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Abstract: Over the last few years the increasing usage of “-omic” platforms, supported by
next-generation sequencing, in the analysis of breast cancer samples has tremendously advanced
our understanding of the disease. New driver and passenger mutations, rare chromosomal
rearrangements and other genomic aberrations identified by whole genome and exome sequencing
are providing missing pieces of the genomic architecture of breast cancer. High resolution maps
of breast cancer methylomes and sequencing of the miRNA microworld are beginning to paint the
epigenomic landscape of the disease. Transcriptomic profiling is giving us a glimpse into the gene
regulatory networks that govern the fate of the breast cancer cell. At the same time, integrative
analysis of sequencing data confirms an extensive intertumor and intratumor heterogeneity and
plasticity in breast cancer arguing for a new approach to the problem. In this review, we report on
the latest findings on the molecular characterization of breast cancer using NGS technologies, and
we discuss their potential implications for the improvement of existing therapies.
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1. Introduction

Next-generation sequencing (NGS) has opened up new avenues to understanding and battling
cancer through the detailed characterization of the cancer genome and epigenome. Whole-genome
(WGS) and whole-exome sequencing (WES) -the latter determines the variations only of coding
regions- have been extensively used in identifying genomic alterations in a plethora of cancer
types [1]; RNA-sequencing has allowed gene expression profiling and detection of, previously
unknown, alternatively spliced and gene fusion transcripts with potential oncogenic role [2];
sequencing of methylated DNA has generated high-resolution cancer methylomes that reveal new
molecular features of the disease [3]. Optimal exploitation of all these data through integrated
analyses will lead to a comprehensive understanding of the genetic events that lie at the basis of
tumor development and evolution, offering new options for cancer diagnosis and treatment.

The breast cancer biomedical research community has particularly benefited from the application
of NGS in the study of this extremely heterogeneous and complex disease. Large-scale initiatives
examining hundreds of patients have led to the discovery of new breast cancer-associated genes, the
dissection of the heterogeneity of individual tumors and the unraveling of the mutational processes
involved. Advanced computational tools allow mining of whole genome data and their correlation
with clinical properties and treatment response [4], in an effort to translate them into clinically
meaningful information.
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Herein, we overview some of the most recent comprehensive genome-wide breast cancer studies
and discuss the contribution of NGS in investigating breast cancer biology and therapeutics.

2. Elucidating the Genomic Landscape of Breast Cancer

2.1. Identification of Significantly Mutated Genes

Cancer-causing somatic mutations, also known as “driver mutations”, confer clonal selective
advantage and oncogenic potential to cells and their sequential acquisition is required for the
conversion of a normal cell into a symptomatic cancerous one [5]. Inevitably, WGS, also, results
in the detection of hundreds of other, stochastic, mutations that, probably, do not have any functional
consequence and are the sheer result of the increased mutation rate of the cancer genome. These are
described as “passenger mutations”, they do not confer clonal growth advantage and are assumed
to not contribute to cancer development [6]. Computational algorithms have been used with some
success in the analysis of NGS data to distinguish driver from passenger mutations and determine
Significantly Mutated Genes (SMGs) that is genes with mutations that occur more often than expected
by chance [4]. These are thought to be cancer-associated genes and their altered genomic structure
may contribute to tumorigenesis.

In 2012 an explosion in the field of breast cancer genomics was set by a series of landmark
papers that started unraveling the mutational landscape of the disease by performing NGS in
small and large sets of breast tumors [7–10]. Stephens and colleagues reported the identification
of 7241 somatic point mutations by performing exome sequencing in 100 ER+ and ER´ primary
breast tumors [7]. They confirmed the presence of mutations in driver genes previously implicated
in breast cancer development [11], such as AKT1, BRCA1, CDH1 and GATA3 (Table 1). A number of
other cancer genes associated with numerous neoplasias [12–23] were also detected harboring driver
mutations (Table 1). More importantly 9 new cancer genes were identified (Table 1); seven of them
(ARID1B, CASP8, MAP3K1, MAP3K13, NCOR1, SMARCD1, CDKN1B) carried truncating mutations
and were characterized by biallelic inactivation, suggesting that they were potentially recessive cancer
susceptibility genes [7]. AKT2 was presumed to be an activated, dominantly acting cancer gene, while
the effects of TBX3 mutations on its function were unclear [7]. Notably, all these genes play key roles
in main cellular functions, such as cell proliferation and motility, DNA repair and transcriptional
regulation and these processes are often deregulated in cancer. An intriguing finding of this study
was the fact that several different mutational processes appeared to lead to abrogation of JNK (JUN
kinases) signaling in breast cancer. JNK are multifunctional kinases involved in many physiological
processes, including cellular response to stress and apoptosis [24,25]. JNK signaling could be directly
abolished by inactivating mutations in MAP3K1, MAP2K4 and MAP3K13, which normally function
as activators of JUN kinases [24]. Furthermore, mutations in PIK3CA and PTEN could potentially
lead to inhibition of JNK signaling through activation of AKT, which, in turn, can phosphorylate and
inhibit MAP2K4 [26]. Another significant outcome of this study was the distinct mutational patterns
exhibited by different patients, regarding the number and type of somatic mutations; this supports
the notion that a variety of molecular mechanisms can trigger the development of breast cancer in
different individuals. It is worth mentioning that this mutational variation is also evident on the
clinical level, where different breast cancer patients present a diverse clinical picture [27]. However,
the absence of correlation between the total number of mutations and the age of diagnosis in the
samples tested suggests that the largest number of mutations in the breast cancer genome occurs
after the initiating driver event [7].
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Table 1. Next-generation sequencing studies in breast cancer *.

