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Abstract: Antioxidant defenses encompass a variety of distinct compounds and enzymes that are
linked together through their capacity to neutralize and scavenge reactive oxygen species (ROS).
While the relationship between ROS and tumorigenesis is clearly complex and context dependent,
a number of recent studies have suggested that neutralizing ROS can facilitate tumor progression
and metastasis in multiple cancer types through distinct mechanisms. These studies therefore infer
that antioxidant activity may be necessary to support the viability and/or the invasive capacity of
cancer cells during tumor progression and metastasis. Here, we discuss some of the accumulating
evidence suggesting a role for antioxidant activity in facilitating tumor progression.
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1. Introduction

Early evidence of a potential pro-tumorigenic role for antioxidant activity came from the results of
a clinical trial in 1996 that surprisingly demonstrated worse outcomes for lung cancer patients who had
a history of smoking and were given dietary supplements of β-carotene and vitamin A [1]. Following
the publication of these unexpected data, additional studies were published that seemed to corroborate
the idea that antioxidant activity could facilitate tumorigenesis [2–4]. However, a molecular mechanism
that could clarify how cancer cells can benefit from antioxidant activity in a fashion that promotes
tumor formation and/or progression remained elusive until the publication of several recent studies.

2. Antioxidant Activity in Extracellular Matrix-Detached Cells

One of the first clues regarding the aforementioned molecular mechanisms came from
investigators studying luminal clearance in three-dimensional (3D) models of mammary
morphogenesis. Using the MCF-10A model system, it is well established that cells populating
the lumen lack contact with the extracellular matrix (ECM) and thus undergo anoikis (defined as
ECM detachment-induced apoptosis) [5–7]. However, upon complete inhibition of anoikis (through
overexpression of anti-apoptotic Bcl-2 proteins), the clearance of ECM-detached cells in the luminal
space could still occur [8,9]. Thus, it stands to reason that there are non-apoptotic mechanisms
involved in the death of ECM-detached cells in the luminal space. During the course of investigating
how luminal, ECM-detached cells die in the absence of anoikis, investigators discovered that ROS
levels are significantly elevated in these cells and are involved in caspase-independent cell death [10].
Interestingly, cell death in the luminal space could be inhibited through oncogenic signaling emanating
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from ErbB2, suggesting that cancer cells could improve their survival during ECM detachment by
mitigating the deleterious effects of elevated ROS.

To more directly assess a possible link between oncogenic ErbB2 signaling and antioxidant activity,
the investigators inhibited the NADPH-generating pentose phosphate pathway (PPP) and discovered
that the ability of ErbB2 to promote survival was compromised [10]. Given that NADPH derived from
the PPP is a significant source of antioxidant activity, these data imply that ErbB2 can promote the
survival of ECM-detached cells through enhanced antioxidant activity. To further drive home this
point, the investigators found that treating mammary acini with antioxidant compounds was sufficient
to promote the survival of ECM-detached cells in the luminal space [10]. In aggregate, these data
suggest that antioxidant activity (which can be acquired through signaling from the ErbB2 oncogene)
promotes the survival of ECM-detached cells and thus, could be involved in facilitating tumor cell
survival during metastasis.

While these findings represent one of the first studies to uncover the molecular mechanism
by which antioxidant activity could facilitate tumorigenesis, there remained many interesting and
important lines of investigation to pursue. Perhaps most significant: is it possible that cancer cells
can utilize ubiquitously expressed ROS detoxifying enzymes to facilitate survival during periods
of ECM detachment? Indeed, this is the case as overexpression of catalase or SOD2 is sufficient to
promote luminal filling in 3D cultures of mammary acini [11]. Interestingly, the reduction of catalase
expression by RNA interference did not impact the viability of ECM-attached cells but specifically
compromised the survival of ECM-detached cells. Thus, there may be a therapeutic window in which
to target catalase and specifically eliminate malignant ECM-detached cells. Consistent with this notion,
previous studies have demonstrated that mice deficient in catalase are viable [12]. To extend upon these
findings in vivo, the investigators explored whether a deficiency in catalase would compromise tumor
formation in an experimental metastasis assay. Indeed, a reduction in catalase levels in MDA-MB-231
breast cancer cells did result in markedly less tumor formation in the lungs following a tail vein
injection [11].

