 1. Correlation between PEPT1 immunoreactivity and PDD in PM (p = 0.0019) [20].

PEPT1 Expression PDD Negative PDD Positive Total

Negative 22 10 32
Positive 14 29 43

Total 36 39 75

Table 2. Correlation between ABCG2 immunoreactivity and PDD in PM (p = 0.0048) [20].

ABCG2 mRNA Expression PDD Negative PDD Positive Total

Negative 15 5 20
Positive 21 34 55

Total 36 39 75
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3.2. ALA PDD in Experimental PM

Several experimental studies investigating PDD for PM were published [21–24]. In experimental
studies, ALA was administered intravenously or intraperitoneally. Hornung et al. [23] reported an
experimental study of ALA PDD using PM induced in Fischer 344 rats by intraperitoneal injection
of ovarian cancer cells. Four weeks after intraperitoneal inoculation, ALA 100 mg/kg was injected
intravenously, and diagnostic laparotomy was performed at 1, 3, 6, 9 h thereafter. One to 3 h after IV
injection is optimal for PDD [23].

Canis et al. injected 100 mg/kg of ALA in the peritoneal cavity of rats with PM from ovarian
cancer cell line [21]. PDD was performed using endoscopy 3 h after ALA administration. Gahlen et al.
injected 440 to 550 mg/kg of ALA intraperitoneally, and PDD was performed 4 h after injection [22].

Lüdicke et al. [23] reported the feasibility of detecting micrometastases in an ovarian cancer
animal model using intraperitoneal administration of hexaminolaevulinate. Tumor-free peritoneum
did not show fluorescence and was distinguishable from cancer nodules. The number of PM
detected by PDD blue light mode was significantly higher than when using standard white light
inspection twice as many more cancer lesions were detected by fluorescence than by white light
inspection [21–23]. Experimental studies were able to detect occult PM of 0.1 mm to 0.4 mm in
diameter [21,22]. By meticulous histological study, there was no false-positive findings in ALA
fluorescence positive PM [25]. Gahlen et al. compared the effectiveness of PDD for experimental PM
between intraperitoneal and intravenous injection of ALA [22]. They concluded that fluorescence
laparoscopy after intraperitoneal photosensitization with ALA was a more reliable and effective
method than systemic photosensitization for the detection of small or occult PM [22].

4. Clinical Application of ALA PDD to Detect Peritoneal Metastasis: ALA-Guided
Cytoreductive Surgery

4.1. Methods of ALA PDD and ALA-Guided Cytoreductive Surgery

Before application of ALA, porphyria should be excluded in all patients anamnestically and by
Hoesch test [25]. If patients have a history of porphyrias, ALA PDD should be cancelled. For ALA
PDD, there are three administration routes of ALA, which are intraperitoneal (IP), intravenous (IV)
and oral administration.

Intraperitoneal administration of ALA may be useful, because higher dose intensity of ALA in
the peritoneal cavity can be obtained as compared with IV or oral administration. In Ip administration
of ALA, surgeons should wait several hours after IP administration of ALA into the abdominal cavity
by laparoscopy before starting ALA PDD [20]. ALA may not penetrate into deep seated cancer cells.
However, ALA is absorbed from peritoneal lymphatics and blood vessels, and then reaches PM tissue
from the blood circulation [20]. Accordingly, ALA PDD was recommended to start 3 to 5 h after IP
administration [20,26]. Higher dose of ALA can be administered intraperitoneally as compared with
IV administration, because high dose IV administration of ALA may cause side effects.

ALA can be administered definitely by intravenous application. Hormung et al. reported an
experimental study after intravenous administration of ALA to detect PM [23]. Maximum fluorescence
in PM was found on 1 to 3 h after IV infusion of 100 mg/kg of ALA. Gahlen et al. reported that
fluorescence laparoscopy after IP photosensitization with ALA was a more reliable and effective
method than IV photosensitization for the detection of small or occult PM [22]. As compared with IP
administration, oral application is convenient and non-invasive [18,26].

In oral application of ALA, patients received 20mg/kg body weight of 5-ALA (Cosmo Bio Co.,
Ltd., Tokyo, Japan) dissolved in 50–100 mL of orange juice. The mixture was given orally 2 h before
surgery. After oral administration, patients were kept away from direct sunlight for 24 h. After
laparotomy, standard evaluation of the distribution and size of PM was conducted under white light,
and peritoneal cancer index was calculated [27,28]. Tumor tissues and normal peritoneum were
discriminated under white light. All lights in the operation room were then turned off. PDD was
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performed using a xenon lamp (300W) with violet light of a wavelength range of 375–445 nm for
fluorescence excitation, and all peritoneal sectors were observed [27].

Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy were then
performed [1]. After complete removal of macroscopic tumor, the residual tumors were searched using
ALA PDD again (Figure 8).
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4.2. Results of ALA PDD for Detection of Peritoneal Metastases from Various Cancers

Experimental and clinical studies demonstrated that ALA PDD was able to detect PM from
different cancers [8,9,29,30]. In the study of ovarian cancer, Löning et al. reported that ALA-positive
PM was detected in 12 (92.3%) of 13 patients [20]. In gastric cancer, the accuracy of the fluorescence
imaging by laparoscopy was higher than that of white light imaging [29]. Watanabe et al. reported that
the false-positive rate by white light imaging was 14.2% (2/14), but no false-positive or false-negative
results were experienced under fluorescence imaging [29]. Liu et al. reported that the specificity of ALA
PDD in 40 tumor specimens was 100%, and the false-negative rate was 7.5% in 40 non-fluorescence
areas [8]. Yonemura et al. described promising results in detection of PM with ALA PDD [12,18].
Even though the overall detection rate was 56.6% (81/143), PDD enabled enhanced detection of
metastatic nodules in the majority of ovarian cancer (84.6%), mesothelioma (62.5%) and pancreatic
cancer (75.0%) specimens (Table 3) [12]. In addition, metastatic tumor nodules could be detected
in 60.0% of PM from colorectal cancer [12]. In PM from gastric cancer and appendiceal mucinous
neoplasms, however, the detection rates by PDD were low, at 25.7% and 16.4% (Table 3), respectively.
ALA fluorescence depends on the tumor-specific accumulation of photosensitizing PpIX after the
administration of ALA. As shown in Table 4, the PpIX contents in PM from gastric cancer and
appendiceal mucinous carcinomas were significantly lower than those from ovarian cancer, pancreas
cancer and mesothelioma [12].

Table 3. Positive emission rates by ALA PDD [12,19]. N = number of patients.

Primary Sites Positive Emission Rates

Ovarian cancer N = 26 22/26 (84.6%)
Mesothelioma N = 8 5/8 (62.5%)

Pancreas cancer N = 4 3/4 (75%)
Colorectal cancer N = 29 27/45 (60%)

Biiary cancer N = 3 2/3 (66.7%)
Small bowel cancer N = 8 4/8 (50%)

Gastric cancer N = 10 9/35 (25.7%)
Appendicealmucinous carcinoma N = 55 9/55 (16.4%)

N = 143 81/143 (56.6%)
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Table 4. PpIX contents in peritoneal metastases according to the primary site [12,19]. N = number
of patients.

Primary Sites PpIX Content in Peritoneal Metastasis

Ovarian cancer N = 10 0.0185 ± 0.0017
Mesothelioma N = 5 0.0156 ± 0.0105

Pancreas cancer N = 4 0.0104 ± 0.0108
Colorectal cancer N = 29 0.0107 ± 0.0009

Gastric cancer N = 10 0.0016 ± 0.0017
Appendicealmucinous carcinoma N = 15 0.0025 ± 0.0016

Liu et al. reported that ALA PDD could detect a small tumor with diameter of 0.5 mm [8].
Accordingly, ALA-PDD is an accurate and reliable method to detect small PM.

As shown in Table 3, PM in 62 (43.4%) of 143 cases did not show positive ALA-fluorescence.
False-negative results in ALA PDD were reported in the brain tumors and ovarian cancer [12,19].

Table 5 shows the results of four clinical studies of ALA PDD to detect PM. ALA was administered
orally in four and intraperitoneally in one study. Dose of ALA ranged from 10 to 30 mg/kg.
These results indicate the optimal dose of ALA for oral administration is 20 mg/kg. Incubation
time after intraperitoneal administration was 5 h, but was 2 to 3 h after oral administration. Sensitivity
ranged from 46% to 100%, and specificity was 100% in 4 reports. Loning et al. reported that
endometriosis showed ALA fluorescence [20].

Table 5. Results of ALA PDD clinical trials for peritoneal metastasis. N = number of patients.

Authors Disease Administration
Rout

Dose
(mg/kg)

Incubation
Time (h) Sensitivity False

Positive Specificity

Loning M. [20] ovarian cancer
(N = 29) intraperitoneal 30 5 92% 2%

Liu Y. [8] ovarian cancer
(N = 20) oral 20 2 95% 0% 100%

Yonemura Y.
[12]

peritoneal
metastasis
(N = 138)

oral 20 2 46% 0% 100%

Murayama Y.
[29]

gastric cancer
(N = 13) oral 10–15 3 100% 0% 100%

Hillemanns P.
[26]

ovarian cancer
(N = 26) oral 10 9–16 75% 0% 100%

ALA fluorescence did not correlate with histo-pathological subtype, histological grading or
amount of stroma [12]. ALA fluorescence depends on the amount of photosensitizing PpIX in PM
tissues, location of tumor cells from peritoneal surface, and the preoperative chemotherapy. Cancer
cells locate in the deep subperitoneal tissue cannot be detected by PDD [19]. Degenerated PM after
preoperative chemotherapy may decrease ALA fluorescence intensity [12].