Breast Cancer Subtype Significantly Mutated Genes Type of Mutations Number of Samples Study
Previously Know First Time Identified

ER+/ER´

AKT1, BRCA1, CDH1,
GATA3, PIK3CA, PTEN, RB1,
TP53, APC, ARID1A, ARID2,

ASXL1, BAP1, KRAS,
MAP2K4, MLL2, MLL3, NF1,

SETD2, SF3B1, SMAD4, STK11

AKT2, ARID1B, CASP8,
CDKN1B, MAP3K1,
MAP3K13, NCOR1,

SMARCD1, TBX3

7241 somatic point
mutations/single-base

substitutions

4737 missense
422 nonsense; 158 essential

splice site 8 stop codon
read-through

637 silent
231 translational frameshifts

46 in-frame

100 (WES) Stephens et al.,
2012 [7]

All major expression
subtypes

TP53, PIK3CA, AKT1, GATA3,
MAP3K1 CBFB, RUNX1 4985 somatic

substitutions

3153 missense
1157 silent

242 nonsense
97 splice site
194 deletions
110 insertions

32 other mutations

103 (WES)22 (WGS) Banerji et al., 2012 [8]

Triple Negative
TP53, PIK3CA, NRAS, EGFR,

RB1, ATM, PGM2, PTEN,
EDD, ATR

USH2A, MYO3A,
PRPS2, NRC31, PRKCZ,

PRKCQ, PRKG1,
PRKCE, COL6A3

2414 single nucleotide
variants

Non-coding splice site
dinucleotide mutations

Indels
High-level amplifications
Homozygous deletions

Missense
Truncating
Splice site

65(WGS/WES)
80(RNA-seq) Shah et al., 2012 [9]

All major expression
subtypes

PIK3CA, PTEN, AKT1, TP53,
GATA3, CDH1, RB1, MLL3,

TBX3, RUNX1, CBFB,
MAP3K1 ,CDKN1B, MAP2K4,

USH2A

AFF2, PIK3R1, PTPN22,
PTPRD, NF1, SF3B1,

CCND3, CTCF,
TBL1XR1,

NCOR1,ZFP36L1,
GPS2,RPGR, RYR2,

HIST1H2BC, GPR32,
CLEC19A, SEPT13,
DCAF4L2, OR6A2

30,626 somatic
mutations

28,319 point mutations
4 dinucleotide mutations

2302 indels
6486 silent

19,045 missense
1437 nonsense

26 read-through
506 splice-site

819 mutations in RNA genes

510 (WES)
The Cancer Genome

Atlas Network,
2012 [10]

* Only findings from studies discussed in Section 2.1 are summarized in this table.
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The molecular classification of breast cancer has revealed the existence of four major intrinsic
subtypes with unique gene expression patterns: luminal A, luminal B, human epidermal growth
factor receptor 2 (HER2)-enriched (HER2-E), and basal-like [28]. Luminal breast cancers have a gene
expression signature characterized by the expression of estrogen receptor (ER). Luminal A breast
cancer is the most common subtype, and it also features high expression of genes typically expressed
in the luminal epithelium lining in the mammary ducts, such as GATA3, FOXA1, and BCL-2 and
low expression of cell proliferation-related genes [29]. On the other hand, luminal B breast cancer
is rarer with more aggressive phenotype, higher histological grade and proliferative index and it is
characterized by lower levels of luminal gene expression and higher levels of proliferation genes [29].
HER2-E breast cancers usually express high levels of HER2 and growth factor receptor-bound protein
7 (GRB7), the latter of which is also located in the HER2 amplicon on 17q21. The basal-like
breast cancer gene signature includes absence or low levels of expression of ER, absence of HER2
overexpression, expression of genes usually found in basal or myoepithelial cells of the normal breast
(cytokeratins 5, 6, and 17), and high-level expression of cell proliferation-related genes [28].

Banerji et al. [8] reported the 22 whole-genome and 103 whole-exome sequences of
carcinoma/normal DNA pairs from all 4 major expression breast cancer subtypes. WES confirmed the
high recurrence of mutations in the TP53, PIK3CA, AKT1, GATA3 and MAP3K1 genes and determined
for the first time that CBFB is also significantly mutated in breast cancer [8]. Mutations in CBFB were
only found in ER+ tumors, however, due to the small sample size, it could not be determined whether
they were specific for this subgroup of tumors. CBFB encodes for the beta subunit of a heterodimeric
core-binding transcription factor that regulates a set of genes specific to hematopoiesis [30] and
osteogenesis [31]. RUNX1, a common partner of CBFB in hematopoietic cells, was, also, deleted
in some breast cancer patients. RUNX1 regulates ER-mediated transcription by tethering ER to
target genes without an estrogen response element [32] and it is thought to have a tumor suppressor
role [33]. Furthermore, oncogenic rearrangements of RUNX1 and/or CBFB are common in acute
myeloid leukemia (AML) [34]. Based on these data it is tempting to speculate that inactivation of
this transcription factor complex in breast cancer may be implicated in the etiology of the disease;
future studies should aim to clarify the effects of its loss-of-function. WGS revealed a large number
of genomic rearrangements, especially in the basal-like and HER2-E subtypes, where the median was
more than 200 rearrangements per sample [8]. Of particular interest was the rearrangement between
MAGI3- a binding partner of PTEN- and AKT3, resulting in a fusion gene that was repeatedly detected
in a larger set of triple-negative breast tumors [8]. The predicted fusion protein was speculated to
exhibit loss of function of PTEN (encoded by a tumour suppressor gene) and activation of AKT3
(encoded by an oncogene) [35] and in vitro studies supported a potential oncogenic role [8].

