Next Article in Journal
Expression of Concern: Takai, N. and Narahara, H. Epigenetic Therapy in Human Choriocarcinoma. Cancers 2010, 2, 1683–1688
Previous Article in Journal / Special Issue
Radioresistance of Brain Tumors
Article Menu

Export Article

Open AccessArticle
Cancers 2016, 8(4), 43; doi:10.3390/cancers8040043

Computed Tomography Demonstration of the Production and Distribution of Oxygen Gas Following Intratumoral Injection of a New Radiosensitizer (KORTUC) for Patients with Breast Cancer—Is Intratumoral Injection Not an Ideal Approach to Solve the Major Problem of Tumor Hypoxia in Radiotherapy?

1
Division of Radiology, Medical School Hospital, Kochi University, Nankoku, Kochi 783-8505, Japan
2
Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Hyogo 675-8555, Japan
3
Department of Diagnostic Radiology & Radiation Oncology, Medical School Hospital, Kochi University, Nankoku, Kochi 783-8505, Japan
4
Department of Pharmacy, Medical School Hospital, Kochi University, Nankoku, Kochi 783-8505, Japan
*
Author to whom correspondence should be addressed.
Academic Editors: Zhe-Sheng (Jason) Chen and Dong-Hua (Hana) Yang
Received: 26 January 2016 / Revised: 16 March 2016 / Accepted: 28 March 2016 / Published: 1 April 2016
(This article belongs to the Special Issue Drug/Radiation Resistance in Cancer Therapy)
View Full-Text   |   Download PDF [2695 KB, uploaded 1 April 2016]   |  

Abstract

We previously developed a new enzyme-targeting radiosensitization treatment named Kochi Oxydol-Radiation Therapy for Unresectable Carcinomas, Type II (KORTUC II), which contains hydrogen peroxide and sodium hyaluronate for injection into various types of tumors. For breast cancer treatment, the radiosensitization agent was injected into the tumor tissue twice a week under ultrasonographic guidance, immediately prior to each administration of radiation therapy. At approximately three hours after the second or third injection, computed tomography (CT) was performed to confirm the production and distribution of oxygen gas generated from the KORTUC radiosensitization agent by catalysis of peroxidases contained mainly in tumor tissue. The purpose of this study was to demonstrate that tumor hypoxia could be overcome by such a procedure and to evaluate the method of intratumoral injection in terms of confirming oxygen distribution in the target tumor tissue and around the tumor to be visualized on dedicated CT imaging. Three-dimensional reconstructed maximum intensity projection imaging of contrast-enhanced breast magnetic resonance imaging was used to compare the position of the tumor and that of the generated oxygen. Distributed oxygen gas was confirmed in the tumor tissue and around it in all 10 patients examined in the study. A region of oxygen gas was measured as an average value of −457.2 Hounsfield units (HU) as a region of interest. A slightly increased HU value compared to the density of air or oxygen was considered due to the presence of tumor tissue in the low-density area on 5-mm-thick reconstructed CT imaging. The results of this study showed that intratumoral oxygen was successfully produced by intratumoral KORTUC injection under ultrasonographic guidance, and that tumor hypoxia, which is considered a main cause of radioresistance in currently used Linac (linear accelerator) radiation therapy for malignant neoplasms, could be resolved by this method. View Full-Text
Keywords: hydrogen peroxide; radiosensitizer; sodium hyaluronate; radiotherapy; KORTUC; tumor hypoxia; radiation therapy hydrogen peroxide; radiosensitizer; sodium hyaluronate; radiotherapy; KORTUC; tumor hypoxia; radiation therapy
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Hayashi, N.; Ogawa, Y.; Kubota, K.; Okino, K.; Akima, R.; Morita-Tokuhiro, S.; Tsuzuki, A.; Yaogawa, S.; Nishioka, A.; Miyamura, M. Computed Tomography Demonstration of the Production and Distribution of Oxygen Gas Following Intratumoral Injection of a New Radiosensitizer (KORTUC) for Patients with Breast Cancer—Is Intratumoral Injection Not an Ideal Approach to Solve the Major Problem of Tumor Hypoxia in Radiotherapy? Cancers 2016, 8, 43.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Cancers EISSN 2072-6694 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top