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Abstract: Head and neck squamous cell carcinoma (HNSCC) is typically diagnosed at 

advanced stages with evident loco-regional and/or distal metastases. The prevalence of 

metastatic lesions directly correlates with poor patient outcome, resulting in high patient 

mortality rates following metastatic development. The progression to metastatic disease 

requires changes not only in the carcinoma cells, but also in the surrounding stromal cells 

and tumor microenvironment. Within the microenvironment, acellular contributions from 

the surrounding extracellular matrix, along with contributions from various infiltrating 

immune cells, tumor associated fibroblasts, and endothelial cells facilitate the spread of 

tumor cells from the primary site to the rest of the body. Thus far, most attempts to limit 

metastatic spread through therapeutic intervention have failed to show patient benefit in 

clinic trails. The goal of this review is highlight the complexity of invasion-promoting 

interactions in the HNSCC tumor microenvironment, focusing on contributions from tumor 

and stromal cells in order to assist future therapeutic development and patient treatment. 
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1. Introduction 

Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and invasive cancer 

types [1]. A common HNSCC hallmark is loco-regional invasion and metastasis to cervical lymph nodes, 

accounting for an 88% patient mortality rate in the two years following metastatic disease development [1]. 

Despite the long-held notion of genomic instability in advanced disease stages, recent studies have found 

no difference in the accumulation of mutations in tumors from patients with and without lymph node 

involvement [2]. This indicates that alterations other than mutations in signaling pathways likely account 

for progression from primary tumor to invasive and metastatic disease. The contributions towards 

metastatic disease arise both from changes in the behavior of tumor cells and interactions with various 

stromal components in the tumor microenvironment. The purpose of this review is to highlight the molecular 

and cellular mechanisms utilized by tumor cells and the associated microenvironment in promoting 

HNSCC invasiveness. 

2. Tumor Cell Contributions 

In HNSCC patients, two out of three individuals exhibit locoregional or distal metastasis at diagnosis, 

correlating with poor patient survival [3,4]. As in other carcinomas, HNSCC invasion involves a multi-step 

process that entails initial breaching of the basement membrane, tumor cell migration through the stromal 

extracellular matrix (ECM), intravasation into regional vasculature, and extravasation at the metastatic 

site. These stages frequently utilize proteolytic-mediated degradation of ECM proteins to facilitate tumor 

cell spreading [5–9]. 

2.1. Cell-ECM Interactions 

The activity of several actin cytoskeletal-modulating proteins has been demonstrated to alter  

the invasive nature of HNSCC. The basement membrane and ECM are barriers that tumor cells must 

bypass in order to move into the surrounding stroma [6,10,11]. Tumor cell mediated proteolytic 

degradation of ECM components, globally or at focalized points termed invadopodia, is essential to  

the invasive process [6,10–12]. Invadopodia are actin-based membrane protrusions that mediate tumor 

cell dissemination by degrading restrictive ECM proteins through the action of matrix metalloproteinases 

(MMPs) [5,10–12]. Many MMPs are overexpressed in HNSCC, including the invadopodia-associated 

MMPs MMP-2, MMP-9, and MMP-14 [9,12,13]. Invadopodia comprise a central filamentous (F)-actin 

core surrounded by an integrin-based adhesion complex ring [6,10,11]. Cortactin and Arp2/3 complex 

are essential protein components involved in formation of the F-actin invadopodia core [14–17]. 

Cortactin is overexpressed in several cancer types including HNSCC, resulting in enhanced tumor cell 

motility and invasion [18–25]. Cortactin stabilizes actin branch points, binding to both the F-actin “mother” 

filament and Arp2/3 complex on the “daughter” filament [22,25–27]. The end result of this activity is 

enhanced invadopodia formation and maturation, leading to robust localized ECM degradation [22,25–27]. 

Further evidence indicates that cortactin overexpression correlates with lymph node involvement and 

metastases [28–30]. In addition to modulating cytoskeletal dynamics, cortactin facilitates localization 

and activation of MMP-14 (also termed membrane type 1—matrix metalloproteinase (MT1-MMP)) to 

invadopodia along with the secretion of MMP-2 and MMP-9 at sites of focalized degradation of ECM 
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proteins [13,31,32]. The activity of MMP-14, MMP-2, and MMP-9 is significantly elevated in HNSCC 

cell lines with high metastatic potential and well as oral cancer patient samples with lymph node 

involvement [12,33,34]. 

Several studies have demonstrated increased localization of the actin bundling protein fascin at  

the tumor invasive front [35,36]. Facin functions by bundling F-actin, which facilitates the formation of 

cellular protrusions necessary for cell-ECM interactions and cell motility [35–37]. Bundling of F-actin 

into parallel strands stabilizes filopodia and invadopodia, resulting in enhanced cell motility and localized 

ECM degradation [35–37]. Re-expression of fascin in facin-null SW1222 human colonic epithelial cells 

results in relocalization of integrin β1 and vinculin to the leading edge of motile cells [38]. Overexpression 

of fascin in various tumors, including HNSCC, correlates with aggressive disease, high metastatic potential, 

and poor prognosis [35,36]. 

Similarly, the serine/threonine kinase p21 protein (Cdc42/Rac)-activated kinase (PAK1) is enriched 

at the invasive boarder of HNSCC tumors, and is essential for HNSCC invasion in vitro [39,40]. PAK1 

resides in the cytoplasm, but can be detected at the leading edge of motile cells, focal adhesions, cell-cell 

junctions, and cortical actin structures [41–44]. PAKs phosphorylate several cytoskeletal protein targets, 

including vimentin, desmin, LIM kinase (LIMK), myosin light chain (MLC), and myosin light chain 

kinase (MLCK), where phosphorylation directly correlates with enhanced cellular motility [39,40]. 

PAK1-mediated MLCK phosphorylation reduces stress fiber formation, while PAK-1-mediated MLC 

phosphorylation induces contractility [41,45,46]. LIMK activation facilitates LIMK binding to the F-actin 

severing protein ADF/cofilin, inhibiting ADF/cofilin activity via phosphorylation to stabilize the F-actin 

network [41,47,48]. The p41-ARC subunit of Arp2/3 complex can be directly phosphorylated by PAK1, 

activating Arp2/3 actin nucleation activity to enhance F-actin formation and increase cell motility [49,50]. 

This effect on actin network formation can also be accomplished through PAK1 phosphorylation of 

cortactin [49,51]. In addition to altering cytoskeletal dynamics, PAK1 has been implicated in the 

downregulation of cell-cell contacts. PAK1-mediated phosphorylation of the transcription factor Snail 

results in reduced expression of the epithelial cell-cell adhesion molecule epithelial (E)-cadherin [41,52]. 

Secretion of MMP-1, MMP-3, and MMP-9 correlates directly with PAK1 expression, suggesting that 

the activity of PAK1 may enhance proteolytic degradation of ECM [53,54]. Overexpression of PAK1 in 

various tumors, including HNSCC, correlates with aggressive disease and poor prognosis [39,40]. 

The calcium binding proteins S100A8 and S100A9 belong to a family of low-molecular-weight 

cytoplasmic proteins primarily detected as a S100A8/A9 heterodimer termed calprotectin [55–58]. 

Expression and secretion of S100A8/A9 is associated with chronic inflammation and is released from 

tumor cells in response to hypoxic stress [55]. While S100A8 and S100A9 are overexpressed in a 

multitude of cancers, their expression is suppressed in HNSCC [55,59,60]. Certain studies have 

demonstrated a pro-apoptotic role of S100A8/A9, inducing pro-caspase-3 cleavage and downregulating 

expression of anti-apoptotic members of the Bcl family, Bcl2 and Bcl-XL [55,61]. The ability of 

S100A8/A9 to induce an apoptotic response, rather than the role in inflammatory signaling, is the most 

likely reason that expression of these proteins is lost in HNSCC. In addition to inflammatory signaling 

and apoptotic response, S100A8/A9 regulates the expression and secretion of MMP-2, representing a 

potential upstream therapeutic target [59,60]. Thus, calprotectin may serve a dual role in HNSCC by 

preventing apoptosis while facilitating MMP-2-driven metastatic dissemination. 
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In order to monitor the surrounding ECM, cells form actin-rich protrusions that in a migratory cell 

contact the ECM to form structures known as focal adhesions. Focal adhesions contain the  

well-characterized cytoskeletal proteins talin, paxillin, α-actinin, vinculin and focal adhesion kinase 

(FAK) [62–64]. Focal adhesions serve as intermediary structures by linking the actin cytoskeleton within 

the cell to the ECM surrounding the cell by interacting with the cytoplasmic domains of the integrin 

class of transmembrane ECM receptors [62,65–68]. Integrin extracellular domains directly bind ECM 

proteins, including fibronectin, laminin, collagen I and collagen IV. [62,65–68]. FAK activation precedes 

focal contact formation and facilitates focal adhesion maturation through phosphorylation of Rho 

guanine nucleotide exchange factors and phosphatidylinositol phosphate kinase isoform γ, which 

enhances talin binding to integrin cytoplasmic domains [66,69]. Regulation of focal adhesion 

disassembly at the trailing edge by FAK dramatically alters cellular motility [66,70,71]. FAK overexpression 

occurs early in HNSCC development, correlating with increased tumor cell invasion and lymph node 

metastasis, partially through an increase in MMP-2 and MMP-9 secretion [67–69]. As such, FAK has 

become a therapeutic target in many tumor types, where pharmacological inhibition of FAK tyrosine 

kinase activity results in decreased tumor cell invasion [72–75]. 

Phospholipase D (PLD1), mediates the hydrolysis of phosphatidyl choline into choline and the second 

messenger phosphatidic acid [49,76,77]. Phosphatidic acid is further hydrolyzed by phosphatidic acid 

phosphohydrolases to generate diacylglycerol and lysophosphatidic acid (LPA), the latter being a key 

mediator of inflammatory response and has been implicated in oncogenesis and metastatic progression [10,76]. 

In addition, LPA activates the Rho family of cytoskeletal regulatory GTPases, facilitating the formation 

of filopodia, lamellipodia, and stress fibers essential for cell movement [49,76]. PLD1 has been shown 

to drive stress fiber and focal adhesion formation in HeLa cells [78]. PLD1 is overexpressed in several 

cancers including HNSCC, where it activates Src kinase and mitogen activated protein kinase (MAPK), 

driving invadopodia formation, maturation, and tumor cell invasion [79–82]. Due to the numerous 

migratory and invasive signaling networks stimulated by PLD1 and PLD1 substrates, PLD1 represents a 

viable upstream target for limiting tumor spread and metastatic progression. To this end, the PLD1 inhibitors 

quercetin, ML298, and ML299 decrease U87 glioblastoma cell invasion in in vitro assays [83,84]. These 

data support further investigation into PLD1 inhibitor efficacy in suppressing HNSCC invasion. 

The phosphoinsositide-3-kinase (PI3K) family of kinases are among the most frequently altered 

oncongenic drivers in cancer [85,86]. Genomic alteration of PI3K occurs in approximately 31% of 

HNSCC tumors [85,86]. The PI3K class IA isoforms, p110α, p110β, and p110δ lie directly downstream 

of many oncogenic receptor tyrosine kinases, including epidermal growth factor receptor (EGFR), 

human epidermal growth factor receptor 3 (HER3), Met, platelet-derived growth factor receptor 

(PDGFR), vascular endothelial growth factor receptor (VEGFR), and insulin-like growth factor receptor 1 

(IGF-1R) [85,87]. The PI3K isoform p110α is the most commonly overexpressed family member in 

HNSCC, acting upstream of Cdc42, Rac, and Rho kinases, to enhance filopodia and lamellipodia 

formation resulting in increased cellular motility [85,86,88–90]. 

Despite the expression of several fibroblast growth factor (FGF) receptors in HNSCC, surprisingly 

little investigation has focused on secretion of the FGF gene products FGF-3, FGF-4, and FGF-19 

located within the 11q13 amplified region found in nearly a third of HNSCC patient samples [91,92]. 

