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Abstract: The TAM family of receptors (i.e., Tyro3, Axl, and Mertk), and their ligands Growth arrest
specific factor 6 (Gas6) and Protein S (Pros1) contribute to several oncogenic processes, such as cell
survival, invasion, migration, chemo-resistance, and metastasis, whereby expression often correlates
with poor clinical outcomes. In recent years, there has been great interest in the study of TAM
receptors in cancer, stemming both from their roles as oncogenic signaling receptors, as well as their
roles in tumor immunology. As a result, several classes of TAM inhibitors that include small molecule
tyrosine kinase inhibitors, monoclonal antibodies, decoy receptors, as well as novel strategies to
target TAM ligands are being developed. This paper will review the biology of TAM receptors and
their ligands with a focus on cancer, as well as evidence-based data for the continued pursuit of
TAM/Gas6 inhibitors in clinical practice.
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1. Introduction

The TAM receptor tyrosine kinases (RTKs) comprised of Tyro3 (synonyms; BYK, Dtk, RSE, Rek,
Sky, Tif, or Etk-2), Axl (synonyms; ARK, UFO, JTK11, or Tyro7) and Mertk (synonyms; MER, RP38,
c-Eyk, c-Mer, Tyro12), have been under intense study over the last several years for their involvement
in the resolution of inflammation, autoimmunity, and most recently for their role in cancer progression
and tumor immunology [1–4]. TAM receptors (TAMs) are defined as family members based on a
series of highly conserved amino acids in the catalytic intracellular tyrosine kinase domain, as well as
structural commonalities in the extracellular domains consisting of two tandem immunoglobulin-like
domains (Ig1 and Ig2) followed by two tandem Fibronectin type 3 (FN III)-like domains [5]. The main
ligands of TAMs are Growth arrest specific factor 6 (Gas6) and Protein S (Pros1), similar proteins that
require vitamin K (Vit-K) dependent γ-carboxylation for their ability to activate the tyrosine kinase
activities of TAMs [6,7].

Unlike many RTKs that are embryonic or perinatal lethal when targeted by genetic ablation, TAMs
are nonessential for embryogenesis and early development. As such, single, double or even triple
Tyro3, Axl, and Mertk knockouts (KOs) are viable into puberty without catastrophic developmental or
perinatal defects [8–10]. At around 4–5 weeks of age, which coincides with early post-puberty in murine
development, TAM-deficient mice exhibit spontaneous splenomegaly and enlarged lymph nodes,
a common manifestation of chronic and affirmative lymphoid activation [10]. At the cellular level,
TAM deficiency results in spontaneous activation of both dendritic cells (DCs) and macrophages, which
ultimately leads to skewed systemic cytokine imbalance in favor of inflammatory cytokines, circulating
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auto-antibodies (i.e., anti-double stranded DNA and anti-histone), and glomerulonephritis, the latter
reminiscent of human Systemic Lupus Erythematosus (SLE) [11–13]. Although the autoimmune
phenotype of triple TAM KO is most penetrant, the Mertk kinase-dead (kd) mice (essentially a KO)
recapitulates some aspects of the triple KO in terms of an autoimmune phenotype indicating that not
all functions of TAMs are compensatory [12]. For example, Mertk KO mice show notable defects in
the clearance of apoptotic cells, resulting in the release of secondarily necrotic cell-derived material
(SNECs) that persist and can induce anti-ANA antibodies and glomerulonephritis as noted above [12].
Such studies exploring phenotypes of knockout mice, as well as adoptive bone marrow transplantation
studies in irradiated syngeneic mice (both transplanting TAM mutant hematopoietic cells into WT
mice as well as WT hematopoietic cells TAM mutant mice), have led to a conceptual idea in the field
that TAMs act as pleiotropic negative regulators of immune responses to maintain homeostasis and
peripheral tolerance [13,14]. Consequently, as a result of uninhibited activation of innate immune
cells (macrophages, natural killer (NK) cells, and DCs) without negative feedback inhibition, TAM
ablation can lead to the generation and activation of self-reactive lymphocytes and hallmarks of
autoimmunity [12]. Collectively, recent dogma holds that TAMs function, at least in part, by acting as
“dampening” receptors at the interphase between innate and adaptive immunity therefore controlling
the strength of immune signals to T effector functions.