Triple-negative breast cancers (TNBCs) are defined as tumors that lack expression of estrogen
receptor (ER), progesterone receptor (PR), and HER2 [36]. A majority of basal-like cancers are also
triple-negative breast cancers, and the majority of triple-negative breast cancers (approximately 80%)
are also basal-like breast cancers, but clinical, microarray, and immunohistochemical data indicate
that the two phenotypes are not synonymous [36]. A study focusing on the mutational landscape
of TNBC was carried out by Shah and colleagues, where they used RNA-sequencing in 80 cases
and genome/exome sequencing in 65 cases of treatment-naive tumors [9]. Notably, only 36% of
the somatic single nucleotide variants detected were also expressed on the mRNA level, probably
because most mutations occur rarely in a few tumor cells. Not surprisingly, TP53 was the most
frequently mutated gene in 62% of basal TNBC and 43% of non-basal TNBC cases. It was followed
by PIK3CA (10.2%), USH2A (Ushers syndrome gene, implicated in actin cytoskeletal functions),
and MYO3A (a cytoskeleton motor protein involved in cell shape/motility) (9.2%), PTEN, and RB1
(7.7%) [9]. A better understanding of tumorigenesis can be gained by examining collections of
mutations in signaling pathways. It is well established that functional somatic mutations deregulate
these pathways, and researchers use a variety of approaches to assess their clustering in interaction
networks [4]. In this study [9], such an analysis led to the identification of several pathways
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being significantly overrepresented including: TP53-related and chromatin remodeling pathways,
PIK3-, ERBB2-, WNT/cadherin- and integrin signaling pathways, as well as, growth hormone and
nuclear receptor co-activators and ATM/Rb-related pathways. It is long known that deregulation
of all these cellular processes may contribute to cancer development and progression; however, this
was the first time that a cluster of mutations affecting these pathways was identified in TNBC [9].
Investigation of the mutational patterns of individual tumors revealed that TNBCs are mutationally
heterogeneous since the onset of the disease, with some patients’ tumors having only a few mutations
and a small number of molecular pathways implicated, whereas other patients presented tumors
with multiple mutations affecting several signaling pathways [9]. Interestingly the TNBC tumors
examined exhibited different degrees of clonal evolution; although TP53 and PIK3CA/PTEN somatic
mutations appeared clonally dominant, in some tumors their clonal frequencies were incompatible
with them being the driver genes. Other mutations such as the ones detected in genes involved
in cytoskeletal organization and cell shape/motility occurred in rarer clones suggesting that they
developed later. Given the established heterogeneity of TNBCs the authors argued for individualized
therapeutic schemes adapted to each patient’s tumor clonal genotype [9].

The most complete study on the molecular characterization of breast cancer was performed
by the Cancer Genome Atlas (TCGA) Network that integrated genomic (DNA copy number
and exomes), transcriptomic (gene and miRNA expression), epigenomic (DNA methylation), and
proteomic data from 507 patients [10]. The whole-exome sequencing analysis of 510 breast tumors
identified 30,626 somatic mutations and bioinformatics analysis determined 35 SMGs including most
of the genes identified in the studies described above, as well as, some new ones (Table 1). Apart
from mutations in PIK3CA, the gene that encodes the catalytic subunit of PI3K, several mutations in
PIK3R1, the gene that encodes the regulatory subunit of PI3K, were also identified. It is noteworthy
that PIK3R1, PIK3CA, PTEN, and AKT1, which are all important regulators of the PI3K pathway,
carried mutations that followed a mutually exclusive pattern [10]. This finding suggests that
deregulation of this pathway is functionally important for tumor cells the examination of SMGs
by molecular subtype revealed distinct mutational patterns. Luminal breast cancers harbored the
most diverse and recurrent SMGs, despite a lower overall mutation rate compared with the basal-like
and HER2-E subtypes. This finding suggests a causative role of these mutations in luminal breast
cancers. The novel finding by Banerji et al. [8] that RUNX1 and its dimerization partner CBFB
were frequently mutated in luminal-ER+ was also confirmed in this study, suggesting aberrant
ER-signaling in this type of tumors. The luminal a subtype harbored the most SMGs, with the
most frequent being PIK3CA (45%), followed by MAP3K1, GATA3, TP53, CDH1, and MAP2K4.
In agreement with Stephens et al. [7], mutations in MAP3K1 and MAP2K4 were predicted to be
inactivating and abolishing the JNK signaling pathway and they appeared to be almost mutually
exclusive [10]. Luminal B cancers exhibited a diversity of significantly mutated genes, with TP53 and
PIK3CA (29% each) being the most frequent. A number of other TP53-pathway inactivating events
occurred more frequently within this subtype, including ATM loss and MDM2 amplification. It is
safe to assume that inactivation of this pathway in luminal B cancers may account for their more
aggressive phenotype compared to luminal A. The vast majority of basal-like cancers (80%) carried
TP53 mutations; only 9% of them had PIK3CA mutations, while the rest of the luminal SMGs were
absent or near absent. The HER2+ subtype, which has frequent HER2 amplification (80%), exhibited a
hybrid pattern with a high frequency of TP53 (72%) and PIK3CA (39%) mutations and a much lower
frequency of other SMGs including PIK3R1 and PTEN.

The identification of cancer-associated genes has been a major focus of the cancer research
community in an effort to elucidate the biological mechanisms that trigger tumorigenesis and
determine potential targets for drug development. An unambiguous outcome of the aforementioned
studies is that the application of NGS techniques has tremendously contributed to this direction,
making possible the cataloguing of key mutated genes, a process bound to become an integral part of
“precision medicine” [37].
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2.2. Dissecting Intratumor Heterogeneity

All of the genome sequencing studies described above [7–10] have revealed a previously
unknown intertumor heterogeneity (molecular differences between different patients with the
same tumor type) in breast cancer. They have, also, provided a glimpse into spatial intratumor
heterogeneity (molecular differences between different areas of a primary tumor) by estimating allelic
frequencies of mutational events detected within the bulk tumor [4,27,38]. Temporal intratumor
heterogeneity describes tumor evolution during the progression of the disease, and it is defined by the
naturally developing genetic aberrations in combination with the ones that occur from the selective
pressure of anticancer treatments [27].