Studies have focused on FGF-2 and FGF-binding protein, identifying autocrine loops with these FGF 

receptors that correlate with enhanced HNSCC invasion [92,93]. Given the establishment of these 
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autocrine loops and the potential for these secreted FGFs to attract fibroblasts into proximity with 

HNSCC cells (see below), further investigation into the 11q13 amplified FGFs is warranted to determine 

if these proteins contribute to HNSCC metastatic progression. 

2.2. Cell-Cell Interactions 

In addition to enhanced motility at the individual cellular level, the mode of tumor cell migration also 

impacts local invasion and metastasis. Tumor cells can invade as individual cells, displaying either 

mesenchymal or amoeboid migration depending on intercellular signaling events, which result in poorly 

differentiated tumors due to the intermingling of individual invasive tumor cells with the stromal  

tissue [94,95]. Other tumor cells utilize multicellular or collective invasion, maintaining tumor cell-cell 

junctions, resulting in moderately to well differentiated tumors as the invasive tumor cells can be 

distinguished from the surrounding tissue [94,95]. In histological HNSCC samples displaying a broad 

invasive front, tumors remain well-to moderately-differentiated due the tumor cells being easily 

distinguished from the surrounding tissue by retaining membranous E-cadherin staining. These 

characteristics indicate that such tumors undergo collective invasion. In addition, cases where tumors 

display individual finger-like invasive fronts, tumors are poorly differentiated as individual tumor cells 

are intermingled with stromal cells. These invasive tumor cells show reduced E-cadherin staining,  

with notable increases in both phospho-Src and vimentin that represent a more mesenchymal invasion 

modality [96]. Patients with elevated phospho-Src and vimentin have direct correlation with greater 

lymph node involvement and advanced tumor stage [96]. Although E-cadherin is not essential to 

collective invasion, maintenance of cell-cell adhesions and an epithelial phenotype allow for multicellular 

invasive clusters to migrate simultaneously [94,95]. 

In addition to direct cell-cell contact, tumor cells interact through autocrine and paracrine signaling 

networks. EGFR is overexpressed in greater than 95% of HNSCC patient samples, and phosphorylation 

of the downstream effector Src kinase correlates with poorly differentiated HNSCC, lymph node 

involvement, and poor patient outcome [97–99]. Recent studies indicate that there are two distinct 

subpopulations within most HNSCC tumors, in which E-cadherin and vimentin are inversely  

expressed [100–102]. These two subpopulations demonstrate plasticity in regenerating heterogeneity in 

culture and xenograft tumors derived from single subpopulations, but respond differentially to various 

chemotherapeutic agents [100–102]. Expression of EGFR is variable in these subpopulations, correlating 

inversely with vimentin expression, suggesting a potential mechanism for acquired EGFR inhibitor 

resistance that is observed in the clinic [100–102]. Another receptor tyrosine kinase, tyrosine receptor 

kinase B (TrkB), is expressed in more than half of HNSCC patient tumors. TrkB activates the transcription 

factors Snail and Twist, driving the epithelial to mesenchymal transition (EMT) and enhancing tumor 

cell invasion [103]. These data collectively support the idea that deterioration of cell-cell contacts drives 

a drug resistant and more invasive phenotype in HNSCC. 

2.3. Angiogenesis and Neo-Vascularization 

Angiogenesis not only supplies growing tumors with requisite nutrition, but also provides cells at  

the tumor periphery a route to disseminate into surrounding tissues and the rest of the body. In addition 

to MMPs, HNSCC cells secrete a variety of pro-angiogenic factors that recruit endothelial cells into  
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the local tumor microenvironment, resulting in formation of a leaky capillary bed that facilitates tumor 

cell intra- and extravasation. Two key angiogenic paracrine signaling profiles have been proposed for 

HNSCC cells. The first utilizes excess secreted VEGF, FGF-2, with small amounts of interleukin (IL)-8. 

The second mainly consists of IL-8, with lesser amounts of VEGF and FGF-2 [104–106]. In addition, 

primary HNSCC tumor cell cultures, tissue specimens, and established cells lines have enhanced 

secretion of VEGF and/or PDGF-AB, with lesser, yet still elevated, secretion of granulocyte colony 

stimulating factor (G-CSF) and granulocyte macrophage (GM)-CSF [105,107]. Increased secretion of 

these cytokines drives HNSCC tumor angiogenesis and corresponds with decreased patient survival [105]. 

Furthermore, oral SCC tissue samples display enhanced lymphatic microvessel density in the presence 

of VEGF, PDGF, basic FGF, hepatocyte growth factor (HGF) and IGF-1 [108,109]. Enhanced primary 

tumor lymphatic and blood microvessel density in response to these secreted factors correlates with 

lymph node metastasis and invasive tumor margins [110,111]. Endothelial cell recruitment and 

formation of an immature vascular network around the tumor in response to HNSCC cell angiogenic 

secretions are therefore prime contributors for providing essential routes for primary tumor cell invasion 

and metastatic dissemination. 

2.4. Metastasis to Distant Sites 

Once tumor cells reach the blood or lymphatic vasculature, they must survive in circulation until they 

reach lymph nodes or other metastatic sites. While little has been elucidated about such circulating tumor 

cells (CTCs) in HNSCC, the amount of HNSCC CTCs rises significantly in stage IV tumors, correlating 

directly with increased metastasis and inversely with therapeutic response [112,113]. HNSCC CTCs are 

not well defined, and are typically characterized as cells expressing epidermal cell adhesion molecule 

(EpCAM) or cytokeratin (CK) 8, CK18, or CK19 in blood samples [112,113]. One study found that IL-6 

enhanced survival and self-renewal of the aldehyde dehydrogenase (ALDH)highCD44high cell population, 

representing a potential cancer stem cell (CSC) subpopulation sufficient to reconstitute a tumor when 

transplanted into a mouse xenograft model [114]. This same CSC subpopulation is resistant to cisplatin-

induced cell death [115]. There is evidence that indicates EGFR, TrkB, and IL-1β are essential to maintaining 

a mesenchymal subpopulation associated with chemotherapeutic resistance in HNSCC [103,116,117]. 

Other studies suggest that these mesenchymal-like cells can recapitulate the epithelial population of a 

tumor following chemotherapeutic therapy, potentially representing the HNSCC tumor equivalent to the 

CD44+/CD24− stem-like subpopulation in breast carcinomas [100–102]. It remains unclear if these 

mesenchymal-like cells, CSCs and CTCs are the same or unique HNSCC subpopulations, but all show 

tumor initiating capacity that can be utilized to form metastases [101–103,114,115,117]. Once these 

tumor initiating cells (TICs) reach the metastatic site, they must first extravasate, a process aided by the 

local endothelial cells [114]. Following extravasation, some TICs differentiate back into the more epithelial 

phenotype that makes up the majority of the tumor mass, while other TICs undergo self-renewal to 

maintain the subpopulation [100–102,114]. Reconstituting the entire tumor mass allows the tumor to 

grow rapidly, taking advantage of the hospitable metastatic niche since the epithelial cell phenotype 

shows enhanced proliferation rates as compared to TICs [101,117]. While CTCs, CSCs, and 

mesenchymal-like cells represent resistant subpopulations potentially capable of initiating recurrence 
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and correlates with invasive and metastatic disease, investigation into this aspect of HNSCC progression 

for therapeutic targeting has become an important newly emerging field [100,103,112,113,116]. 

3. Stromal Cell Contributions 

In addition to carcinoma cells, various cellular and acellular stromal components contribute to promoting 

and maintaining HNSCC invasion. Deposition of specific ECM proteins (collagen IV, collagen XVII, 

fibronectin, and laminin) is enhanced in HNSCC tumors and serve as a chemo-attractant for HNSCC 

cells in various in vitro invasion assays [118–120]. As HNSCC tumors progress towards metastatic 

disease, non-tumor cell types from the associated stroma have been shown to have direct and indirect 

roles in facilitating HNSCC invasion. 

3.1. Mast Cells 

Mast cells are part of the immune myeloid lineage that mediate innate and acquired immune responses 

through granule exocyctosis, releasing histamine, serine proteases, carboxypeptidase A (CPA1), 

proteoglycans, prostaglandin D2 (PGD2), leukotriene C4 (LTC4), tumor necrosis factor (TNF)-α, GM-CSF, 

IL-3, IL-4, IL-5, IL-6, IL-8, and IL-16 [121]. During advanced HNSCC stages, where the tumor has 

spread to loco-regional or distal lymph nodes, mast cells accumulate in the tumor stroma, with their 

presence directly correlating with increased angiogenesis [104,122,123]. How HNSCC tumors suppress 

rapid mast cell activation in response to immunoglobulin E or CD32 binding to FcεRI or FCγRIIb 

respectively remains to be elucidated, but may occur by blocking FcεRI activation on mast cells [121]. 

Additionally, heparanase, an enzyme involved in cleavage and remodeling heparin sulfate proteoglycans 

in the ECM, accumulates at the HNSCC invasive front, and is a marker of poor prognosis for lymph 

node metastasis and tumor recurrence [124]. Mast cells, along with tumor infiltrating neutrophils, 

endothelial cells, and macrophages exhibit heparanase activity [124,125]. However, since mast cells also 

secrete large amounts of heparin, they are the cell type that is likely responsible for invasion-associated 

heparanase activity in the tumor microenvironment. While the main contribution of mast cells to tumor 

progression may be inflammation-mediated recruitment of other cell types into the microenvironment, 

their presence also facilitates HNSCC tumor neo-vascularization and dissemination to loco-regional 

lymph nodes. 

3.2. Neutrophils 

Neutrophils are another component of the immune system that contributes to the innate immune 

response [126]. Neutrophils are recruited to the tumor microenvironment by pro-inflammatory signals, 

including IL-8, transforming growth factor (TGF)-β, IL-4, IL-10, IL-13, GM-CSF, and TNF-α [127,128]. 

Following recruitment to the tumor microenvironment, neutrophils secrete VEGF-A, stimulating 

neovascularization through endothelial cell recruitment and proliferation, which can be abrogated via 

anti-VEGF-A antibodies or angiostatin treatment [128–130]. Additionally, neutrophil-derived HGF and 

MMP-9 facilitate tumor cell migration and invasion towards the newly formed vascular bed [128]. In 

this context, neutrophils bridge the gap between the growing tumor mass and the local vasculature, 
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bringing in endothelial cells to an area of growing hypoxia while promoting a chemotactic invasive 

phenotype in the tumor cells. 

3.3. Macrophages 

Macrophages belong to the myeloid lineage of the immune system [131]. Macrophages play a direct 

role in immune surveillance through endocytosis of pathogens and cellular debris [131]. Tumor associated 

macrophage (TAM) infiltration into the tumor microenvironment correlates with lymph node involvement, 

tumor stage, and extracapsular spread [132–134]. Once TAMs arrive in the tumor microenvironment, 

TAM secretions set up several paracrine signaling loops that drive tumor cell invasion and metastasis. 

In one loop, TAMs secrete EGF stimulating tumor cell growth, migration, and invasion. Correspondingly, 

HNSCC cells secrete CSF-1 that drives further TAM proliferation and tumor infiltration [135–137]. In 

another loop, TAMs secrete macrophage migration inhibitory factor (MMIF), attracting and activating 

neutrophils, which subsequently interact with HNSCC cells as described above [128–130,138]. In 

response to HNSCC secreted paracrine factors, TAMs develop podosomes, capable of assisting tumor 

cells breach the basement membrane and enter the vascular or lymphatic network [133,139]. Similar to 

invadopodia, podosomes are membrane protrusions containing an actin-rich core surrounded by an 

integrin ring that mediates interaction with the ECM [140]. Podosomes are formed at the leading edge 

of motile cells and contribute to cellular motility, simultaneously allowing cells to adhere to the ECM 

and initiating acto-mysoin contractility to pull the cell body forward [139,140]. Podosomes can also 

localize MMPs, including MMP-2, MMP-9, and MT1-MMP to proteolytically degrade and rearrange 

the ECM [140,141]. TAMs also secrete the chemotactic factor macrophage inflammatory protein (MIP)-3α, 

which drives HNSCC cell migration and invasion [142]. Through these signaling pathways, macrophages 

are able to promote and maintain the HNSCC invasive phenotype, assist in basement membrane 

breakdown and recruitment of other cell types into the tumor microenvironment. 