Teleologically, this idea that TAMs act at the boundaries between innate and adaptive immunity
is also noted by the fact that TAMs have evolved relatively late in evolution, and appear to have
auxiliary fine-tuning roles, but not essential roles in controlling homeostasis in complex metazoans.
Indeed, by sequence homology analysis, there are no homologs of TAMs in Caenorhabditis elegans
or Drosophila melanogaster organisms that have relatively simple innate immune systems [3,15–17].
As noted below, the co-evolution of TAMs with more specialized and complex adaptive immune
systems, possibly that have not yet been “hard-wired” by genetic redundancy, may make TAMs
attractive targets in oncology and/or infectious diseases.

2. Expression of TAMs

While TAM receptors have arguably been best studied via their expression on myeloid-derived
hematopoietic cells, such as DCs, macrophages, and NK cells, it is also clear that TAMs are
broadly expressed in several cells and tissues, an observation that has been extensively discussed in
several recent reviews [2,5,15,18]. However, it is also noteworthy that under dynamic inflammatory
and hormonal conditions, the expression of TAMs in myeloid-derived DCs and macrophages, as
well as non-myeloid cells such as epithelial cells, are tightly regulated at both the protein and
mRNA level [3,18,19]. A good example of this type of dynamic and differential regulation of
TAMs is offered by reciprocal regulation of Mertk and Axl under tolerogenic versus inflammatory
conditions. In this capacity, tolerogenic signals (i.e., immunosuppressive glucocorticoids) induce
transcription of Mertk [20,21], while simultaneously suppressing Axl transcription [22]. In contrast,
inflammatory signals such as IFN-γ or poly (I:C) up-regulate Axl and simultaneously suppress Mertk
expression [13,23]. In addition to transcriptional regulation by extracellular signals that impinge
on transcription, TAMs can be post-transcriptionally regulated by micro-RNAs [24,25], as well as
regulated at the level of protein by proteolytic processing (receptor shedding) [26,27] in addition to
ligand-mediated ubiquitin-dependent protein degradation [28]. Clearly, much is still to be learned with
respect to the complex regulation of TAMs under different physiological conditions. The development
of TAM reporter mice, whereby transcriptional regulation of TAMs can be concomitantly monitored
would be a welcome advance to query TAM regulation in vivo.

In cancer cells, overexpression of TAMs have been observed in a wide array of hematological
and epithelial malignancies that include leukemia’s [29,30], non-small cell lung cancer (NSCLC) [31],
glioblastoma [32], melanoma [33], prostate cancer [34,35], breast cancer [36,37], colon cancer [38,39],
gastric cancer [40], and others. In some tumors, including acute myeloid leukemia (AML), NSCLC, and
melanoma, overexpression of one or more of the TAMs (i.e., Mertk or Axl) and activation of tyrosine
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kinase activity can directly transform cells. Moreover, TAMs can also induce epithelial to mesenchymal
transition (EMT), metastatic dispersal and chemo-resistance to targeted therapeutics [41,42]. Although
much still needs to be learned with respect to mechanisms by which TAMs are up-regulated,
this appears to be multi-factorial. These include observations that Axl and Tyro-3 promoters
contain HIF1α-responsive elements that bind HIF1α and activate transcription under hypoxia and
metabolic stress [43]. Moreover, the Mertk promoter contains steroid-responsive elements that activate
transcription in estrogen and androgen-positive tumors [20]. Consistent with the above arguments
on the centrality of TAMs in cancer, TAM ablation, by pharmacological or genetic means, decreases
tumor growth and often resets chemo-sensitivity [3,44,45]. Clearly, the frequency at which TAMs
are overexpressed in a wide range of human cancers has led to great ferment in the field to generate
anti-TAM therapeutics.