The most extensively studied form of temporal intratumor heterogeneity involves the differences
between a primary breast tumor and its associated metastatic lesions developed over time [27]. Two
pioneering studies attempted to untangle this issue by using deep sequencing [39,40]. Shah and
colleagues examined the presence of genomic aberrations in a primary lobular breast tumor and in
a metastasis that occurred 9 years later in the same patient [40]. Lobular breast cancer is an ER+

subtype, which can recur many years after the initial diagnosis and, although it is highly metastatic,
it displays features associated with a good prognosis [41]. This study [40] revealed that 32 genes
harbored somatic non-synonymous coding mutations in the metastasis. Several of them (CHD3, SP1,
PALB2, ERBB2, USP28, KLHL4, CDC6, KIAA1468, RNF220, COL1A1 and SNX4) had been previously
identified as mutated in breast cancer but at different positions [11]. The rest of the genes were found
for the first time to harbor mutations in breast cancer. Only 11 out of the 32 genes were also found to
be mutated in the primary tumor with five of them being prevalent, while the rest were mutated in
low frequencies, implying that these specific mutations were restricted to minor sublcones of tumor
cells. These data firmly demonstrate that mutational evolution occurs during cancer progression;
however, it is not clear whether the additional mutations in the metastasis were caused by natural
tumor evolution or if they were the “side-effects” of chemotherapy.

Basal-like breast cancer has an aggressive phenotype and due to the lack of approved targeted
therapy, it has a poor prognosis, often following a metastatic course finally leading to death [42].
Currently, it is not known whether the aggressive phenotype of the metastasis is driven by mutations
that originally occurred in subclones of the primary tumor or by mutations that occurred at the
site of metastasis after tumor cells migrated there. [39]. A study published in 2010 addressed this
question by sequencing the primary breast tumor and the brain metastasis that arose a year later
after neo-adjuvant treatment of a patient [39]. The most striking characteristic of the primary tumor
was the wide range of mutant allele frequencies, which suggests considerable spatial intratumoral
heterogeneity. Regarding the temporal intratumoral heterogeneity between the primary tumor and
the metastasis, it was not so prominent as in the previous study. Forty-eight point mutations
and fifty-one structural variations were identified in both tumors. One potentially important
chromosomal rearrangement involved a large heterozygous deletion in FBXW7, a gene that encodes
for a protein that targets cyclin E and mTOR for ubiquitin-mediated degradation [43,44]; loss of
its function is associated with chromosomal instability and tumorigenesis [45]. Furthermore, the
bi-allelic deletion in CTNNA1 was speculated to be of functional importance, as its loss leads to global
loss of cell adhesion in human breast cancer cells [46] and increased tumorigenic characteristics [47].
The only molecular differences identified in the brain tumor were two de novo mutations that were
unlikely, however, to be essential to the metastatic process [39], and one large deletion in MECR, a
mitochondrial enzyme; twenty of the shared point mutations were also enriched in the metastasis.
The differences in the above studies regarding the time interval between the detection of the primary
tumor and the occurrence of the metastasis may account for the degree of temporal intratumor
heterogeneity detected [27].

Despite the insight into intratumoral heterogeneity NGS has offered us, the output data represent
information derived from the bulk of the tumor, confounding the clonal diversity that may exist in
it. DNA and RNA single cell sequencing (SCS) methods provide powerful new tools for delineating
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clonal diversity and understanding the role of rare cells during cancer progression [48]. The first study
to examine intratumoral heterogenetiy using this technique combined flow-sorted nuclei, whole
genome amplification and next-generation sequencing to accurately quantify genomic copy number
within individual nuclei from patients with TNBCs [49]. Data analysis revealed that copy number
aberrations evolved in punctuated bursts of evolution, followed by stable clonal expansions to form
the tumor mass [48,49]. In a subsequent study, the same group developed a new sequencing approach
called Nuc-Seq, which is a high-coverage, whole-exome single cell sequencing method, which was
applied in two breast cancer patients, one with an ER+ invasive ductal carcinoma and the other
with TNBC, to investigate the mutational landscape of their tumors [50]. Sequencing data generated
from cell populations as well as single cells revealed three classes of mutations: (1) clonal mutations,
detected in the population sample and in the majority of single tumor cells; (2) subclonal mutations
found only in single cells but not in the population and (3) de novo mutations, found in only one tumor
cell [50]. These data clearly demonstrated that there is significant tumor heterogeneity even on the
single-cell level, and that different tumor subclones are the result of accumulation of different point
mutations over time [48,50].

2.3. Understanding Mutational Processes in Breast Cancer

The power of whole breast cancer genome sequencing to expand our understanding of
the mutational processes underlying the disease was illustrated by a study published by
Nik-Zainal et al. [51]. The authors applied NGS in 21 breast cancers and matched normal tissues
and identified 183,916 somatically acquired base substitutions [51]. Driver mutations were found
in the “usual suspects”: TP53, GATA3, PIK3CA, MAP2K4, SMAD4, MLL2, MLL3, NCOR1, ERBB2,
CCND1, MYC, MDM2, ZNF217, and ZNF703 [51]. Mathematical modeling led to the extraction of
mutational signatures that were correlated with distinct molecular mechanisms of DNA damage
and repair. The reasoning behind this association is that each mutational process leaves a signature
on the cancer genome that is a specific combination of mutation types, which is defined by the
mechanisms of DNA damage and repair involved. This mutational signature is determined “by
the strength and duration of exposure to each mutational process” [51]. In this way the authors
determined five biologically distinct single-nucleotide substitution processes that could generate the
observed variation in mutation numbers and patterns between cancers (named A–E). Signature B,
characterized by C > T, C > G, and C > A substitutions at TpCpX trinucleotides, was responsible for
most of the mutations in a set of samples and it characterized approximately 10% of ER+ cancers. A
major finding in this study was the detection of foci of localized substitution hypermutation, termed
kataegis, after the Greek word for thunderstorm. Kataegis is characterized by clusters of C > T and/or
C > G mutations which are substantially enriched at TpCpX trinucleotides on the same DNA strand.
Foci of kataegis included a few to several thousand mutations and were often found in the vicinity
of genomic rearrangements, even though the genomic regions affected were different in different
breast cancers. On the basis of the substitution types and sequence context involved in kataegis and
signature B, it was proposed that the AID/APOBEC family of enzymes might be implicated [51].
This family consists of cytidine deaminases that can insert mutations in DNA and RNA as a result
of their ability to deaminate cytidine to uridine [52]. A subsequent large study that examined over
7000 samples from 30 different types of cancer also showed that APOBEC mutational signatures are
enriched in tumor subclones [53]. Based on these data it has been suggested that APOBEC family
members fuel subclonal expansions and intratumor heterogeneity and may represent a new class of
drug target aimed at limiting tumor evolution, adaptation, and drug resistance [54].
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3. A glimpse into the Transcriptome of Breast Cancer