5. Application for Fertility Sparing Surgery

Fertility sparing surgery (FSS) is defined as surgery in which the uterus and ovaries are preserved
for young women who desire childbearing [31]. FSS is now indicated for PM from ovarian cancer
in stage 1, pseudomyxoma peritonei, or mesothelioma with low PCI [31] and FSS is indicated for
patients younger than 41 years old. In FSS, one or both ovaries that are not involved by metastasis are
preserved [31]. Biopsy from preserved ovaries may cause adhesion, and adhesion may cause sterility.
Accordingly, it is very difficult to diagnose macroscopically whether an ovary is involved or not.

From these circumstances, ALA PDD to detect ovarian metastasis was started [19], because ALA
PDD is easy to perform and not invasive to ovarian tissue. Figure 9 shows an intraoperative photograph
of ovarium of a 35-year-old woman with PM from colon cancer. Red fluorescence is observed in the
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ovarium by ALA PDD. Histological examination revealed metastasis in ovary (Figure 10). ALA PDD
may be an effective and non-invasive method to determine involved ovary that should be removed.
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6. Safety and Feasibility of ALA PDD

Side effects after oral administration of ALA were very few, because ALA is an intrinsic molecule
and is rapidly metabolized to PpIX and heme through porphyrin/heme pathway. No permanent side
effects of ALA was reported [8,12]. Yonemura et al. reported that nausea and vomiting occurred in
only one (0.7%) of 138 patients who received oral administration of 20 mg/kg. of ALA for PDD [12].
Kamp et al. reported that postoperative serum liver enzymes and leucocytes were not significantly
changed as compared to the preoperative values [32]. Kamp et al. reported that five (6.0%) of
84 patients suffered from transient erythema after unintentional exposure to daylight [32]. Porphyrias
are a group of inherited or acquired metabolic disorders resulting from a deficiency in one of the
eight enzymes involved in the biosynthesis of heme (Figure 2) [33,34]. Clinically, porphyrias that
cause mainly neurological symptoms are classified as acute porphyrias, whereas those cause mainly
skin photosensitivity are classified as cutaneous porphyria. Cutaneous porphyrias present with
various types of skin symptoms due to phototoxicity associated with light exposure. During ALA
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PDD, care should be taken to avoid exposure to sunlight. Porphyrias are diagnosed by the detection
of porphyrin-related metabolites in the urine, blood, or plasma. In some cases, diagnosis requires
measurement of enzyme activity and gene studies [35]. If patients are diagnosed as acute porphyrias,
treatment by drip infusion of large amount of glucose should be started. Intravenous administration
of hematin or hemearginate has been reported to be effective in improving clinical symptoms and
abnormal porphyrin metabolism [36]. Furthermore, Yonemura et al. reported that incidence of
postoperative complications after ALA guided cytoreductive surgery was similar to that after non-ALA
guided CRS [12].

7. Correlation between ALA PDD Status and Recurrence after CRS

Kamp et al. analyzed the correlation between local recurrence rate and the ALA induced
fluorescent status in 84 patients who underwent ALA guided surgery for cerebral metastasis [32].
After surgical resection of cerebral metastasis, absence of 5-ALA-induced fluorescence may be a risk
factor for local in-brain progression [32]. Possible explanation for the results is that ALA positive
metastases were more radically resected than ALA negative metastasis. The surrounding tumor-free
tissues of metastasis partially show ALA derived fluorescence, which might lead to unintended more
radical resection [32].

In ALA positive PM, ALA PDD can increase the percentage of complete resection, and the rate
of peritoneal recurrence could be decreased, when compared to conventional white-light surgery.
However, no study about the relation between ALA fluorescent status and peritoneal recurrence after
CRS for PM has been reported.

8. Conclusions

PDD is safe and feasible for detection of small PM from ovarian, pancreas, biliary, small bowel,
colorectal cancer and mesothelioma. Small PM nodules which are overlooked under white light can be
detected by ALA PDD. Simultaneous expression of PEPT1 and ABCG2 genes could have a pivotal role
in PpIX accumulation in cancer tissues. Accordingly, preoperative examination for the expressions of
PEPT1 and ABCG2 by immunohistological staining or reverse transcriptase-polymerase chain reaction
may be useful for the selection of patients for ALA-PDD.
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