3.4. Endothelial Cells 

While endothelial cells play a major role in vascularization of the growing tumor mass, emerging 

evidence demonstrates a novel role for endothelial cells in facilitating tumor cell invasion. The chemotactic 

factors VEGF, TNF-α, and TGF-β induce podosome formation in endothelial cells along the invasive 

tumor front [141,143–146]. This allows endothelial cells to reach hypoxic tumor regions, facilitating 

breakdown of basement membrane encapsulating the primary tumor. Once endothelial cells come into 

direct contact with tumor cells, endothelial cell Notch activation in response to HNSCC-derived Notch 

ligand Jagged1 drives capillary-like sprout formation and neovascularization of the expanding tumor 

mass [147]. The combined effort of endothelial cell-mediated rearrangement of the microenvironment 

to promote tumor cell access to the vascular network makes endothelial cells important contributors to 

HNSCC tumor progression. 

3.5. Fibroblasts 

The desmoplastic response is a hallmark of cancer progression, where secretion and restructuring of 

ECM proteins drives tumor cell proteolytic invasion and production of “tracks” for proteolytic-independent 
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invasion modes [148,149]. Fibroblasts are specialized for this task, as they can degrade and rearrange  

a variety of ECM proteins including type I and IV collagens, laminin, and fibronectin [145,149,150]. 

Integrin α6 expression allows such cancer associated fibroblasts (CAFs) to bind the basement membrane 

protein laminin, enabling CAF-mediated proteolytic laminin degradation [140,151]. Expression of 

integrin α6 in CAFs has been linked to poor prognosis in oral cancer patients [151]. Fibroblast-mediated 

proteolytic cleavage of ECM proteins requires direct contact with tumor cells or binding of HNSCC 

secreted endothelin-1 (ET-1), leading to localization of a disintegrin and metalloprotease (ADAM)-12 

and ADAM-17 at fibroblast podosomes, followed by secretion and activation of MMP-2 and MMP-9 

from carcinoma cells and CAFs [34,152–154]. Other studies suggest that chemokine C-X-C motif 

receptor type 4 (CXCR4) binding to CAF-secreted chemokine C-X-C motif ligand 12 (CXCL12) initiates 

carcinoma derived MMP-9 secretion in the tumor microenvironment [34,155]. Regardless of the source 

of MMP secretion, total MMP levels and the ratio of activated MMPs to total MMP concentration 

compared with adjacent normal tissue positively correlates with lymph node involvement [155,156]. As 

a result, the HNSCC stroma is enriched in infiltrating CAFs, with the highest concentrations 

accumulating near the invasive front of the tumor [24,29,157]. Infiltrating CAFs have several 

characteristics of myofibroblasts, including enhanced proliferation and motility, expression of cytokeratins, 

vimentin, and α-smooth muscle actin (SMA), and secretion of MMP-2 and HGF [122,158,159]. CAF 

MMP secretion facilitates ECM degradation and remodeling, whereas HGF enhances HNSCC cell 

motility [122,158,159]. In turn, enhanced CAF proliferation and motility allows the CAF population to 

expand and spread in accordance with the growing invasive tumor front [122,158,159]. The adaptation 

of HNSCC CAFs with myofibroblast characteristics results in extracapsular tumor cell spread, increased 

invasion, and lymph node metastasis [160]. Orthotopic floor of mouth co-injection of HNSCC cells with 

CAFs or normal fibroblasts in mice indicates that CAFs contribute significantly to lymph node and distal 

metastatic disease [161]. The net results of fibroblasts in the tumor microenvironment is rearrangement 

of ECM proteins, allowing fibroblasts to lead tumor cells into surrounding tissues or paving pathways 

in the stroma for invasive tumor cells to follow. Additionally, TGF-β and miR-210 induced CAF 

senescence promotes fibroblast MMP-2 secretion and tumor cell EMT, enhancing in vitro tumor cell 

invasion [151,162–164]. Further evidence indicates that coinjection of tumor cells with senescent CAFs 

promotes xenograft engraftment and tumor growth [165–167]. These activities ultimately result in 

facilitating HNSCC metastatic progression. 

4. Anti-Metastatic Therapeutic Approaches 

While indolent primary HNSCC tumors are typically treated by surgical resection and/or radiation 

therapy, the treatment of invasive and metastatic disease is more complex. The development of 

preventative anti-metastatic therapies holds promise to broaden patient treatment options and improve 

survival rates. Many recent anti-metastatic treatments have been aimed at Src kinase due to the essential 

role Src plays in cancer cell motility and invadopodia formation, as well as the multitude of overexpressed 

upstream transmembrane receptors that activate Src in tumors [25–27]. Initial in vitro studies using 

saracatinib (AZD0530) resulted in decreased MMP-9 activation and ECM degradation in established 

HNSCC cell lines, and also reduced invasion in HNSCC cells lines from primary tumors and matched 

lymph node metastases in combination with the phospholipase C inhibitor U73122 [168,169]. Another 



Cancers 2015, 7 391 

 

 

combination study showed that saracatinib with the EGFR small molecule inhibitor gefitinib suppressed 

HNSCC cell invasion in vitro to a greater extent than either drug alone [170]. However, a subsequent 

Phase II trial of saracatinib resulted in no therapeutic benefit in either recurrent or metastatic HNSCC [171]. 

Treatment of HNSCC cell lines with the Src/Abl small molecule inhibitor dasatinib (BMS-354825) 

decreased migration and invasion while blocking the G1-S transition [172]. A Phase II clinical trial of 

dasatinib alone also failed to show clinical benefit to patients with late stage HNSCC [173]. These trial 

results clearly demonstrate that targeting Src is insufficient to prevent HNSCC progression, prompting 

the need to evaluate additional pro-invasive oncogenic targets. The activity of another oncogenic 

tyrosine kinase, Abl, downstream of EGFR and Src kinase facilitates invadopodia formation and 

promotes tumor cell invasion and metastasis [30,174–178]. In vitro treatment with the Abl family 

inhibitor imatinib mesylate (STI571; Gleevac) resulted in enhanced HNSCC cell invasion, opposite of 

what has been observed in invasive breast cancer [179]. Imatinib mesylate stimulates HNSCC shedding 

of heparin-binding EGF, which activates EGFR on the HNSCC cell surface, driving invadopodia 

formation and ECM degradation [179]. A phase II trial of imatinib mesylate and docetaxel for patients 

with metastatic non-small-cell lung carcinoma and HNSCC found no clinical benefit and closed early 

due to significant toxicity from this drug regimen [180]. Cetuximab (IMC-C225), an anti-EGFR humanized 

monoclonal antibody, shows multifaceted benefit in HNSCC by blocking proliferation, angiogenesis and 

metastasis while increasing tumor cell apoptosis [181–183]. Phase II clinical trials for patients with late 

stage HNSCC showed partial response to cetuximab alone in a small patient subset, while complete 

response was observed in the majority of patients when cetuximab was used in combination with cisplatin, 

fluorouracil, and radiotherapy [184,185]. The Erbitux in First-Line Treatment of Recurrent or Metastatic 

Head and Neck Cancer (EXTREME) Phase III trial showed significant increases in overall survival, 

progression-free survival, and response rate for the combination of cetuximab and platinum/5-fluorouralcil 

compared with platinum/5-fluorouracil alone [186–189]. While these trials did not directly investigate an 

anti-metastatic role for cetuximab, it is a promising advance in HNSCC treatment. Another study found that 

the potassium ionophore antibiotic salinomycin significantly inhibited growth of the cisplatin-resistant 

mesenchymal-like HNSCC subpopulation, likely through induction of apoptosis [101,190]. These data 

demonstrate a potential mechanism for targeting a drug resistant, highly mobile subpopulation that has 

been implicated in metastatic dissemination as well as disease recurrence [100–102]. While these initial 

studies have demonstrated some efficacy in patients with advanced disease, direct anti-invasive and anti-

metastatic therapeutic targeting continues to remain elusive in HNSCC. 

5. Conclusions 

HNSCC tumors contain a host of aberrant signaling pathways, from cytoskeletal modulation 

responsible for driving increased invasion to promoting tumor cell survival in the circulation. 

Interactions with the surrounding ECM as well as between individual tumor cells influences the ability 

of HNSCC cells to invade into the surrounding tissue and eventually to other parts of the body, 

predominantly the cervical lymph nodes. Changes in cell-cell adhesions along with alterations in cellular 

morphology allow HNSCC cells to undergo a variety of invasive patterns. Additionally, HNSCC cells 

utilize various autocrine and paracrine secreted factors in order to optimize tumor dissemination, whether 

through neovascularization by endothelial cells or rearrangement of ECM protein by local fibroblasts. 
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The tumor microenvironment, depicted in Figure 1, is therefore a complex, dynamic system, complicating 

our understanding of tumor behavior and potential therapeutic interventions.  

 

Figure 1. Diagram of tumor and stromal-based contributions that promote head and neck 

squamous cell carcinoma (HNSCC) invasion. Depicted is an invasive HNSCC tumor cell mass 

invading into the surrounding stroma and muscle tissue of the oral tongue. Specific cell types 

and their respective secreted protein contributions are detailed, demonstrating subsequent 

cellular responses and paracrine signaling networks. See text for additional detail. 

Use of conventional wet-bench‒based cell and xenograft assays cannot incorporate the breath of 

tumor-stromal interactions that occur in patient tumors. The inability of these models to accurately guide 

pharmaceutical intervention development, as witnessed by the lack of successful clinical trials to date, is 

a testament to the complexity and difficulty of targeting HNSCC invasion and metastasis. This is likely due 

to the multitude of pro-invasive signaling networks in HNSCC cells and various tumor-stromal 

interactions. Therefore, in order to make meaningful advances in the treatment of HNSCC invasion, new 

model systems need to be developed that include, or at least consider, all of the intracellular, cell-cell, 

and cell-matrix contributions from carcinoma cells and corresponding tumor-associated stromal cells 

found in patient tumors. 

Acknowledgments 

This work was supported by the Mary Babb Randolph Cancer Center, Department of Neurobiology 

and Anatomy and Office of Research and Graduate Education at West Virginia University. Additional 

support from the National Institute of General Medical Sciences, U54GM104942 is gratefully 



Cancers 2015, 7 393 

 

 

acknowledged. The content is solely the responsibility of the authors and does not necessarily represent 

the official views of the NIH. 

Author Contributions 

S.M.M. and S.A.W. wrote the manuscript. 