3.1. Identification of Gene Fusions by RNA-Sequencing

Genomic translocations frequently lead to the generation of gene fusions with oncogenic
properties as illustrated by several such examples in hematological malignancies [55]. The
aforementioned whole-genome DNA sequencing studies identified numerous chromosomal
rearrangements that potentially result in gene fusions; however, it is uncertain how many of the
fusion genes are actually expressed. Alternatively, RNA-sequencing provides a more efficient
approach to directly identify transcripts generated by gene fusions that could be translated into
tumorigenic chimeric proteins.

In a pioneering study in 2011, Robinson et al. [56] applied paired-end transcriptome sequencing
on a set of 89 breast cancer cell lines and tumors. This led to the identification of 384 expressed gene
fusions, with only one of them, SEC16A-NOTCH1, recurrently found. As the goal of this study was the
identification of potentially tumorigenic “driver” fusions, the authors focused on cancer-associated
recurrent fusion partners. The most prevalent ones were members of the microtubule associated
serine-threonine (MAST) kinases (five cases) and the Notch family (eight cases) of genes [56].
Characterization of the identified fusions demonstrated that MAST fusions increased proliferation
in benign breast epithelial cells, whereas cell lines with Notch fusions were sensitive to inhibitors of
Notch signaling. These results led the authors to conclude that identification of gene-fusions may be
important for the development of personalized therapies for a subgroup of breast cancer patients [56].

Kallionemi’s group identified and verified 27 fusion transcripts in four breast cancer cell
lines; 23 of them were novel and they were all specific for the cell line in which they were
identified [57]. The authors confirmed genomic rearrangements for the majority of them and went
on to provide functional evidence that the VAPB-IKZF3 gene fusion was necessary for cancer cell
growth and survival [57]. In a different study, high-throughput transcriptome sequencing led to
the identification of 77 gene fusions in 14 breast cancer cell lines [58]. A remarkably large number
of them were associated with many well-characterized recurrent amplified regions in breast cancer.
Varley and colleagues sought to specifically identify one subgroup of chimeric RNAs known as
“read-through gene fusions” [59]. These involve adjacent genes in the same coding orientation
that are spliced together to form an in-frame chimeric transcript that spans both genes. A number
of read-through fusion transcripts have been identified in prostate cancer and are associated with
cellular proliferation and disease progression (reviewed in [60]). In this study, two read-through gene
fusions (SCNN1A-TNFRSF1A and CTSD-IFITM10) were identified that were significantly associated
with breast cancer [59]. Both of them involved genes that encode membrane proteins, and siRNA
knockdown of CTSD-IFITM10 fusion was associated with a decrease in live cells, suggesting that this
fusion plays a role in breast cancer cell proliferation [59].

3.2. MicroRNA Signatures

MicroRNAs (miRNAs) are small (21–25 nucleotides) non-coding RNAs that function as
post-transcriptional regulators of gene expression mainly through mRNA degradation [61].
Accumulating evidence suggests a causal link between miRNA deregulation and tumorigenesis, and
clinical trials utilizing microRNA profiling for patient prognosis and clinical response are currently
underway [62]. In breast cancer numerous studies have associated miRNA changes with multiple
aspects of disease management, including early diagnosis, prognosis and prediction in specific breast
cancer subtypes and characterization and monitoring of metastases [63] .

The first investigation of the miRNA transcriptome in breast cancer samples using deep
sequencing was published in 2011 and included a set of tumors with paired samples of
tumor-adjacent and normal tissue from five patients [64]. The authors found that all samples
presented a highly similar miRNA profile consisting of overlapping miRNA sets, irrespective of
patient and sample type. Quantification of the results showed that the majority of these common
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miRNAs had lower levels of expression in tumors than in normal tissue. These findings led the
authors to conclude that breast tumors can be distinguished from healthy tissue based on the
differential expression of similar sets of miRNAs rather than tissue-restricted expression of specific
miRNAs [64]. In addition, they identified 535 new mature miRNAs with more than 10% of them
mapping to regions that display high-level amplifications in breast tumors [64]. Even though the
significance of this finding was not clear, it was proposed that these miRNAs may be involved in
the regulation of their host genes that are found overamplified in breast cancer (e.g., ERBB2/HER2).
Soon after, Farazi et al., also reported on the identification of several differentially expressed miRNA
family members in normal and cancer breast samples, [65]. This study included a much larger
number of specimens (185 in total) ranging from normal breast to ductal carcinoma in situ (DCIS) and
invasive carcinomas [65] that all came from different individuals. Members of ten miRNA sequence
families were found to be differentially expressed between normal and cancer specimens: miR-21
and miR-142-3p were up-regulated and members of miR-98, miR-22, miR-145, miR-378, miR-497,
miR-320 and miR-451 families were downregulated. As expected the most striking change was the
increase in miR-21 [64], which is the most abundant miRNA in carcinomas [66]. Notably, different
stages of tumor invasion featured different expression levels of members of the cluster-mir-142,
which were overrepresented in HER2-positive invasive DCs compared to non- invasive (DCIS) [65].
In addition, patients that went on to develop metastasis demonstrated increased expression of
mir-423. TNBCs were most distinct from other tumor subtypes due to up-regulation of the
mir-17-92 cluster [65], and this finding was confirmed by a later study that reported miRNA
expression data from 24 triple-negative breast cancers and 14 adjacent normal tissues [67]. This
latter group identified seven polycistronic miRNA clusters preferentially harboring deregulated
miRNAs in triple-negative breast cancer: miR-143-145 and miR-497-195 were down-regulated, while
miR-17-92, miR-183-182, miR-200-429, miR-301b-130b and miR-532-502 were up-regulated [66]. By
applying hierarchical clustering analysis, the authors generated a 25-miRNA expression signature to
distinguish triple-negative breast cancers from surrounding normal tissues [67].