In addition to expression in cancer cells, there is also growing appreciation that TAMs are
also expressed on a variety of myeloid cells that contribute to the pathological milieu of the tumor
microenvironment. Macrophages, DCs, myeloid-derived suppressor cells (MDSCs), NK cells, platelets,
mast cells, and cancer-associated fibroblasts (CAFs) express TAMs, and appear to drive inhibitory
signals that can lead to suppression of host anti-tumor immune responses. In support of this idea, recent
studies have shown that Mertk ablation on tumor leukocytes in tumor bearing mice suppress both
tumor growth and progression (metastasis) by a mechanism that depends, at least In part, by increasing
in pro-inflammatory cytokines, polarizing M2 to M1 macrophages, and increasing cytotoxic T cells in
the tumor microenvironment [46]. Moreover, additional studies showed that TAM expression on NK
cells also exerts similar inhibitory signals in the cancer microenvironment via the E3 ubiquitin-ligase
Cbl-b [47]. In these latter studies, these investigators identified TAMs as ubiquitylation substrates
for Cbl-b and that pharmacological inhibitors of TAMs (or the TAM/Cbl degradation axis) could
markedly inhibit tumor growth and metastasis. While additional studies are required to understand
the dynamic expression of TAMs in totality within the tumor microenvironment, particularly with
respect to immunogenic versus poorly immunogenic tumors, such data nonetheless support the
general idea that TAM receptors will have an equally important role as checkpoint inhibitors on innate
immune cells, possibly acting akin to negative regulators of the PDL1/PD1 axis.

While TAMs do not appear to be functionally expressed on lymphoid cells (T and B cells),
recent studies have shown that activated T effector cells express Pros1 (and concomitantly expose
phosphatidylserine (PS)) and can negatively feedback to regulate DC activation [48]. Such studies
showed that genetic ablation of Pros1 on mouse T cells led to increased expression of co-stimulatory
molecules on DCs, and enhanced immune responses to T cell-dependent antigens. Such data elegantly
show that negative feedback can occur from T cells back to antigen presenting cells to limit immune
responses, and support further research examining anti-Tyro3 and/or anti-Pros1 antagonists as direct
checkpoint inhibitors in cancer therapeutics. Taken together, the aforementioned discussion suggest
that TAMs may act as dual tumorigenic gene products, first by acting as direct drivers of tumor
growth, and second by acting as inhibitory receptors in the tumor microenvironment that suppress
host immunity.

3. TAM Ligands

The best-studied ligands for TAMs are the Vit-K modified γ-carboxylated proteins Gas6 [49–51]
and Pros1 [52]. Gas6 and Pros1 share ~44% amino acid sequence homology, and have analogous
domain organizations consisting of an N-terminal γ-carboxyl-glutamic acid (Gla) domain, 4 tandem
Epidermal Growth Factor (EGF)-like repeats, and a C-terminal Sex Hormone-Binding Globulin-like
region (SHBG), the latter consists of 2 Laminin G (LG) repeats [49,53].

Both Gas6 and Pros1 are exquisitely dependent on Vit-K mediated post-translational modifications
for activity as TAM ligands which promotes γ-carboxylation of multiple glutamic acid residues in the
N-terminal Gla domain (There are 11 highly conserved glutamic acid residues in the Gla domains
of each ligand) [54]. Indeed, in vitro biochemical binding studies, as well as cell-based receptor
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activation studies, have shown that non-γ-carboxylated Gas6 (expressed in Warfarin-treated producer
cells) [54,55] or Gas6 without Gla domain (Gla-less Gas6) [22] retain their ability to bind TAMs
(with similar affinities), but prevent TAM activation. Although an exact biophysical or structural
basis for why non-γ-carboxylated Gas6 binds but does not activate TAMs is not yet available, one
possibility is that N-terminal γ-carboxylation allows for ligand-induced conformational changes
and/or dimerization as a pre-requisite for receptor activation. Furthermore, it is well known that
γ-carboxylation facilitates Gla domain binding to calcium that in turn allows its interaction with the
anionic phospholipids, such as PS; which is known to be externalized on apoptotic cells, apoptotic
blebs, exosomes, stressed tumor cells and vasculature, and on enveloped virus [56–59]. However, as
noted above, the exact mechanisms by which PS/Gla interactions at the N-termini are communicated
to the LG domain for ligand binding and conformational-induced receptor dimerization awaits
further experimentation.