Abbreviations 

ALDH, aldehyde dehydrogenase; ADAM-12, a disintegrin and metalloprotease 12; ADAM-17,  

a disintegrin and metalloprotease 17; bFGF, basic fibroblast growth factor; CAF, cancer associated 

fibroblast; CK, cytokeratin; CK8, cytokeratin 8; CK18, cytokeratin 18; CK19, cytokeratin 19; CSC, 

cancer stem cell; CTC, circulating tumor cell; CXCL12, chemokine C-X-C motif ligand 12; CXCR4, 

chemokine C-X-C motif receptor type 4; E-cadherin, epithelial-cadherin; ECM, extracellular matrix; 

EGF, epidermal growth factor; EGFR, epidermal growth factor receptor; EMT, epithelial to 

mesenchymal transition; EpCAM, epidermal cell adhesion molecule; ET-1, endothelin-1; F-actin, 

filamentous-actin; FAK, focal adhesion kinase; FGF-2, fibroblast growth factor 2; FGF-3, fibroblast 

growth factor 3; FGF-4, fibroblast growth factor 4; FGF-19, fibroblast growth factor 19; FGF-BP, 

fibroblast growth factor binding protein; G-CSF, granulocyte colony stimulating factor; GM-CSF, 

granulocyte macrophage colony stimulating factor; HER3, human epidermal growth factor receptor 3; 

HGF, hepatocyte growth factor; HNSCC, head and neck squamous cell carcinoma; IGF-1, insulin-like 

growth factor 1; IGF-1R, insulin-like growth factor receptor 1; IL-1β, interleukin 1β; IL-3, interleukin 3; 

IL-4, interleukin 4; IL-5, interleukin 5; IL-6, interleukin 6; IL-8, interleukin 8; IL-10, interleukin 10;  

IL-13, interleukin 13; IL-16, interleukin 16; LIMK, LIM kinase; LTC4, leukotriene C4; MAPK, mitogen 

activated protein kinase; MIP-3α, macrophage inhibitor protein 3α; MLC, myosin light chain; MLCK, 

myosin light chain kinase; MMIF, macrophage migration inhibitory factor; MMP, matrix metalloproteinase; 

MMP-1, matrix metalloproteinase 1; MMP-2, matrix metalloproteinase 2; MMP-3, matrix metalloproteinase 3; 

MMP-9, matrix metalloproteinase 9; MMP-14, matrix metalloproteinase 14; MT1-MMP, membrane 

type 1-matrix metalloproteinase; PAK1, p21 protein (Cdc42/Rac)-activated kinase 1; PDGF, platelet-derived 

growth factor; PDGF-AB, platelet-derived growth factor AB; PDGFR, platelet-derived growth factor 

receptor; PGD2, prostaglandin D2; PI3K, phosphoinsositide-3-kinase; TAM, tumor associated macrophage; 

TGF-β, transforming growth factor β; TIC, tumor initiating cell; TNF-α, tumor necrosis factor α; TrkB, 

tyrosine receptor kinase B; VEGF, vascular endothelial growth factor; VEGF-A, vascular endothelial 

growth factor A; VEGFR, vascular endothelial growth factor receptor. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Probert, J.C.; Thompson, R.W.; Bagshaw, M.A. Patterns of spread of distant metastases in head 

and neck cancer. Cancer 1974, 33, 127–133. 



Cancers 2015, 7 394 

 

 

2. Onken, M.D.; Winkler, A.E.; Kanchi, K.-L.; Chalivendra, V.; Law, J.H.; Rickert, C.G.; Kallogjeri, D.; 

Judd, N.P.; Dunn, G.P.; Piccirillo, J.F.; et al. A surprising cross-species conservation in the genomic 

landscape of mouse and human oral cancer identifies a transcriptional signature predicting metastatic 

disease. Clin. Cancer Res. 2014, 20, 2873–2884. 

3. Leemans, C.R.; Braakhuis, B.J.M.; Brakenhoff, R.H. The molecular biology of head and neck cancer. 

Nat. Rev. Cancer 2011, 11, 9–22. 

4. Koontongkaew, S. The tumor microenvironment contribution to development, growth, invasion 

and metastasis of head and neck squamous cell carcinomas. J. Cancer 2013, 4, 66–83. 

5. Bowden, E.T.; Barth, M.; Thomas, D.; Glazer, R.I.; Mueller, S.C. An invasion-related complex of 

cortactin, paxillin and PKCmu associates with invadopodia at sites of extracellular matrix degradation. 

Oncogene 1999, 18, 4440–4449. 

6. Branch, K.M.; Hoshino, D.; Weaver, A.M. Adhesion rings surround invadopodia and promote 

maturation. Biol. Open 2012, 1, 711–722. 

7. Yamaguchi, H.; Wyckoff, J.; Condeelis, J. Cell migration in tumors. Curr. Opin. Cell Biol. 2005, 

17, 559–564. 

8. Baldassarre, M.; Pompeo, A.; Beznoussenko, G.; Castaldi, C.; Cortellino, S.; McNiven, M.A.; 

Luini, A.; Buccione, R. Dynamin participates in focal extracellular matrix degradation by invasive 

cells. Mol. Biol. Cell 2003, 14, 1074–1084. 

9. Leong, H.S.; Robertson, A.E.; Stoletov, K.; Leith, S.J.; Chin, C.A.; Chien, A.E.; Hague, M.N.; 

Ablack, A.; Carmine-Simmen, K.; McPherson, V.A.; et al. Invadopodia are required for cancer 

cell extravasation and are a therapeutic target for metastasis. Cell Rep. 2014, 8, 1–13. 

10. Lohmer, L.L.; Kelley, L.C.; Hagedorn, E.J.; Sherwood, D.R. Invadopodia and basement membrane 

invasion in vivo. Cell Adh. Migr. 2014, 8, 246–255. 

11. Paz, H.; Pathak, N.; Yang, J. Invading one step at a time: The role of invadopodia in tumor metastasis. 

Oncogene 2014, 33, 4193–4202. 

12. Rosenthal, E.; Matrisian, L.M. Matrix metalloproteases in head and neck cancer. Head Neck 2006, 

28, 639–648. 

13. Clark, E.S.; Whigham, A.S.; Yarbrough, W.G.; Weaver, A.M. Cortactin is an essential regulator 

of matrix metalloproteinase secretion and extracellular matrix degradation in invadopodia.  

Cancer Res. 2007, 67, 4227–4235. 

14. Wu, H.; Parsons, J.T. Cortactin, an 80/85-Kilodalton pp60Src substrate, is a Filamentous Actin-binding 

Protein Enriched in the Cell Cortex. J. Cell Biol. 1993, 120, 1417–1426. 

15. Wu, H.; Reynolds, A.B.; Kanner, S.B.; Vines, R.R.; Parsons, J.T. Identification and characterization 

of a novel cytoskeleton-associated pp60src substrate. Mol. Cell. Biol. 1991, 11, 5113–5124. 

16. Weed, S.A.; Du, Y.; Parsons, J.T. Translocation of cortactin to the cell periphery is mediated by  

the small GTPase Rac1. J. Cell Sci. 1998, 111, 2433–2443. 

17. Siton, O.; Ideses, Y.; Albeck, S.; Unger, T.; Bershadsky, A.D.; Gov, N.S.; Bernheim-Groswasser, A. 

Cortactin releases the brakes in actin- based motility by enhancing WASP-VCA detachment from 

Arp2/3 branches. Curr. Biol. 2011, 21, 2092–2097. 

18. Schuuring, E.; Verhoeven, E.; Litvinov, S.; Michalides, R.J.A.M. The product of the EMS1 gene, 

amplified and overexpressed in human carcinomas, is homologous to a v-src substrate and is located 

in cell-substratum contact sites. Mol. Cell. Biol. 1993, 13, 2891–2898. 



Cancers 2015, 7 395 

 

 

19. Schuuring, E.; Verhoeven, E.; Mooi, W.J.; Michalides, R.J.A.M. Identification and cloning of two 

overexpressed genes, U21B31/PRAD1 and EMS1, within the amplified chromosome 11q13 region 

in human carcinomas. Oncogene 1992, 7, 355–361. 

20. Clark, E.S.; Brown, B.; Whigham, A.S.; Kochaishvili, A.; Yarbrough, W.G.; Weaver, A.M. 

Aggressiveness of HNSCC tumors depends on expression levels of cortactin, a gene in the 11q13 

amplicon. Oncogene 2009, 28, 431–444. 

21. Huang, C.; Liu, J.; Haudenschild, C.C.; Zhan, X. The Role of Tyrosine Phosphorylation of 

Cortactin in the Locomotion of Endothelial Cells. J. Biol. Chem. 1998, 273, 25770–25776. 

22. Patel, A.S.; Schechter, G.L.; Wasilenko, W.J.; Somers, K.D. Overexpression of EMS1/cortactin in 

NIH3T3 fibroblasts causes increased cell motility and invasion in vitro. Oncogene 1998, 16,  

3227–3232. 

23. Kowalski, J.R.; Egile, C.; Gil, S.; Snapper, S.B.; Li, R.; Thomas, S.M. Cortactin regulates cell 

migration through activation of N-WASP. J. Cell Sci. 2005, 118, 79–87. 

24. Rodrigo, J.P.; Garcı, L.A.; Ramos, S.; Lazo, P.S.; Sua, C. EMS1 gene amplification correlates with 

poor prognosis in squamous cell carcinomas of the head and neck. Clin. Cancer Res. 2000, 6, 

3177–3182. 

25. Rothschild, B.L.; Shim, A.H.; Ammer, A.G.; Kelley, L.C.; Irby, K.B.; Head, J.A.; Chen, L.; 

Varella-Garcia, M.; Sacks, P.G.; Frederick, B.; et al. Cortactin overexpression regulates actin-related 

protein 2/3 complex activity, motility, and invasion in carcinomas with chromosome 11q13 

amplification. Cancer Res. 2006, 66, 8017–8025. 

26. Kelley, L.C.; Hayes, K.E.; Ammer, A.G.; Martin, K.H.; Weed, S.A. Cortactin phosphorylated by 

ERK1/2 localizes to sites of dynamic actin regulation and is required for carcinoma lamellipodia 

persistence. PLoS One 2010, 5, e13847. 

27. Kelley, L.C.; Ammer, A.G.; Hayes, K.E.; Martin, K.H.; Machida, K.; Jia, L.; Mayer, B.J.; Weed, S.A. 

Oncogenic Src requires a wild-type counterpart to regulate invadopodia maturation. J. Cell Sci. 

2010, 123, 3923–3932. 

28. Luo, M.-L.; Shen, X.-M.; Zhang, Y.; Wei, F.; Xu, X.; Cai, Y.; Zhang, X.; Sun, Y.-T.; Zhan, Q.-M.; 

Wu, M.; et al. Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of 

esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance. Cancer Res. 

2006, 66, 11690–11699. 

29. Li, Y.; Tondravi, M.; Liu, J.; Smith, E.; Haudenschild, C.C.; Kaczmarek, M.; Zhan, X. Cortactin 

potentiates bone metastasis of breast cancer cells. Cancer Res. 2001, 61, 6906–6911. 

30. Mader, C.C.; Oser, M.; Magalhaes, M.A.O.; Bravo-Cordero, J.J.; Condeelis, J.; Koleske, A.J.;  

Gil-Henn, H. An EGFR-Src-Arg-Cortactin pathway mediates functional maturation of invadopodia 

and breast cancer cell invasion. Cancer Res. 2011, 71, 1730–1741. 

31. Bowden, E.T.; Onikoyi, E.; Slack, R.; Myoui, A.; Yoneda, T.; Yamada, K.M.; Mueller, S.C.  

Co-localization of cortactin and phosphotyrosine identifies active invadopodia in human breast cancer. 

Exp. Cell Res. 2006, 321, 1240–1253. 

32. Clark, E.S.; Weaver, A.M. A new role for cortactin in invadopodia: Regulation of protease secretion. 

Eur. J. Cell Biol. 2008, 87, 581–590. 

33. Patel, B.P.; Shah, S.V.; Shukla, S.N.; Shah, P.M.; Patel, P.S. Clinical significance of MMP-2 and 

MMP-9 in patients with oral cancer. Head Neck 2007, 29, 564–572. 



Cancers 2015, 7 396 

 

 

34. Koontongkaew, S.; Amornphimoltham, P.; Monthanpisut, P.; Saensuk, T.; Leelakriangsak, M. 

Fibroblasts and extracellular matrix differently modulate MMP activation by primary and metastatic 

head and neck cancer cells. Med. Oncol. 2012, 29, 690–703. 

35. Papaspyrou, K.; Brochhausen, C.; Schmidtmann, I.; Fruth, K.; Gouveris, H.; Kirckpatrick, J.; 

Mann, W.; Brieger, J. Fascin upregulation in primary head and neck squamous cell carcinoma is 

associated with lymphatic metastasis. Oncol. Lett. 2014, 7, 2041–2046. 