Under the umbrella of the TCGA project [10], miRNA sequencing was performed on 697 breast
tumors, which were classified in 7 subgroups based on expression levels. These subgroups correlated
with gene expression subtypes, ER, PR and HER2 clinical status. Two of the miRNA groups showed
high overlap with the basal-like subtype and contained many TP53 mutations [10]. A more in depth
analysis was performed by Volinia and de Croce [68], who integrated survival analysis on a large
breast cancer cohort of 466 patients, using genome-wide data for miRNA/mRNA expression and
DNA methylation from the TCGA project. The resulting integrated prognostic signature, comprised
of seven miRNA and 30 mRNA genes was very compact and was successfully validated on eight
breast cancer cohorts, for a total of 2399 additional patients [68].

Technological advances in isolation and sequencing of miRNAs have enabled the specific and
sensitive detection of these small RNAs in breast cancer. Their association with clinical parameters
strongly suggests that they may constitute valuable tools in the management of the disease and
especially of TNBC, for which there are currently no targeted therapies.

4. Breast Cancer Methylome

DNA methylation is the most intensely studied epigenetic modification in cancer and
altered DNA methylation patterns are a hallmark of the disease (reviewed in [69]). DNA
methylation is associated with gene repression and aberrant methylation may play a role in
silencing of tumor suppressor genes. DNA methylation signatures may serve as potential
molecular cancer biomarkers and provide a range of opportunities for early detection, diagnosis,
prognosis, therapeutic stratification and post-therapeutic monitoring (reviewed in [70]). Moreover,
unlike genetic alterations, DNA methylation is reversible, rendering it a potential target for
therapy approaches. Lately, advanced experimental methods have been developed to capture
methylated DNA, including MeDIP (methylated DNA immunoprecipitation), MBD (methyl-binding

2191



Cancers 2015, 7, 2183–2200

domain), MethylC, and RRBS (reduced representation bisulfite sequencing), which, coupled with
high-throughput sequencing, have led to the generation of high resolution maps in cancer, also
known as cancer methylomes (reviewed in [71]).

Ruike et al., studied the methylation profile of eight breast cancer cell lines, one normal mammary
epithelium cell line (HMEC), and MCF7 cells induced to undergo epithelial-to-mesenchymal
transition [72]. Their findings confirmed the characteristic methylation patterns of cancer genome
consisting of massive overall hypomethylation and regional hypermethylation at CpG-rich regions.
Hypermethylation occurred not only at proximal promoters but also at exons and introns, including
regions distal from the TSS [72], which suggests the presence of distal regulatory elements. Using
deep sequencing, Sun and colleagues [73] identified a group of 148 differentially methylated genes
that contributed to the genomic profiles of ER+ and ER´ breast cancer cell lines, a finding that
was also confirmed when they examined ER+ and ER´ primary breast tumors. Several of these
genes have been implicated in hormone responsiveness (e.g., GATA3) or disease progression (e.g.,
LYN). LYN is a member of the SRC family of non-receptor tyrosine kinases and has been associated
with poor patient survival [74]. To investigate DNA methylation changes in the earliest phase of
breast cancer malignancy, Susan Clark’s group used an in vitro system that recapitulates the first
stages of basal-like breast cancer and performed MBDCap-sequencing (affinity capture of methylated
DNA with recombinant methyl-CpG binding domain of MBD2 protein followed by next generation
sequencing) [75]. The results showed significant alterations in DNA methylation associated with
deregulation of cancer-associated genes targeted by the polycomb complex, MYC, AHR and TP53,
suggesting that epigenetic deregulation of transcription factor binding is a key event in breast
carcinogenesis. A set of differentially methylated regions (DMRs) was strongly associated with breast
cancer when evaluated in the methylation data generated by the TCGA project [10], indicating that
it may be used as a biomarker for the early detection of the disease. Additionally, a set of DMRs
was specifically associated with basal-like tumors [75]. Jadhav and colleagues [76] performed DNA
methylation analysis of 77 breast tumors, 10 normal breast tissues from healthy individuals and 38
breast cancer cell lines using MBD-seq. They identified many large contiguous hypermethylated
regions, mainly consisting of gene clusters, confirming a newly emerging perspective that DNA
methylation goes beyond a discrete gene event and often spans long stretches of a chromosome [76].
Importantly, the tumor hypermethylation levels of 7 gene clusters were significantly associated with
overall survival in breast cancer patients [76]. Li and colleagues performed NGS on bisulfite-treated
DNA isolated from 180 breast tumors that belonged to all four molecular subtypes and paired normal
adjacent tissues [77]. They identified 37 genes (out of 48 examined) with significantly different
methylation levels between tumor and normal tissue; 32 genes were hypermethylated and five genes
were hypomethylated (BMP6, DIRAS3, ESR1, HRAS, and SFN) in the cancerous tissues. A panel of
13 hypermethylated genes (CST6, DBC1, EGFR, GREM1, GSTP1, IGFBP3, PDGFRB, PPM1E, SFRP1,
SFRP2, SOX17, TNFRSF10D, and WRN) was determined to be highly efficient in early detection of
breast cancer. Interestingly, the four molecular subtypes displayed distinct methylation profiles with
unique signatures; the basal-like subtype manifested the lowest methylation levels and the luminal B
subtype the highest. The authors also determined methylation signatures for steroid-receptor positive
and steroid-receptor negative tumors, which can be potentially used for the therapeutic stratification
of the disease [77]. Another study from Clark’s group recently reported a potential prognostic
methylation signature for TNBCs [78]. The authors performed genome-wide DNA methylation
profiling in a total of 50 formalin-fixed paraffin-embedded (FFPE) triple-negative clinical DNA
samples and 21 matched normal ones using MBDCap-Seq. They identified 308 hypermethylated
genes, and functional analysis revealed significant enrichment of genes involved in development
and differentiation, DNA binding, transcriptional regulation, and in the axon guidance pathway.
More importantly, they identified regions of differential methylation that stratified TNBC patients
into populations of high, medium or low-risk disease outcome [78] supporting the notion that DNA
methylation biomarkers may become a valuable clinical tool.
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Overall, DNA methylation alterations play an important role in all stages of multistep
tumorigenesis from the early onset of malignant transformation [79]. With the advent of NGS
technologies we have obtained high resolution, genome-wide DNA methylation maps that reveal
new, potential key players in cancer, including breast cancer. Initial clinical data strongly suggest
that DNA methylation signatures may be useful tumor biomarkers, especially in early detection of
the disease.