3. The Endogenous Antioxidant Program

Other studies examining the capacity of antioxidant enzymes to facilitate tumorigenesis have
focused on Nrf2, a transcription factor that promotes the transcription of genes containing antioxidant
response elements (AREs) such as catalase and SOD2 [13,14]. Perhaps most prominently, researchers
recently discovered that the expression of K-RasG12D, B-RafV619E, and MycERT2 each elevated the Nrf2
antioxidant program by enhancing the transcription of Nrf2 and leading to a subsequent decrease
in cellular ROS levels [15]. Expanding these findings further into lung and pancreatic cancer mouse
models, the investigators used multiple genetic approaches to reduce Nrf2 expression. Blocking the
expression of Nrf2 caused a significant reduction in tumor formation, disease burden and proliferation,
and led to a substantive increase in median survival. Subsequent studies from this group suggest that
the role of Nrf2 in pancreatic cancer involves Nrf2-mediated changes in EGFR signaling [16]. Thus,
this study revealed that simultaneous inhibition of downstream EGFR effectors and the glutathione
antioxidant pathway could mimic Nrf2 ablation and limit pancreatic cancer growth.

Researchers examining why diabetic patients are more susceptible to the development of various
cancers also came to a similar conclusion on the Nrf2 pathway. Interestingly, it was discovered that
drugs commonly utilized to treat patients with type 2 diabetes mellitus (e.g., dipeptidyl peptidase-4
(DPP-4i) inhibitors) can also function to promote sustained and enhanced activation of Nrf2 due to the
inhibition of the Nrf2 antagonist KEAP1 [17]. While data from clinical trials suggest that treatment
with DPP-4i compounds does not alter the risk for cancer development, DPP-4i treatment can promote
metastasis in immunocompromised mice. An investigation of the molecular mechanism behind this
enhanced metastasis revealed that Nrf2 is necessary for DPP-4i–mediated metastasis. Furthermore,
Nrf2 activation was sufficient to promote metastasis in many of these same xenograft models. While
additional studies need to be completed in other preclinical models (including in animals that are
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immunocompetent [18]), these data suggest that clinicians examining patients with (or at risk for
development of) metastatic disease should conduct a comprehensive assessment of patient risk when
prescribing anti-diabetes medications that can promote the activation of Nrf2 [19].

In addition to Nrf2, other studies examining the endogenous cellular antioxidant programs have
focused on glutathione (GSH), the most abundant antioxidant present in human cells [20]. Using
a mouse model of breast cancer, investigators demonstrated that genetic inhibition of glutamate
cysteine ligase modifier (GCLM), a contributor to GSH synthesis, diminishes both tumor initiation and
progression [21]. However, inhibition of GSH synthesis failed to inhibit tumor burden and progression
if blocked beyond the time point of tumor onset, suggesting that antagonizing GSH solely is effective
only prior to tumor formation. These data also raise the possibility that other antioxidant programs
may compensate for a deficiency in a single antioxidant program. Indeed, this was the case in this
particular study, as thioredoxin (TXN) levels were increased when GSH synthesis was blocked [21].
The utilization of small-molecule inhibitors to simultaneously block both TXN and GSH was an
effective and synergistic strategy to reduce tumor growth in vivo. Thus, aspiring cancer cells may be
eliminated by interfering with a single antioxidant program, but bona fide tumor cells can fall back on
additional, redundant antioxidant programs to promote their survival.

In addition to the aforementioned antioxidant enzymes and detoxifying molecules discussed
above, alterations in flux through distinct metabolic pathways can also dramatically alter ROS levels
and thus contribute to tumorigenesis. One conspicuous example of this is the PPP, which (as discussed
above) promotes antioxidant activity through NADPH production. Interestingly, this pathway has
been linked to aerobic glycolysis, a term used to describe the propensity of cancer cells to rapidly
metabolize glucose by glycolysis in oxygen-rich conditions [22]. It is now widely appreciated that a
key regulator of aerobic glycolysis is pyruvate kinase M2 (PKM2) which was initially surprising due
to its diminished enzymatic activity when compared to pyruvate kinase M1 (PKM1) [23]. However,
a major clue into the function of PKM2 came from an elegant study demonstrating that pyruvate
kinase inhibition is strikingly beneficial for cancer cells [24]. This inhibition results in the diversion of
rapid glucose flux to the PPP where NADPH levels are increased, in turn driving down ROS levels.
Thus, the observation by Otto Warburg (nearly 50 years ago) [25] that cancer cells utilized aerobic
glycolysis may in fact be related (at least partially) to generating antioxidant activity.