36. Karasavvidou, F.; Barbanis, S.; Pappa, D.; Moutzouris, G.; Tzortzis, V.; Melekos, M.D.; 

Koukoulis, G. Fascin determination in urothelial carcinomas of the urinary bladder: A marker of 

invasiveness. Arch. Pathol. Lab. Med. 2008, 132, 1912–1915. 

37. Adams, J.C. Roles of fascin in cell adhesion and motility. Curr. Opin. Cell Biol. 2004, 16, 590–596. 

38. Jawhari, A.U.; Buda, A.; Jenkins, M.; Shehzad, K.; Sarraf, C.; Noda, M.; Farthing, M.J.G.; 

Pignatelli, M.; Adams, J.C. Fascin, an actin-bundling protein, modulates colonic epithelial cell 

invasiveness and differentiation in vitro. Am. J. Pathol. 2003, 162, 69–80. 

39. Park, J.; Kim, J.-M.; Park, J.K.; Huang, S.; Kwak, S.Y.; Ryu, K.A.; Kong, G.; Park, J.; Koo, B.S. 

Association of p21-activated kinase-1 activity with aggressive tumor behavior and poor prognosis 

of head and neck cancer. Head Neck 2014, doi:10.1002/hed.23695. 

40. McCarty, S.K.; Saji, M.; Zhang, X.; Jarjoura, D.; Fusco, A.; Vasko, V.V.; Ringel, M.D. Group I 

p21-activated kinases regulate thyroid cancer cell migration and are overexpressed and activated 

in thyroid cancer invasion. Endocr. Relat. Cancer 2010, 17, 989–999. 

41. King, H.; Nicholas, N.S.; Wells, C.M. Role of p-21-activated kinases in cancer progression.  

Int. Rev. Cell Mol. Biol. 2014, 309, 347–387. 

42. Dharmawardhane, S.; Brownson, D.; Lennartz, M.; Bokoch, G.M. Localization of p21-activated 

kinase 1 (PAK1) to pseudopodia, membrane ruffles, and phagocytic cups in activated human 

neutrophils. J. Leukoc. Biol. 1999, 66, 521–527. 

43. Dharmawardhane, S.; Sanders, L.C.; Martin, S.S.; Daniels, R.H.; Bokoch, G.M. Localization of 

p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. 

J. Cell Biol. 1997, 138, 1265–1278. 

44. Delorme-Walker, V.D.; Peterson, J.R.; Chernoff, J.; Waterman, C.M.; Danuser, G.; 

DerMardirossian, C.; Bokoch, G.M. Pak1 regulates focal adhesion strength, myosin IIA 

distribution, and actin dynamics to optimize cell migration. J. Cell Biol. 2011, 193, 1289–1303. 

45. Sanders, L.C. Inhibition of myosin light chain kinase by p21-activated kinase. Science 1999, 283, 

2083–2085. 

46. Stockton, R.A.; Schaefer, E.; Schwartz, M.A. p21-Activated kinase regulates endothelial permeability 

through modulation of contractility. J. Biol. Chem. 2004, 279, 46621–46630. 

47. Arber, S.; Barbayannis, F.A.; Hanser, H.; Schneider, C.; Stanyon, C.A.; Bernard, O.; Caroni, P. 

Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 1998, 393, 

805–809. 

48. Yang, N.; Higuchi, O.; Ohashi, K.; Nagata, K.; Wada, A.; Kangawa, K.; Nishida, E.; Mizuno, K. 

Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 

1998, 393, 809–812. 

49. Kelley, L.C.; Shahab, S.; Weed, S.A. Actin cytoskeletal mediators of motility and invasion 

amplified and overexpressed in head and neck cancer. Clin. Exp. Metastasis 2008, 25, 289–304. 



Cancers 2015, 7 397 

 

 

50. Vadlamudi, R.K.; Li, F.; Barnes, C.J.; Bagheri-Yarmand, R.; Kumar, R. P41-Arc subunit of human 

Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep. 2004, 5, 154–160. 

51. Webb, B.A.; Zhou, S.; Eves, R.; Shen, L.; Jia, L.; Mak, A.S. Phosphorylation of cortactin by  

p21-activated kinase. Arch. Biochem. Biophys. 2006, 456, 183–193. 

52. Elloul, S.; Vaksman, O.; Stavnes, H.T.; Trope, C.G.; Davidson, B.; Reich, R. Mesenchymal-to-

epithelial transition determinants as characteristics of ovarian carcinoma effusions. Clin. Exp. 

Metastasis 2010, 27, 161–172. 

53. Goc, A.; Al-Azayzih, A.; Abdalla, M.; Al-Husein, B.; Kavuri, S.; Lee, J.; Moses, K.; Somanath, P.R. 

P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of 

transforming growth factor β expression and enhanced matrix metalloproteinase 9 secretion.  

J. Biol. Chem. 2013, 288, 3025–3035. 

54. Rider, L.; Oladimeji, P.; Diakonova, M. PAK1 regulates breast cancer cell invasion through 

secretion of matrix metalloproteinases in response to prolactin and three-dimensional collagen IV. 

Mol. Endocrinol. 2013, 27, 1048–1064. 

55. Srikrishna, G. S100A8 and S100A9: New insights into their roles in malignancy. J. Innate Immun. 

2012, 4, 31–40. 

56. Donato, R. S100: A multigenic family of calcium-modulated proteins of the EF-hand type with 

intracellular and extracellular functional roles. Int. J. Biochem. Cell Biol. 2001, 33, 637–668. 

57. Heizmann, C.W.; Fritz, G.; Schäfer, B.W. S100 proteins: Structure, functions and pathology.  

Front. Biosci. 2002, 7, d1356–d1368. 

58. Leukert, N.; Vogl, T.; Strupat, K.; Reichelt, R.; Sorg, C.; Roth, J. Calcium-dependent tetramer 

formation of S100A8 and S100A9 is essential for biological activity. J. Mol. Biol. 2006, 359, 961–972. 

59. Silva, E.J.; Argyris, P.; Zou, X.; Ross, K.F.; Herzberg, M.C. S100A8/A9 regulates MMP-2 expression 

and invasion and migration by carcinoma cells. Int. J. Biochem. Cell Biol. 2014, 55, 279–287. 

60. Fung, L.F.; Lo, A.K.F.; Yuen, P.W.; Wang, X.H.; Tsao, S.W. Differential gene expression in 

nasopharyngeal carcinoma cells. Life Sci. 2000, 67, 923–936. 

61. Ghavami, S.; Chitayat, S.; Hashemi, M.; Eshraghi, M.; Chazin, W.J.; Halayko, A.J.; Kerkhoff, C. 

S100A8/A9: A Janus-faced molecule in cancer therapy and tumorgenesis. Eur. J. Pharmacol. 

2009, 625, 73–83. 

62. Fogh, B.S.; Multhaupt, H.A.B.; Couchman, J.R. Protein kinase C, focal adhesions and the regulation 

of cell migration. J. Histochem. Cytochem. 2014, 62, 172–184. 

63. Zaidel-Bar, R.; Itzkovitz, S.; Ma’ayan, A.; Iyengar, R.; Geiger, B. Functional atlas of the integrin 

adhesome. Nat. Cell Biol. 2007, 9, 858–867. 

64. Zaidel-Bar, R.; Cohen, M.; Addadi, L.; Geiger, B. Hierarchical assembly of cell-matrix adhesion 

complexes. Biochem. Soc. Trans. 2004, 32, 416–420. 

65. Tang, H.; Li, A.; Bi, J.; Veltman, D.M.; Zech, T.; Spence, H.J.; Yu, X.; Timpson, P.; Insall, R.H.; 

Frame, M.C.; et al. Loss of Scar/WAVE complex promotes N-WASP- and FAK-dependent invasion. 

Curr. Biol. 2013, 23, 107–117. 

66. Schlaepfer, D.D.; Mitra, S.K. Multiple connections link FAK to cell motility and invasion.  

Curr. Opin. Genet. Dev. 2004, 14, 92–101. 



Cancers 2015, 7 398 

 

 

67. Canel, M.; Secades, P.; Rodrigo, J.-P.; Cabanillas, R.; Herrero, A.; Suarez, C.; Chiara, M.-D. 

Overexpression of focal adhesion kinase in head and neck squamous cell carcinoma is independent 

of fak gene copy number. Clin. Cancer Res. 2006, 12, 3272–3279. 

68. Gabarra-Niecko, V.; Schaller, M.D.; Dunty, J.M. FAK regulates biological processes important 

for the pathogenesis of cancer. Cancer Metastasis Rev. 2003, 22, 359–374. 

69. Hsia, D.A.; Mitra, S.K.; Hauck, C.R.; Streblow, D.N.; Nelson, J.A.; Ilic, D.; Huang, S.; Li, E.; 

Nemerow, G.R.; Leng, J.; et al. Differential regulation of cell motility and invasion by FAK.  

J. Cell Biol. 2003, 160, 753–767. 

70. McLean, G.W.; Carragher, N.O.; Avizienyte, E.; Evans, J.; Brunton, V.G.; Frame, M.C. The role of 

focal-adhesion kinase in cancer—A new therapeutic opportunity. Nat. Rev. Cancer 2005, 5, 505–515. 

71. Schaller, M.D.; Borgman, C.A.; Cobb, B.S.; Vines, R.R.; Reynolds, A.B.; Parsons, J.T. pp125FAK 

a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl. Acad. 

Sci. USA 1992, 89, 5192–5196. 

72. Shanthi, E.; Krishna, M.H.; Arunesh, G.M.; Venkateswara Reddy, K.; Sooriya Kumar, J.; 

Viswanadhan, V.N. Focal adhesion kinase inhibitors in the treatment of metastatic cancer: A patent 

review. Expert Opin. Ther. Pat. 2014, 24, 1077–1100. 

73. Dao, P.; Smith, N.; Tomkiewicz-Raulet, C.; Yen-Pon, E.; Camacho-Artacho, M.; Lietha, D.; 

Herbeuval, J.-P.; Coumoul, X.; Garbay, C.; Chen, H. Design, synthesis, and evaluation of novel 

imidazo(1,2-a)(1,3,5)triazines and their derivatives as focal adhesion kinase inhibitors with 

antitumor activity. J. Med. Chem. 2014, 58, 237–251. 

74. Lin, J.-J.; Su, J.-H.; Tsai, C.-C.; Chen, Y.-J.; Liao, M.-H.; Wu, Y.-J. 11-epi-Sinulariolide acetate 

reduces cell migration and invasion of human hepatocellular carcinoma by reducing the activation 

of ERK1/2, p38MAPK and FAK/PI3K/AKT/mTOR signaling pathways. Mar. Drugs 2014, 12, 

4783–4798. 

75. Guo, B.; Su, J.; Zhang, T.; Wang, K.; Li, X. Fangchinoline as a kinase inhibitor targets FAK and 

suppresses FAK-mediated signaling pathway in A549. J. Drug Target. 2014, 24, 1–9. 

76. Steed, P.M.; Chow, A.H. Intracellular signaling by phospholipase D as a therapeutic target.  

Curr. Pharm. Biotechnol. 2001, 2, 241–256. 

77. Jenkins, G.M.; Frohman, M.A. Phospholipase D: A lipid centric review. Cell. Mol. Life Sci. 2005, 

62, 2305–2316. 

78. Kim, J.H.; Kim, H.; Jeon, H.; Suh, P.-G.; Ryu, S.H. Phospholipase D1 regulates cell migration in 

a lipase activity-independent manner. J. Biol. Chem. 2006, 281, 15747–15756. 

79. Ahn, B.-H.; Kim, S.Y.; Kim, E.H.; Choi, K.S.; Kwon, T.K.; Lee, Y.H.; Chang, J.-S.; Kim, M.-S.; 

Jo, Y.-H.; Min, D.S. Transmodulation between phospholipase D and c-Src enhances cell proliferation. 