5. Clinical Applications of NGS

One of the major challenges in the era of breast cancer genomics is to translate the huge amount
of NGS data into clinically valuable information that can be used for the assessment of current
therapeutic schemes, as well as, for the development of novel ones that will target newly identified
druggable genes or minor tumor subclones.

Even though the previously described WGS projects were not specifically designed to address
these issues, some of their major findings provide proof-of-concept for the critical contribution of
breast tumors sequencing in therapy decision making. For example, a common point of convergence
is the mutation frequency of the PI3-kinase signaling pathway, confirming its significance as a
primary therapeutic target in breast cancer. A number of inhibitors of this pathway are currently in
clinical trials, where enrolled patients are also tested for the mutational status of several components
of the PI3K-pathway [80]. The results of these studies will provide insight into whether PIK3CA
mutation status predicts response to these agents [80]. On the other hand, a previously unnoticed
connection between the stress-induced JUN-kinase pathway and breast cancer emerged through
the identification of recurrent mutations in MAP3K1 and MAP2K4 in luminal-ER+ tumors [7,10].
Even though it is not clear yet what repercussions these mutations may have in the management
of ER+ breast cancer, it has been suggested that they may induce sensitivity to treatments, such
as chemotherapy or targeted agents [80]. A unique contribution of these WGS studies is the
identification of low-frequency mutations that may serve as potential drug targets in a subgroup
of breast cancer patients. For example the TCGA project identified possible druggable mutations
within HER-family members (HER1, HER2 and HER3) [10]. The monoclonal antibody pertuzumab,
in combination with trastuzumab, targets the HER2-HER3 heterodimer; however, these data suggest
that targeting HER1 with HER2 could also be beneficial to a subgroup of HER2+ patients [10].
The MAG13-AKT3 fusion gene identified by Banerji et al., in triple-negative patients encoded for
a chimeric protein with a potential oncogenic role [8]. AKT3 activation could be abolished by a
small-molecule inhibitor, thus offering a therapeutic alternative for the treatment of fusion-positive
TNBCs, a subtype where limited treatment options exist beyond systemic cytotoxic chemotherapy [8].

The most comprehensive NGS study to date that was designed to investigate the association
between gene mutations and therapeutic response, integrated data from WGS, WES, gene-expression
and gene copy number analyses. The authors profiled 77 pre-treatment tumor biopsies from
luminal-ER+ post-menopausal women and correlated the molecular profiles with response to
neoadjuvant aromatase inhibitors (AI) [81]. Their list of SMGs contained well-known driver genes
(PIK3CA, TP53, GATA3, CDH1, RB1, MLL3, MAP3K1, CDKN1B), the recently identified TBX3,
CBFB and RUNX1 [7,8,10], as well as novel ones (LDLRAP1, STNM2, MYH9, AGTR2, STMN2 and
SF3B1) [81]. To study clinical correlations, mutation recurrence screening was conducted in an
additional 240 cases. The overall results confirmed that mutations in MAP3K1 were associated with
the luminal a subtype, low tumor grade, and low proliferation rates. The luminal B signature included
mutations in TP53, RB1, RUNX1 and MALAT1 (a non-coding RNA) and was associated with poor
outcome features, such as high baseline and surgical Ki67 levels (a proliferation marker), high grade
histology and high PEPI scores (preoperative endocrine prognostic index-predicts the risk of breast
cancer coming back in women who got hormonal therapy before surgery). TP53 mutations were
associated with AI resistance, while mutations in GATA3 with increased responsiveness to aromatase
inhibition. The above results suggested that patients with MAP3K1 mutant luminal tumors might
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benefit from neoadjuvant AI treatment, while patients with tumors with TP53 mutation, which are
mostly AI resistant, would be more appropriately treated with other therapeutic schemes [81].