While both Gas6 and Pros1 share common features of domain organization and both require
γ-carboxylation for their activity as TAM ligands, they have differential specificities and affinities to
Tyro3, Axl, and Mertk (Figure 1). In this capacity, while Gas6 has a high affinity for Axl (nM) and
significantly lower affinity Tyro3 and Mertk (uM), Pros1 has a preference to Tyro3 and Mertk but does
not activate Axl (Table 1) [18,54,60]. However, in the presence of externalized PS, both Gas6 and Pros1
hyper-activate Mertk and Tyro3 to intensify TAM signaling. Finally, it is noteworthy that in human
plasma, Pros1 is detected at significantly higher concentrations (0.30 µM/L) [53] (approximately
1000 times higher), compared to Gas6 (0.16 to 0.28 nM/L) [61]. This difference may be explained, at
least in part, by observations that Pros 1 also has an important role in the anti-coagulation pathways
where it functions as a co-factor for Protein C during the inactivation of Factors Va and VIIIa [53,62].
Indeed, inherited Pros1 deficiency (in the Pros1 gene) leads to enhanced deep vein thrombosis and risk
for embolism [63]. In contrast, loss of the Gas6 gene (by gene ablation) in mice prevents both venous
and arteriole thrombosis by inhibiting platelet activation [64].
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Figure 1. TAM receptor activation by Gas6, Pros1, and PS-positive apoptotic cells. TAM receptors
exhibit differential activation by their ligands, Gas6 and Pros1. While Gas6 preferentially activates
Axl and to lesser extent Tyro3 and Mertk; Pros1 does not activate Axl and is specific for Mertk
and Tyro3. However, in the presence of externalized phosphatidylserine (PS) on the surface of
apoptotic cells, stressed tumor vasculature, or PS- positive tumor exosomes, Gas6 and Pros1 mediated
activation of TAMs is enhanced. After ligand binding, TAMs undergo subsequent dimerization and
auto-phosphorylation of catalytic tyrosine kinase domain leading to downstream effector pathways.
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Table 1. Properties of TAM ligands.

Ligand Properties Gas6 Protein S

TAM Specificity Axl >> Tyro3 > Mertk Tyro3 > Mertk; Axl (ND)
TAM Specificity (In the presence of PS) Tyro3 = Mertk >> Axl Tyro3 = Mertk; Axl (ND)

Vit. K dependency
√ √

Plasma Concentration 0.16 to 0.28 nM/L 0.30 µM/L (~1000 times)

4. Targeting Ligand/TAMs for Anti-Tumor Therapeutic Response

Due to the centrality of TAM expression, both intrinsically on tumor cells as well as on resident
and infiltrating immune cells that comprise the tumor microenvironment, there is a great effort to
generate both selective TAM inhibitors, as well as pan-TAM inhibitors expected to target synergistic
TAM functions in the entire tumor milieu. To date, at least four main classes of inhibitors are
under consideration that include: (i) classical small molecule tyrosine kinase inhibitors (TKIs),
(ii) soluble ectodomain receptors (so-called “decoy receptors”), (iii) antagonistic therapeutic antibodies,
and (iv) direct and indirect Gas6 inhibitors.

In the case for TKIs, a number of TAM specific small molecule inhibitors are currently in
pre-clinical and clinical development, and this has been discussed in several recent reviews. Among
the earliest TAM-specific small molecule inhibitors is BGB324 (R428), a selective Axl inhibitor [37,65]
currently in clinical development and of which Phase 1 trials were successfully completed in patients
with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Similarly, a number
of selective Mertk inhibitors are also under preclinical development including UNC569 (acute
lymphoblastic leukemia (ALL)) [66], UNC1062 (metastatic melanoma) [33], UNC1666 (AML) [67]
and UNC2025 (ALL and AML) [68]. In addition, several pan-TAM inhibitors are under development
including 6g (preclinical) [45], BMS-777607 (phase I/II) [69,70], and LDC1267 (preclinical) [47]. These
latter inhibitors are designed to target a broader array of tyrosine kinases (including pan-TAMs and
other kinases such as c-Met) and may have fortuitous clinical utility. As a hypothetical example,
pan-TAMs TKIs might be expected to target Axl on tumor cells, Mertk on infiltrating M2 macrophages,
and Tyro3 on immature DCs, to collectively inhibit cancer growth, polarize macrophages and maximize
antigen presentation. The success and utility of pan-TAM inhibitors, in combination with other
checkpoint inhibitors will likely depend on the tumor type, the pattern of TAM expression, and will
require trial and error evaluation. Future studies examining TAM inhibition, in combination with PS
targeting agents or anti-PD1/PDL1 checkpoint inhibitors, are expected to reveal novel and synergistic
combinatorial therapeutics.