Mol. Cell. Biol. 2003, 23, 3103–3115. 

80. Martinez-quiles, N.; Ho, H.H.; Kirschner, M.W.; Ramesh, N.; Geha, R.S. Erk/Src phosphorylation 

of cortactin acts as a switch on-switch off mechanism that controls its ability to activate  

N-WASP. Mol. Cell. Biol. 2004, 24, 5269–5280. 

81. Noh, D.Y.; Ahn, S.J.; Lee, R.A.; Park, I.A.; Kim, J.H.; Suh, P.G.; Ryu, S.H.; Lee, K.H.; Han, J.S. 

Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Lett. 2000, 161, 207–214. 

82. Kelley, L.C.; Hayes, K.E.; Ammer, A.G.; Martin, K.H.; Weed, S.A. Revisiting the ERK/Src 

cortactin switch. Commun. Integr. Biol. 2011, 4, 205–207. 



Cancers 2015, 7 399 

 

 

83. O’Reilly, M.C.; Scott, S.A.; Brown, K.A.; Oguin, T.H.; Thomas, P.G.; Daniels, J.S.; Morrison, R.; 

Brown, H.A.; Lindsley, C.W. Development of dual PLD1/2 and PLD2 selective inhibitors from a 

common 1,3,8-Triazaspiro(4.5)decane Core: Discovery of Ml298 and Ml299 that decrease invasive 

migration in U87-MG glioblastoma cells. J. Med. Chem. 2013, 56, 2695–2699. 

84. Park, M.H.; Min, D.S. Quercetin-induced downregulation of phospholipase D1 inhibits proliferation 

and invasion in U87 glioma cells. Biochem. Biophys. Res. Commun. 2011, 412, 710–715. 

85. Simpson, D.R.; Mell, L.K.; Cohen, E.E.W. Targeting the PI3K/AKT/mTOR pathway in squamous 

cell carcinoma of the head and neck. Oral Oncol. 2014, in press. 

86. Lui, V.W.Y.; Hedberg, M.L.; Li, H.; Vangara, B.S.; Pendleton, K.; Zeng, Y.; Lu, Y.; Zhang, Q.; 

Du, Y.; Gilbert, B.R.; et al. Frequent mutation of the PI3K pathway in head and neck cancer defines 

predictive biomarkers. Cancer Discov. 2013, 3, 761–769. 

87. Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators 

of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619. 

88. Volinia, S.; Hiles, I.; Ormondroyd, E.; Nizetic, D.; Antonacci, R.; Rocchi, M.; Waterfield, M.D. 

Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 

3-kinase p110 alpha (PIK3CA) gene. Genomics 1994, 24, 472–477. 

89. Roymans, D.; Slegers, H. Phosphatidylinositol 3-kinases in tumor progression. Eur. J. Biochem. 

2001, 268, 487–498. 

90. Estilo, C.L.; O-Charoenrat, P.; Ngai, I.; Patel, S.G.; Reddy, P.G.; Dao, S.; Shaha, A.R.; Kraus, D.H.; 

Boyle, J.O.; Wong, R.J.; et al. The role of novel oncogenes squamous cell carcinoma-related 

oncogene and phosphatidylinositol 3-kinase p110alpha in squamous cell carcinoma of the oral 

tongue. Clin. Cancer Res. 2003, 9, 2300–2306. 

91. Katoh, M. WNT and FGF gene clusters. Int. J. Oncol. 2002, 21, 1269–1273. 

92. Marshall, M.E.; Hinz, T.K.; Kono, S.A.; Singleton, K.R.; Bichon, B.; Ware, K.E.; Marek, L.; 

Frederick, B.A.; Raben, D.; Heasley, L.E. Fibroblast growth factor receptors are components of 

autocrine signaling networks in head and neck squamous cell carcinoma cells. Clin. Cancer Res. 

2011, 17, 5016–5025. 

93. Li, W.; Wang, C.; Juhn, S.K.; Ondrey, F.G.; Lin, J. Expression of fibroblast growth factor binding 

protein in head and neck cancer. Arch. Otolaryngol. Head Neck Surg. 2009, 135, 896–901. 

94. Friedl, P.; Locker, J.; Sahai, E.; Segall, J.E. Classifying collective cancer cell invasion. Nat. Cell Biol. 

2012, 14, 777–783. 

95. Friedl, P.; Alexander, S. Cancer invasion and the microenvironment: Plasticity and reciprocity. 

Cell 2011, 147, 992–1009. 

96. Mandal, M.; Myers, J.N.; Lippman, S.M.; Johnson, F.M.; Williams, M.D.; Rayala, S.; Ohshiro, K.; 

Rosenthal, D.I.; Weber, R.S.; Gallick, G.E.; et al. Epithelial to mesenchymal transition in head and 

neck squamous carcinoma: Association of Src activation with E-cadherin down-regulation, vimentin 

expression, and aggressive tumor features. Cancer 2008, 112, 2088–2100. 

97. Sok, J.C.; Coppelli, F.M.; Thomas, S.M.; Lango, M.N.; Xi, S.; Hunt, J.L.; Freilino, M.L.;  

Graner, M.W.; Wikstrand, C.J.; Bigner, D.D.; et al. Mutant epidermal growth factor receptor 

(EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting.  

Clin. Cancer Res. 2006, 12, 5064–5073. 



Cancers 2015, 7 400 

 

 

98. Xi, S.; Zhang, Q.; Dyer, K.F.; Lerner, E.C.; Smithgall, T.E.; Gooding, W.E.; Kamens, J.; Grandis, J.R. 

Src kinases mediate STAT growth pathways in squamous cell carcinoma of the head and neck.  

J. Biol. Chem. 2003, 278, 31574–31583. 

99. Bryne, M.; Koppang, H.S.; Lilleng, R.; Kjaerheim, A. Malignancy grading of the deep invasive 

margins of oral squamous cell carcinomas has high prognostic value. J. Pathol. 1992, 166, 375–381. 

100. Basu, D.; Bewley, A.F.; Sperry, S.M.; Montone, K.T.; Gimotty, P.A.; Rasanen, K.; Facompre, N.D.; 

Weinstein, G.S.; Nakagawa, H.; Diehl, J.A.; et al. EGFR inhibition promotes an aggressive 

invasion pattern mediated by mesenchymal-like tumor cells within squamous cell carcinomas.  

Mol. Cancer Ther. 2013, 12, 2176–2186. 

101. Basu, D.; Montone, K.T.; Wang, L.-P.; Gimotty, P.A.; Hammond, R.; Diehl, J.A.; Rustgi, A.K.; 

Lee, J.T.; Rasanen, K.; Weinstein, G.S.; et al. Detecting and targeting mesenchymal-like 

subpopulations within squamous cell carcinomas. Cell Cycle 2011, 10, 2008–2016. 

102. Basu, D.; Nguyen, T.-T.K.; Montone, K.T.; Zhang, G.; Wang, L.-P.; Diehl, J.A.; Rustgi, A.K.; 

Lee, J.T.; Weinstein, G.S.; Herlyn, M. Evidence for mesenchymal-like sub-populations within 

squamous cell carcinomas possessing chemoresistance and phenotypic plasticity. Oncogene 2010, 

29, 4170–4182. 

103. Kupferman, M.E.; Jiffar, T.; El-Naggar, A.; Yilmaz, T.; Zhou, G.; Xie, T.; Feng, L.; Wang, J.; 

Holsinger, F.C.; Yu, D.; et al. TrkB induces EMT and has a key role in invasion of head and neck 

squamous cell carcinoma. Oncogene 2010, 29, 2049–2059. 

104. Sawatsubashi, M.; Yamada, T.; Fukushima, N.; Mizokami, H.; Tokunaga, O.; Shin, T. Association 

of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell 

carcinoma. Virchows Arch. 2000, 436, 243–248. 

105. Ninck, S.; Reisser, C.; Dyckhoff, G.; Helmke, B.; Bauer, H.; Herold-Mende, C. Expression profiles 

of angiogenic growth factors in squamous cell carcinomas of the head and neck. Int. J. Cancer 

2003, 106, 34–44. 

106. Liss, C.; Fekete, M.J.; Hasina, R.; Lam, C.D.; Lingen, M.W. Paracrine angiogenic loop between 

head-and-neck squamous-cell carcinomas and macrophages. Int. J. Cancer 2001, 93, 781–785. 

107. Bran, B.; Bran, G.; Hormann, K.; Riedel, F. The platelet-derived growth factor receptor as a target 

for vascular endothelial growth factor-mediated anti-angiogeneic therapy in head and neck cancer. 

Int. J. Oncol. 2009, 34, 255–261. 

108. Ali, M.A. Lymphatic microvessel density and the expression of lymphangiogenic factors in oral 

squamous cell carcinoma. Med. Princ. Pract. 2008, 17, 486–492. 

109. Li, C.; Shintani, S.; Terakada, N.; Klosek, S.K.; Ishikawa, T.; Nakashiro, K.; Hamakawa, H. 

Microvessel density and expression of vascular endothelial growth factor, basic fibroblast growth 

factor, and platelet-derived endothelial growth factor in oral squamous cell carcinomas. Int. J. Oral 

Maxillofac. Surg. 2005, 34, 559–565. 

110. Sedivy, R.; Beck-Mannagetta, J.; Haverkampf, C.; Battistutti, W.; Honigschnabl, S. Expression of 

vascular endothelial growth factor-C correlates with the lymphatic microvessel density and the nodal 

status in oral squamous cell cancer. J. Oral Pathol. Med. 2003, 32, 455–460. 

111. Beasley, N.J.P.; Prevo, R.; Banerji, S.; Leek, R.D.; Moore, J.; van Trappen, P.; Cox, G.; Harris, A.L.; 

Jackson, D.G. Intratumoral lymphangiogenesis and lymph node metastasis in head and neck cancer. 

Cancer Res. 2002, 62, 1315–1320. 



Cancers 2015, 7 401 

 

 

112. Jatana, K.R.; Balasubramanian, P.; Lang, J.C.; Yang, L.; Jatana, C.; White, E.; Agrawal, A.; Ozer, E.; 

Schuller, D.E.; Teknos, T.N.; et al. Significance of cirulating tumors cells in patients with squamous 

cell carcinoma of the head and neck. Arch. Otolaryngol. Head Neck Surg. 2010, 136, 1274–1279. 

113. Buglione, M.; Grisanti, S.; Almici, C.; Mangoni, M.; Polli, C.; Consoli, F.; Verardi, R.; Costa, L.; 

Paiar, F.; Pasinetti, N.; et al. Circulating tumor cells in locally advanced cancer: Preliminary report 

about their possible role in predicting response to non-surgical treatment and survival. Eur. J. Cancer 

2012, 48, 3019–3026. 

114. Krishnamurthy, S.; Warner, K.A.; Dong, Z.; Imai, A.; Nör, C.; Ward, B.B.; Helman, J.I.;  

Taichman, R.S.; Bellile, E.L.; McCauley, L.K.; et al. Endothelial interleukin-6 defines the tumorigenic 

potential of primary human cancer stem cells. Stem Cells 2014, 32, 2845–2857. 

115. Nör, C.; Zhang, Z.; Warner, K.A.; Bernardi, L.; Visioli, F.; Helman, J.I.; Roesler, R.; Nör, J.E. 

Cisplatin induces Bmi-1 and enhances the stem cell fraction in head and neck cancer. Neoplasia 

2014, 16, 137–146. 

116. Zuo, J.-H.; Zhu, W.; Li, M.-Y.; Li, X.-H.; Yi, H.; Zeng, G.-Q.; Wan, X.-X.; He, Q.-Y.; Li, J.-H.; 

Qu, J.-Q.; et al. Activation of EGFR promotes squamous carcinoma SCC10A cell migration and 

invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. 