4. Antioxidant Activity and Metastasis

As discussed above, antioxidant activity can promote the survival of ECM-detached cells and
promote several other cellular behaviors associated with successful tumor metastasis. Thus, it may
be the case that antioxidant activity may be a broad stimulant of cancer metastasis. Evidence from
the aforementioned Nrf2 studies suggested this may be the case [15,17] and other investigations
also seem to support this possibility. Researchers using a Cre-inducible oncogenic KrasLSL model
of lung cancer discovered that dietary supplementation of NAC (N-Acetyl Cysteine) or vitamin E
(two antioxidants with distinct chemical structures that function to reduce ROS by entirely distinct
mechanisms) augments tumor progression and compromises survival [26]. This enhanced tumor
progression was found to be dependent on the reduction of p53 activity.

Intriguingly, dietary supplementation with NAC or vitamin E was found to promote metastasis
in other types of cancer as well. Using a mouse model of malignant melanoma, antioxidant
supplementation was found to increase lymph node metastases without any impact on primary tumor
formation [27]. Mechanistically, melanoma metastasis in this model was driven by RhoA-mediated
cellular invasion. Similar findings were observed in a distinct mouse model (NOD-SCID-Il2rg−/−

(NSG)) of melanoma metastasis where NAC was supplemented regularly via subcutaneous
injection [28]. NAC injection of NSG mice did not impact primary tumor formation but did
substantially influence successful metastasis. In this model, the link between antioxidant activity and
metastasis involved significant metabolic adaptation that involved a reliance on the generation of
NADPH from the folate pathway. Thus, even within the same type of cancer, antioxidant activity
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seems to have the capacity to trigger multiple mechanisms to facilitate the dissemination of metastatic
cancer cells.

5. Conclusions

In aggregate, although there have been incredible advances in the understanding of the role of
antioxidants in tumor progression (summarized in Figure 1), the context-dependent nature of the
studies addressed in this review highlight the need for additional research on antioxidants, tumor
progression, and metastasis. A recent study on in colorectal cancer emphasizes the incredibly complex
nature of understanding how antioxidant activity affects cancer cells. Unexpectedly, it was discovered
that high doses of vitamin C (which has well-documented antioxidant activity) can lead to an increase
in intracellular ROS in cells with activating mutations in K-Ras or B-Raf [29]. This increase in ROS
is due to the fact that oxidized vitamin C (dehydroascorbate (DHA)) is preferentially taken up by
cancer cells. The increase in cellular ROS of cancer cells that take up DHA is therefore a consequence
of the enhanced antioxidant burden necessary to reduce DHA to vitamin C. As a result, the enhanced
levels of ROS can lead to a bioenergetic crisis (due to inactivation of GADPH) and consequent cell
death. Thus, even though it is clear that these cells rely on antioxidant activity for survival, they can
counter-intuitively be killed by an agent with antioxidant properties that at high doses can function to
enhance ROS. It is clear that antioxidant activity can have divergent effects on cancer cells depending
on the cellular context. Nonetheless, the multitude of studies discussed here suggest that patients
diagnosed with (or at risk for) cancers should avoid unnecessary supplementation of antioxidants in
order ensure that enhanced antioxidant activity does not inadvertently facilitate tumor progression
and metastasis.
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Figure 1. Mechanisms of antioxidant generation during cancer development. A wide variety of
endogenous antioxidant pathways exist within cells which mitigate oxidative stress to enhance cell
survival. The above pathways are paramount to augment survival in the absence of matrix attachment,
tumor progression, and metastatic dissemination. All protein structures were retrieved from the RSCB
Protein Data Bank [30] and compounds were retrieved from PubChem Compound.
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