The second type of TAM antagonist that is under investigation are TAM “decoy receptors” or
“ligand traps”, molecules expected to block TAM receptor activation by sequestering the ligands. The
“super-binding” Axl decoy receptors have been engineered and studied by Cochran and colleagues to
block the Gas6 induced Axl receptor activation by sequestering Gas6 [71]. Interesting, this approach
may phenocopy the physiological process of membrane shedding, a regulated proteolytic cleavage of
the ecto-domains of Axl or Mertk receptors by enzyme ADAM17 (metalloproteinase A dis-integrin and
metalloproteinase protein 17) [72,73]. Indeed, in other settings, Mertk or Axl ecto-domain shedding
can have a protective physiological outcome, for example in conditions of thromboembolism, whereby
soluble Mertk sequesters Gas6 to inhibit platelet aggregation [27]. The shedding of the extracellular
domain of Mertk receptor by macrophages and retinal pigment epithelial cells has been shown to
function as a decoy and contribute to atherosclerosis and retinal phagocytosis [74,75]. Functionally,
the role of soluble TAMs as a ligand trap for Gas6/Pros1 might be expected to increase inflammatory
cytokine production that in turn could activate innate and adaptive immune response against tumors.
Finally, a variety of anti-TAM therapeutic antibodies are under clinical development, defined as a
broadly agonist or broadly antagonistic. While antagonistic antibodies might be expected to have
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therapeutic activity in cancer, agonistic antibodies might be important to mimic TAM activation and
drive tolerance, for example, in SLE or other chronic inflammatory conditions [76].

5. Targeting Gas6 and General Ligand Inhibitors

Another promising area of research that appears to be gaining traction has focused on targeting
TAM ligands, most prominently recent studies that aim to target Gas6. These efforts are based on recent
observations that in the tumor microenvironment, both over-expression of TAMs and its ligands (Gas6
or Pros1) occur concomitantly. This axis can be both autocrine in nature (both TAMs/Gas6 co-expressed
in tumor cells or in myeloid cells) or paracrine in nature (TAMs in tumor cells/Gas6 in myeloid cells)
to augment TAM signaling in the tumor microenvironment. In support of a tumorigenic role of Gas6
in ectopic and orthotopic syngeneic mouse tumor models, recent studies showed that both growth
of tumors and subsequent metastatic dispersal was abrogated in a Gas6 deficient mice (Gas6−/−)
compared to wild-type mice. These findings suggested that in the tumor microenvironment, tumor
cells can “educate” the infiltrating leucocytes (mainly tumor-associated macrophages) to produce
elevated Gas6 as an amplification loop, which in turn promotes tumor growth [77]. This observation is
further complicated by the fact that Gas6 is produced in a wide variety of effector cells, many of which
contribute to the tumor microenvironment (Table 2). Recent studies employing Gas6 neutralizing
antibodies, GMAB1 and GMAB2, shown to decrease tumor growth in the pancreatic ductal carcinoma
by blocking autocrine Gas6-Axl signaling clearly support the rationale to target Gas6 [78].

Table 2. Various Cell-types producing Gas6.