J. Cell. Biochem. 2011, 112, 2508–2517. 

117. St. John, M.A.; Dohadwala, M.; Luo, J.; Wang, G.; Lee, G.; Shih, H.; Heinrich, E.; Krysan, K.; 

Walser, T.; Hazra, S.; et al. Proinflammatory mediators upregulate snail in head and neck squamous 

cell carcinoma. Clin. Cancer Res. 2009, 15, 6018–6027. 

118. Cao, X.-L.; Xu, R.-J.; Zheng, Y.-Y.; Liu, J.; Teng, Y.-S.; Li, Y.; Zhu, J. Expression of type IV 

collagen, metalloproteinase-2, metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in 

laryngeal squamous cell carcinomas. Asian Pac. J. Cancer Prev. 2011, 12, 3245–3249. 

119. Nielsen, J.D.; Moeslund, M.; Wandall, H.H.; Dabelsteen, S. Influences of tumor stroma on the 

malignant phenotype. J. Oral Pathol. Med. 2008, 37, 412–416. 

120. Parikka, M.; Nissienen, L.; Kainulainen, T.; Bruckner-Tuderman, L.; Salo, T.; Heino, J.; Tasanen, K. 

Collagen XVII promotes integrin-mediated squamous cell carcinoma transmigration—A novel 

role for αIIb integrin and tirofiban. Exp. Cell Res. 2006, 312, 1431–1438. 

121. Prussin, C.; Metcalfe, D.D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Imunol. 

2003, 111, S486–S494. 

122. Barth, P.J.; Schweinsberg zu Schweinsberg, T.; Ramaswamy, A.; Moll, R. CD34+ fibrocytes, 

alpha-smooth muscle antigen-positive myofibroblasts, and CD117 expression in the stroma of 

invasive squamous cell carcinomas of the oral cavity, pharynx, and larynx. Virchows Arch. 2004, 

444, 231–234. 

123. Iamaroon, A.; Pongsiriwet, S.; Jittidecharaks, S.; Pattanaporn, K.; Prapayasatok, S.; Wanachantararak, S. 

Increase of mast cells and tumor angiogenesis in oral squamous cell carcinoma. J. Oral Pathol. Med. 

2003, 32, 195–199. 

124. Beckhove, P.; Helmke, B.M.; Ziouta, Y.; Bucur, M.; Borner, W.; Mogler, C.; Dyckhoff, G.; 

Herold-Mende, C. Heparanase expression at the invasion front of human head and neck cancers 

and correlation with poor prognosis. Clin. Cancer Res. 2005, 11, 2899–2906. 



Cancers 2015, 7 402 

 

 

125. Friedmann, Y.; Vlodavsky, I.; Aingorn, H.; Aviv, A.; Peretz, T.; Pecker, I.; Pappo, O. Expression 

of heparanase in normal, dysplastic and neoplastic human colonic mucosa and stroma. Am. J. Pathol. 

2000, 157, 1167–1175. 

126. Nathan, C. Neutrophils and immunity: Challenges and opportunities. Nat. Rev. Immunol. 2006, 6, 

173–182. 

127. Waugh, D.J.J.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 2008, 14,  

6735–6741. 

128. Scapini, P.; Bazzoni, F.; Cassatella, M.A. Regulation of B-cell-activating factor (BAFF)/B 

lymphocyte stimulator (BLyS) expression in human neutrophils. Immunol. Lett. 2008, 116, 1–6. 

129. Scapini, P.; Morini, M.; Tecchio, C.; Minghelli, S.; di Carlo, E.; Tanghetti, E.; Albini, A.; Lowell, C.; 

Berton, G.; Noonan, D.M.; et al. CXCL1/Macrophage inflammatory protein-2-induced angiogenesis 

in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. J. Immunol. 2004, 

172, 5034–5040. 

130. Benelli, R.; Morini, M.; Carrozzino, F.; Ferrari, N.; Minghelli, S.; Santi, L.; Cassatella, M.; 

Noonan, D.M.; Albini, A. Neutrophils as a key cellular target for angiostatin: Implications for 

regulation of angiogenesis and inflammation. FASEB J. 2002, 2, 267–269. 

131. Eming, S.A.; Krieg, T.; Davidson, J.M. Inflammation in wound repair: Molecular and cellular 

mechanisms. J. Investig. Dermatol. 2007, 127, 514–525. 

132. Li, C.; Shintani, S.; Terakada, N.; Nakashiro, K.; Hamakawa, H. Infiltration of tumor-associated 

macrophages in human oral squamous cell carcinoma. Oncol. Rep. 2002, 9, 1219–1223. 

133. Marcus, B.; Arenberg, D.; Lee, J.; Kleer, C.; Chepeha, D.B.; Schmalbach, C.E.; Islam, M.; Paul, S.; 

Pan, Q.; Hanash, S.; et al. Prognostic factors in oral cavity and oropharyngeal squamous cell carcinoma. 

Cancer 2004, 101, 2779–2787. 

134. Liu, S.-Y.; Chang, L.-C.; Pan, L.-F.; Hung, Y.-J.; Lee, C.-H.; Shieh, Y.-S. Clinicopathologic 

significance of tumor cell-lined vessel and microenvironment in oral squamous cell carcinoma. 

Oral Oncol. 2008, 44, 277–285. 

135. Yamaguchi, H.; Pixley, F.; Condeelis, J. Invadopodia and podosomes in tumor invasion. Eur. J. 

Cell Biol. 2006, 85, 213–218. 

136. Wyckoff, J.; Wang, W.; Lin, E.Y.; Wang, Y.; Pixley, F.; Stanley, E.R.; Graf, T.; Pollard, J.W.; 

Segall, J.; Condeelis, J. A paracrine loop between tumor cells and macrophages is required for 

tumor cell migration in mammary tumors. Cancer Res. 2004, 64, 7022–7029. 

137. Goswami, S.; Sahai, E.; Wyckoff, J.; Cammer, M.; Cox, D.; Pixley, F.J.; Stanley, E.R.; Segall, J.E.; 

Condeelis, J.S. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating 

factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005, 65, 5278–5283. 

138. Dumitru, C.A.; Gholaman, H.; Trellakis, S.; Bruderek, K.; Dominas, N.; Gu, X.; Bankfalvi, A.; 

Whiteside, T.L.; Lang, S.; Brandau, S. Tumor-derived macrophage migration inhibitory factor 

modulates the biology of head and neck cancer cells via neutrophil activation. Int. J. Cancer 2011, 

129, 859–869. 

139. Linder, S.; Nelson, D.; Weiss, M.; Aepfelbacher, M. Wiskott-Aldrich syndrome protein regulates 

podosomes in primary human macrophages. Proc. Natl. Acad. Sci. USA 1999, 96, 9648–9653. 

140. Schachtner, H.; Calaminus, S.D.J.; Thomas, S.G.; Machesky, L.M. Podosomes in adhesion, 

migration, mechanosensing and matrix remodeling. Cytoskeleton 2013, 70, 572–589. 



Cancers 2015, 7 403 

 

 

141. Varon, C.; Tatin, F.; Moreau, V.; van Obberghen-Schilling, E.; Fernandez-Sauze, S.; Reuzeau, E.; 

Kramer, I.; Genot, E. Transforming growth factor beta induces rosettes of podosomes in primary 

aortic endothelial cells. Mol. Cell. Biol. 2006, 26, 3582–3594. 

142. Chang, K.-P.; Kao, H.-K.; Yen, T.-C.; Chang, Y.-L.; Liang, Y.; Liu, S.-C.; Lee, L.-Y.; Chang, Y.-L.; 

Kang, C.-J.; Chen, I.-H.; et al. Overexpression of macrophage inflammatory protein-3alpha in oral 

cavity squamous cell carcinoma is associated with nodal metastasis. Oral Oncol. 2011, 47, 108–113. 

143. Osiak, A.-E.; Zenner, G.; Linder, S. Subconfluent endothelial cells form podosomes downstream 

of cytokine and RhoGTPase signaling. Exp. Cell Res. 2005, 307, 342–353. 

144. Yamaguchi, H.; Lorenz, M.; Kempiak, S.; Sarmieto, C.; Coniglio, S.; Symons, M.; Segall, J.;  

Eddy, R.; Miki, H.; Takenawa, T.; et al. Molecular mechanisms of invadopodium formation:  

The role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 2005, 168, 441–452. 

145. Mizutani, K.; Miki, H.; He, H.; Maruta, H.; Takenawa, T. Essential role of neural Wiskot-Aldrich 

syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed 

fibroblasts. Cancer Res. 2002, 62, 669–674. 

146. Spinardi, L.; Rietdorf, J.; Nitsch, L.; Bono, M.; Tacchetti, C.; Way, M.; Marchisio, P.C. A dynamic 

podosome-like structure of endothelial cells. Exp. Cell Res. 2004, 295, 360–374. 

147. Zeng, Q.; Li, S.; Chepeha, D.B.; Giordano, T.J.; Li, J.; Zhang, H.; Polverini, P.J.; Nor, J.; 

Kitajewski, J.; Wang, C.-Y. Crosstalk between tumor and endothelial cells promotes tumor 

angiogenesis by MAPK activation of Notch signaling. Cancer Cell 2005, 8, 13–23. 

148. Goetz, J.G.; Minguet, S.; Navarro-Lerida, I.; Lazcano, J.J.; Samaniego, R.; Calvo, E.; Tello, M.; 

Osteso-Ibanez, T.; Pellinen, T.; Echarri, A.; et al. Biomechanical remodeling of the microenvironment 

by stromal caveolin-1 favors tumor invasion and metastasis. Cell 2011, 146, 148–163. 

149. Gaggioli, C.; Hooper, S.; Hidalgo-Carcedo, C.; Grosse, R.; Marshall, J.F.; Harrington, K.; Sahai, E. 

Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading 

and following cells. Nat. Cell Biol. 2007, 9, 1392–1400. 

150. Kelly, T.; Mueller, S.C.; Yeh, Y.; Chen, W.T. Invadopodia promote proteolysis of a wide variety 

of extracellular matrix proteins. J. Cell. Physiol. 1994, 158, 299–308. 

151. Lim, K.P.; Cirillo, N.; Hassona, Y.; Wei, W.; Thurlow, J.K.; Cheong, S.C.; Pitiyage, G.;  

Parkinson, E.K.; Prime, S.S. Fibroblast gene expression profile reflects the stage of tumour progression 

in oral squamous cell carcinoma. J. Pathol. 2011, 223, 459–469. 

152. Abram, C.L.; Seals, D.F.; Pass, I.; Salinsky, D.; Maurer, L.; Roth, T.M.; Courtneidge, S.A.  

The adaptor protein fish associates with members of the ADAMs family and localizes to podosomes 

of Src-transformed cells. J. Biol. Chem. 2003, 278, 16844–16851. 

153. Seals, D.F.; Azucena, E.F.J.; Pass, I.; Tesfay, L.; Gordon, R.; Woodrow, M.; Resau, J.H.; 

Courtneidge, S.A. The adaptor protein Tks5/Fish is required for podosome formation and function, 

and for the protease-driven invasion of cancer cells. Cancer Cell 2005, 7, 155–165. 

154. Hinsley, E.E.; Hunt, S.; Hunter, K.D.; Whawell, S.A.; Lambert, D.W. Endothelin-1 stimulates 

motility of head and neck squamous carcinoma cells by promoting stromal-epithelial interactions. 

Int. J. Cancer 2012, 130, 40–47. 

155. Ishikawa, T.; Nakashiro, K.; Klosek, S.K.; Goda, H.; Hara, S.; Uchida, D.; Hamakawa, H. Hypoxia 

enhances CXCR4 expression by activating HIF-1 in oral squamous cell carcinoma. Oncol. Rep. 

2009, 21, 707–712. 



Cancers 2015, 7 404 

 

 

156. Uchida, D.; Begum, N.M.; Almofti, A.; Nakashiro, K.; Kawamata, H.; Tateishi, Y.; Hamakawa, H.; 

Yoshida, H.; Sato, M. Possible role of stromal-cell-derived factor-1/CXCR4 signaling on lymph 

node metastasis of oral squamous cell carcinoma. Exp. Cell Res. 2003, 290, 289–302. 