A recurrent problem in breast cancer therapeutics which NGS promises to untangle is endocrine
resistance. Estrogen receptor (ER) is the primary therapeutic target in breast cancer and is expressed
in 70% of cases. Drugs such as tamoxifen that directly antagonize ER lie in the core of breast cancer
treatment; however, approximately 30% of ER-positive breast cancers exhibit de novo resistance, and
40% acquire resistance to these therapies [82]. Two studies published back-to-back in Nature Genetics
in 2013 reported the identification of activating ESR1 gene mutations that may function as a
mechanism of endocrine resistance that develops in metastatic breast cancer [83,84]. In both
studies the authors sequenced metastatic ER+ breast tumors from patients who had been treated
with anti-estrogens and aromatase inhibitors, drugs that reduce levels of circulating estrogens.
Toy et al. [83] identified 5 different mutations in ESR1 that affect the ligand binding domain (LBD)
in nine out of 36 patients examined; notably, these mutations were absent from the two untreated
primary tumors tested. The two most frequent ESR1 mutations (Tyr537Ser and Asp538Gly)
were thoroughly characterized by a series of functional experiments that demonstrated that the
mutated receptors were more potent activators than the wild type even in the absence of estradiol.
Additionally, these two mutants were inhibited by high doses of anti-estrogens [83]. Robinson et al.,
also, found five different mutations in the ESR1 LBD in six out of 11 patients examined. [84]. The
respective mutation in each case was detected by whole-exome sequencing of the tumor relative to
the matched normal sample and was corroborated by whole-transcriptome sequencing, as ESR1 was
expressed at moderate to high levels [84]. In three patients, whose primary tumors were also tested,
the ESR1 mutations were not present, indicating that they were acquired after endocrine therapy.
In vitro experiments showed that all ESR1 mutants were constitutively activated and inhibited by
anti-estrogens [84]. It is noteworthy that the two prevalent mutations (Tyr537Ser and Asp538Gly)
described by Toy et al. [83] were, also, reported by this group [84], as well as by two other independent
studies that were published around the same time [85,86]. The above data collectively describe a new
kind of endocrine resistance that develops after AI treatment, where gain-of-function mutations in
the ESR1 result in mutant proteins that can function in the absence of ligand binding and maintain
ER signaling. Notably, the mutants appear to respond to high doses of antagonists, suggesting that
pharmacologic strategies for these patients should be adjusted to efficiently target these receptors.

Neoadjuvant chemotherapy (NAC) is often used in TNBC patients, but 70% of patients present
with residual viable cancer after treatment and exhibit high rates of metastatic recurrence and
an overall poor long-term outcome [87]. To understand the molecular underpinnings driving
treatment-resistant TNBCs, Balko and colleagues performed NGS on the residual disease of
74 clinically defined TNBCs after NAC and on 20 matched pretreatment biopsies [88]. They found
that 90% of the tumors contained a genetic alteration potentially treatable with a currently available
targeted therapy. The most frequent ones were MYC and MCL1 co-amplification (targeted with
MEK inhibitors), PTEN alterations (PI3K and AKT inhibitors), and amplifications of JAK2 (JAK
inhibitors), CDK6, CCND1-3 (CDK4/6 inhibitors), and IGF1R (targeted by monoclonal antibodies
e.g., dalotuzumab). The above data indicate that profiling residual TNBCs after NAC may lead
to the identification of molecular lesions that should be targeted therapeutically immediately after
mastectomy in order to prevent future micrometastases [88].

Liquid biopsies, including circulating cell-free DNA (cfDNA), provide a new promising,
non-invasive tool for diagnosis, prognosis, therapeutic response or resistance monitoring in breast
cancer [89]. The groups of Caldas and Rosenfeld [90] applied PIK3CA and TP53 targeted or
whole-genome sequencing to identify somatic genomic alterations in tumor samples from 30 patients
with metastatic breast cancer. Using digital PCR and targeted sequencing, they also analyzed these
mutations in circulating tumor DNA (ctDNA) in serially collected plasma, and detected them in
97% of the patients. They concluded that detection of ctDNA had prognostic and predictive value
suggesting that it could be used as a highly specific and sensitive biomarker in metastatic breast
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cancer [90]. In a different study, it was demonstrated that serial measurement of ctDNA was a
robust and accurate occult metastatic disease biomarker in patients diagnosed with primary breast
cancer [91].The authors detected chromosomal rearrangements in the primary tumors of 20 breast
cancer patients by low coverage WGS. Droplet digital PCR (ddPCR) analysis of patient plasma
samples was used for ctDNA analysis. Metastasis could be detected by ctDNA in plasma for
13 of 14 patients and in none of the 6 patients with long-term disease-free survival. Moreover,
ctDNA-based detection preceded clinical detection of metastasis for 86% patients with an average
lead time of 11 months, and ctDNA was found to be a significant predictor for poor disease-free
and overall survival [91]. An example of the diagnostic applications of NGS was provided by
two, recent studies that applied it to distinguish between a contralateral new primary breast tumor
and a contralateral metastasis [92,93]. In the first study [92] exome sequencing was employed
in DNA extracted from formalin-fixed paraffin-embedded tissues from 25 women diagnosed with
contralateral breast cancer (50 tumors in total). Three patients shared a common mutation pattern
indicating that the second tumor was likely a metastasis of the first cancer, rather than a new
primary cancer. Accordingly, these patients developed distant metastasis within 3 years of the second
diagnosis [92]. Similar results were reached by Alkner et al., who used WGS in tumor pairs from
10 contralateral breast cancer patients [93]. They identified one patient with a significant percentage
of shared chromosomal rearrangements between her two tumors suggesting common clonal origin.
The identification of patients with contralateral metastasis through NGS may be a valuable tool in
the decision making process for the therapeutic schemes that these patients should be administered
to avoid further spreading of the disease.

6. Conclusions

It has been long recognized that breast cancer is a heterogeneous disease with distinct
histological and pathological features, clinical manifestations, and therapeutic responses. During
the last few years, it has become evident that breast cancer is also a molecularly complex disease
characterized by various genetic and epigenetic aberrations including somatic mutations and altered
DNA methylation patterns. With the recent spectacular advances in whole-genome sequencing
techniques, the cataloguing of these aberrations is nowadays feasible even on the single-cell level,
allowing us to identify and monitor molecular subtypes of the disease, characterize inter- and
intra- tumor heterogeneity, and discover new relevant therapeutic targets. A repercussion of these
developments is the realization that in order to win the fight against breast cancer we need to move
to a patient-tailored practice of breast cancer medicine; to this end, NGS-based approaches can play an
essential role in diagnosis, prognosis and treatment. The next big challenge, is to set the roadmap for
the transition of NGS into the clinical setting in a manner that can provide helpful and cost-effective
information to the clinician for improved patient care (reviewed in [94]) .
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