Cell Type Reference

Adipose Tissue [79]
Bone Marrow cells [77,80–82]
Endothelial Cells [6,79,80,82–84]
Epithelial Cells [85]

Fibroblast [6,79,86,87]
Hematopoietic cells [10,19,81]

Hematopoietic stem cells [88]
Hepatocytes [89]
Macrophage [77,90,91]

Mesangial cells (kidney) [84]
Microglia Cells [92,93]

Neuron [94]
Pericytes [83]
Plasma [61,86,95,96]

Platelets [64,80,82]
Stromal Cells [85]

Vascular smooth muscle cell [80,82,83,97]

Further evidence that targeting Gas6 may have therapeutic implications have emerged from
recent studies showing an anti-tumor and anti-metastatic role of low—dose warfarin administration.
While warfarin has been used for decades to block γ-carboxylation of proteins involved in coagulation
to reduce the risk of thrombosis, the warfarin-induced inhibition of Gas6/Pros1 γ-carboxylation and
blockage of TAM activation alluded to above may also provide an interesting and opportunist approach
to target a wide range of Gas6/TAM dependent tumors. Indeed, low-dose warfarin treatment in mice
decreases tumor growth and metastasis by blocking the Gas6 induced Axl receptor activation [55].
Whether injection of non-γ-carboxylated Gas6 (or Pros1) acts as a dominant negative traps or
competitive inhibitors to prevent ligand-inducible activation of TAMs awaits further experimentation.

Concerning the above mentioned important role of Vit-K in Gas6/Pros1-mediated TAM activation,
another component of the Vit-K/Gas6/Pros1 circuit warrants mention. This stems from the fact
that Vit-K-dependent γ-carboxylation of Gas6/Pros1 is widely, if not ubiquitously, expressed in
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non-hepatic cells that include many of the cells that express Gas6 in the tumor microenvironment.
Indeed, Vit-K-dependent γ-carboxylation of Gas6 and Pros1 along with many other Gla-containing
proteins, most notably blood coagulation factors II, VII, IX, X, and protein C, is catalyzed by the enzyme
γ-glutamyl carboxylase (Ggcx) that adds the γ-glutamyl moiety on the glutamic acid residues [98].
During this process, Ggcx oxidizes Vit-K hydroquinone and converts it to Vit-K 2,3 epoxide, while at
the same time modifying glutamic acid (Glu) residues to γ-carboxy-glutamic acid (Gla) residues.
This epoxide is then recycled back into hydroquinone via the enzyme Vit-K epoxide reductase
complex-1 (Vkorc1), thus completing the Vit-K cycle and facilitating subsequent carboxylation events
(Figure 2). The relevance of this pathway to cancer is of potential interest given overexpression of
both Ggcx and Vkorc1 have been observed in several cancers, including both liver cancer and several
adenocarcinoma’s that co-express Gas6 (Oncomine database). The co-overexpression of Gas6 and
Vit-K modifying enzymes might be expected to produce hyper-activated TAM ligands (i.e., higher
stoichiometry and/or density of glutamic acid modifications on Gas6/Pros1). These ideas raise several
interesting queries that include (i) are extra-hepatic Ggcx and/or Vkorc1 targeted by low dose warfarin
(known to have an anti-metastatic effect), (ii) do these enzymes, particularly when co-expressed
with Gas6/Pros1, act as surrogate oncogenes for TAM receptors. Finally, these arguments also call
in question the clinical use of Vit-K supplements for the treatment of osteoporosis and/or arterial
calcification that could unmask a pro-oncogenic role for Gas6 and tumorigenesis, particularly in
patients with latent tumors.
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Figure 2. Post-translational modifications of Gas6 by γ-glutamyl carboxylation. Gas6 can
be transcriptionally upregulated by autocrine or paracrine mechanisms. Following translation,
un-carboxylated Gas6 (inactive) is activated by a series of enzymatic steps involving γ-glutamyl
carboxylation via the vitamin-K-dependent enzyme γ-glutamyl carboxylase (Ggcx). The carboxylated
(active) Gas6 from ER is transported to the Golgi apparatus through trans-Golgi network and then
into secretory vesicles. The Vit-K epoxide reductase enzyme complex 1 (Vkorc1) then completes the
Vit-K cycle by recycling this epoxide back to hydroquinone, which in turn serves as a co-factor in
the Ggcx induced γ-carboxylation of Gas6 and Pros1. Warfarin, which functions as a direct inhibitor
Vkorc1 prevents γ-carboxylation of Gas6 and Pros1 and prevents TAM receptor activation in the
tumor microenvironment.

6. Synergistic Role of TAMs and of Dys-Regulated PS in the Tumor Microenvironment

While the discussion above has focused mainly on the up-regulation of TAMs and TAM ligands
(Gas6/Pros1) in the tumor microenvironment, a final important factor, namely the concomitant
dysregulation of PS in the tumor microenvironment also warrants mention. Indeed, due to the hypoxia
and other metexpressabolic stress, the high apoptotic indexes of apoptotic cells, and the release of
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tumor derived exosomes, up-regulation of the PS in the tumor microenvironment has been observed
in several cancers [99,100]. As noted above, the interaction of PS with the overexpressed TAMs via
its ligands, Gas6 and Pros1, on the tumor cells induce several tumorigenic phenotypes including
tumor cell survival, proliferation, chemoresistance as well as tumor metastasis. On the other hand,
PS interaction with TAMs on infiltrating myeloid derived phagocytes can promote PS-dependent
efferocytosis, clearance of apoptotic cells [101], and elicit the production of immunosuppressive
cytokines such as IL-10 and TGF-β (Figure 3). Indeed, recent studies provide an elegant example of
this paradigm, whereby the massive apoptosis associated with post-partum mammary involution was
associated with PS/Mertk-mediated efferocytosis and the production of “wound-healing” cytokines,
including IL-4, IL-10, and TGF-β that induced epithelial to mesenchymal transition and metastasis
of resident tumor cells [102]. Such observations may suggest that targeting TAMs together with PS
(by PS targeting antibodies such as bavituximab) may have therapeutic benefit to limit PS mediated
amplification of the Gas6/Pros1-TAM activation axis [103].
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Figure 3. The role of TAM receptors in the tumor microenvironment. Various types of cells including
tumor cells, macrophages, DCs, T-cells and apoptotic cells in addition to stressed tumor vasculature
and phosphatidylserine (PS) positive tumor exosomes contribute to the tumor vasculature. In the tumor
microenvironment, Gas6 binds to PS on the apoptotic cells and tumor exosomes and activates TAM
receptors (TAMs) on tumor cells as well as on phagocytes such as macrophages, and DCs (professional
phagocytes). Activation of TAMs on the tumor cells drive tumor growth and metastasis via downstream
effector signaling leading to tumor cell survival, proliferation, chemoresistance and EMT phenotypes.
On the other hand, activation of TAMs on the professional phagocytes leads to engulfment of apoptotic
cells (efferocytosis), which in turn drives immune evasion by inhibiting T-cell priming and activation
as well as via inhibition of NF-κB and inflammatory cytokine production. Hence, TAMs may act as
dual tumorigenic gene products, first by acting as direct drivers of tumor growth, and second by acting
as inhibitory immune receptors in the tumor microenvironment.

7. Conclusions

The recent characterization of TAM receptors as dual function oncogenic receptors on tumor cells
and inhibitory receptors on immune cells involved in immune evasion has opened up an exciting new
area of cancer biology where many questions remain unanswered (Box 1).
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Box 1. Unanswered questions in the TAM receptor field.

• Are TAM receptors and their ligands (Gas6 and Pros1) up-regulated in poorly immunogenic tumors?
• Can TAM receptors and TAM ligand antagonist be used in combination with other check point inhibitors

such as anti-PD1 and anti-CTLA-4?
• Can warfarin or non-γ-carboxylated Gas6 proteins be considered as adjuvant cancer therapeutics?
• Does over-expression of Ggcx and Vkorc1 contribute to tumorigenicity of the tumor microenvironment?
• What is the role of non-γ-carboxylated TAM ligands (Tubby, TULP-1, Galectin-3 [104–106]) in the

tumor microenvironment?
• What is the molecular mechanism(s) by which TAM post-receptor signaling drive anti-inflammatory and

immune inhibitory signals?

Further studies aimed to better understand the dynamic regulation and expression TAMs in the
tumor microenvironment will add new insights into how to systematically target TAMs, as well as to
identify optimal combinations of TAM inhibitors with targeted therapies and checkpoint inhibitors.
We await further pre-clinical and clinical data about how (TAMs/Ligands/PS) can be maximally
exploited in cancer.
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