157. Chuma, M.; Sakamoto, M.; Yasuda, J.; Fujii, G.; Nakanishi, K.; Tsuchiya, A.; Asaka, M.; 

Hirohashi, S. Overexpression of cortactin is involved in motility and metastasis of hepatocellular 

carcinoma. J. Hepatol. 2004, 41, 629–636. 

158. Liu, Y.; Hu, T.; Shen, J.; Li, S.F.; Lin, J.W.; Zheng, X.H.; Gao, Q.H.; Zhou, H.M. Separation, 

cultivation and biological characteristics of oral carcinoma-associated fibroblasts. Oral Dis. 2006, 

12, 375–380. 

159. Lewis, M.P.; Lygoe, K.A.; Nystrom, M.L.; Anderson, W.P.; Speight, P.M.; Marshall, J.F.; 

Thomas, G.J. Tumor-derived TGF-β1 modulates myofibroblast differentiation and promotes 

HGF/SF-dependent invasion of squamous carcinoma cells. Br. J. Cancer 2004, 90, 822–832. 

160. Marsh, D.; Suchak, K.; Moutasim, K.A.; Vallath, S.; Hopper, C.; Jerjes, W.; Upile, T.; Kalavrezos, N.; 

Violette, S.M.; Weinreb, P.H.; et al. Stromal features are predictive of disease mortality in oral 

cancer patients. J. Pathol. 2011, 223, 470–481. 

161. Wheeler, S.E.; Shi, H.; Lin, F.; Dasari, S.; Bednash, J.; Thorne, S.; Watkins, S.; Joshi, R.;  

Thomas, S.M. Enhancement of head and neck squamous cell carcinoma proliferation, invasion, and 

metastasis by tumor-associated fibroblasts in preclinical models. Head Neck 2014, 36, 385–392. 

162. Taddei, M.L.; Cavallini, L.; Comito, G.; Giannoni, E.; Folini, M.; Marini, A.; Gandellini, P.; 

Morandi, A.; Pintus, G.; Raspollini, M.R.; et al. Senescent stroma promotes prostate cancer 

progression: The role of miR-210. Mol. Oncol. 2014, 8, 1729–1746. 

163. Hassona, Y.; Cirillo, N.; Heesom, K.; Parkinson, E.K.; Prime, S.S. Senescent cancer-associated 

fibroblasts secrete active MMP-2 that promotes keratinocyte dis-cohesion and invasion. Br. J. Cancer 

2014, 111, 1230–1237. 

164. Hassona, Y.; Cirillo, N.; Lim, K.P.; Herman, A.; Mellone, M.; Thomas, G.J.; Pitiyage, G.N.; 

Parkinson, E.K.; Prime, S.S. Progression of genotype-specific oral cancer leads to senescence of 

cancer-associated fibroblasts and is mediated by oxidative stress and TGF-β. Carcinogenesis 2013, 

34, 1286–1295. 

165. Ren, C.; Cheng, X.; Lu, B.; Yang, G. Activation of interleukin-6/signal transducer and activator of 

transcription 3 by human papillomavirus early proteins 6 induces fibroblast senescence to promote 

cervical tumourigenesis through autocrine and paracrine pathways in tumour microenvironment. 

Eur. J. Cancer 2013, 49, 3889–3899. 

166. Capparelli, C.; Chiavarina, B.; Whitaker-Menezes, D.; Pestell, T.G.; Pestell, R.G.; Hulit, J.; Andò, S.; 

Howell, A.; Martinez-Outschoorn, U.E.; Sotgia, F.; et al. CDK inhibitors (p16/p19/p21) induce 

senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine 

interactions, without an increase in neo-angiogenesis. Cell Cycle 2012, 11, 3599–3610. 

167. Capparelli, C.; Whitaker-Menezes, D.; Guido, C.; Balliet, R.; Pestell, T.G.; Howell, A.; Sneddon, S.; 

Pestell, R.G.; Martinez-Outschoorn, U.; Lisanti, M.P.; et al. CTGF drives autophagy, glycolysis 

and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting 

tumor growth. Cell Cycle 2012, 11, 2272–2284. 



Cancers 2015, 7 405 

 

 

168. Ammer, A.G.; Kelley, L.C.; Hayes, K.E.; Evans, J.V.; Lopez-skinner, A.; Martin, K.H.; Frederick, B.; 

Rothschild, B.L.; Elvin, P.; Green, T.P.; et al. Saracatinib impairs head and neck squamous cell 

carcinoma invasion by disruption invadopodia function. J. Cancer Sci. Ther. 2009, 1, 52–61. 

169. Nozawa, H.; Howell, G.; Suzuki, S.; Zhang, Q.; Qi, Y.; Klein-Seetharaman, J.; Wells, A.;  

Grandis, J.R.; Thomas, S.M. Combined inhibition of PLCγ-1 and c-Src abrogates epidermal growth 

factor receptor-mediated head and neck squamous cell carcinoma invasion. Clin. Cancer Res. 

2008, 14, 4336–4344. 

170. Koppikar, P.; Choi, S.-H.; Egloff, A.M.; Cai, Q.; Suzuki, S.; Freilino, M.; Nozawa, H.; Thomas, S.M.; 

Gooding, W.E.; Siegfried, J.M.; et al. Combined inhibition of c-Src and epidermal growth factor 

receptor abrogates growth and invasion of head and neck squamous cell carcinoma. Clin. Cancer Res. 

2008, 14, 4284–4291. 

171. Fury, M.G.; Baxi, S.; Shen, R.; Kelly, K.W.; Lipson, B.L.; Carlson, D.; Stambuk, H.; Haque, S.; 

Pfister, D.G. Phase II study of saracatinib (AZD0530) for patients with recurrent or metastatic head 

and neck squamous cell carcinoma (HNSCC). Anticancer Res. 2011, 31, 249–253. 

172. Johnson, F.M.; Saigal, B.; Talpaz, M.; Donato, N.J. Dasatinib (BMS-354825) tyrosine kinase 

inhibitor suppresses invasion and induces cell cycle arrest and apoptosis of head and neck squamous 

cell carcinoma and non-small cell lung cancer cells. Clin. Cancer Res. 2005, 11, 6924–6932. 

173. Brooks, H.D.; Glisson, B.S.; Bekele, B.N.; Johnson, F.M.; Ginsberg, L.E.; El-Naggar, A.;  

Culotta, K.S.; Takebe, N.; Wright, J.; Tran, H.T.; et al. Phase 2 study of dasatinib in the treatment 

of head and neck squamous cell carcinoma. Cancer 2011, 117, 2112–2119. 

174. Srinivasan, D.; Plattner, R. Activation of Abl tyrosine kinases promotes invasion of aggressive 

breast cancer cells. Cancer Res. 2006, 66, 5648–5655. 

175. Lin, J.; Sun, T.; Ji, L.; Deng, W.; Roth, J.; Minna, J.; Arlinghaus, R. Oncogenic activation of c-Abl 

in non-small cell lung cancer cells lacking FUS1 expression: Inhibition of c-Abl by the tumor 

suppressor gene product Fus1. Oncogene 2007, 26, 6989–6996. 

176. Furlan, A.; Stagni, V.; Hussain, A.; Richelme, S.; Conti, F.; Prodosmo, A.; Destro, A.; Roncalli, M.; 

Barilà, D.; Maina, F. Abl interconnects oncogenic Met and p53 core pathways in cancer cells.  

Cell Death Differ. 2011, 18, 1608–1616. 

177. Ganguly, S.S.; Fiore, L.S.; Sims, J.T.; Friend, J.W.; Srinivasan, D.; Thacker, M.A.; Cibull, M.L.; 

Wang, C.; Novak, M.; Kaetzel, D.M.; et al. C-Abl and Arg are activated in human primary 

melanomas, promote melanoma cell invasion via distinct pathways, and drive metastatic progression. 

Oncogene 2012, 31, 1804–1816. 

178. Smith-Pearson, P.S.; Greuber, E.K.; Yogalingam, G.; Pendergast, A.M. Abl kinases are required 

for invadopodia formation and chemokine-induced invasion. J. Biol. Chem. 2010, 285, 40201–40211. 

179. Hayes, K.E.; Walk, E.L.; Ammer, A.G.; Kelley, L.C.; Martin, K.H.; Weed, S.A. Ableson kinases 

negatively regulate invadopodia function and invasion in head and neck squamous cell carcinoma 

by inhibiting an HB-EGF autocrine loop. Oncogene 2013, 32, 4766–4777. 

180. Tsao, A.S.; Liu, S.; Fujimoto, J.; Wistuba, I.I.; Lee, J.J.; Marom, E.M.; Charnsangavej, C.; 

Fossella, F.V.; Tran, H.T.; Blumenschein, G.R.; et al. Phase II trials of imatinib mesylate and 

docetaxel in patients with metastatic non-small cell lung cancer and head and neck squamous cell 

carcinoma. J. Thorac. Oncol. 2011, 6, 2104–2111. 



Cancers 2015, 7 406 

 

 

181. Herbst, R.S.; Kim, E.S.; Harari, P.M. IMC-C225, an anti-epidermal growth factor receptor monoclonal 

antibody, for treatment of head and neck cancer. Expert Opin. Biol. Ther. 2001, 1, 719–732. 

182. Huang, S.M.; Bock, J.M.; Harari, P.M. Epidermal growth factor receptor blockade with C225 

modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head 

and neck. Cancer Res. 1999, 59, 1935–1940. 

183. Huang, S.M.; Harari, P.M. Modulation of radiation response after epidermal growth factor receptor 

blockade in squamous cell carcinomas: Inhibition of damage repair, cell cycle kinetics, and tumor 

angiogenesis. Clin. Cancer Res. 2000, 6, 2166–2174. 

184. Fury, M.G.; Sherman, E.; Lisa, D.; Agarwal, N.; Algazy, K.; Brockstein, B.; Langer, C.; Lim, D.; 

Mehra, R.; Rajan, S.K.; et al. A randomized phase II study of cetuximab every 2 weeks at either 

500 or 750 mg/m2 for patients with recurrent or metastatic head and neck squamous cell cancer.  

J. Natl. Compr. Canc. Netw. 2012, 10, 1391–1398. 

185. Merlano, M.; Russi, E.; Benasso, M.; Corvò, R.; Colantonio, I.; Vigna-Taglianti, R.; Vigo, V.; 

Bacigalupo, A.; Numico, G.; Crosetto, N.; et al. Cisplatin-based chemoradiation plus cetuximab in 

locally advanced head and neck cancer: A phase II clinical study. Ann. Oncol. 2011, 22, 712–717. 

186. Licitra, L.; Störkel, S.; Kerr, K.M.; van Cutsem, E.; Pirker, R.; Hirsch, F.R.; Vermorken, J.B.;  

von Heydebreck, A.; Esser, R.; Celik, I.; et al. Predictive value of epidermal growth factor receptor 

expression for first-line chemotherapy plus cetuximab in patients with head and neck and colorectal 

cancer: Analysis of data from the EXTREME and CRYSTAL studies. Eur. J. Cancer 2013, 49, 

1161–1168. 

187. Licitra, L.; Mesia, R.; Rivera, F.; Remenár, E.; Hitt, R.; Erfán, J.; Rottey, S.; Kawecki, A.; 

Zabolotnyy, D.; Benasso, M.; et al. Evaluation of EGFR gene copy number as a predictive biomarker 

for the efficacy of cetuximab in combination with chemotherapy in the first-line treatment of 

recurrent and/or metastatic squamous cell carcinoma of the head and neck: EXTREME study.  

Ann. Oncol. 2011, 22, 1078–1087. 

188. Rivera, F.; García-Castaño, A.; Vega, N.; Vega-Villegas, M.E.; Gutiérrez-Sanz, L. Cetuximab in 

metastatic or recurrent head and neck cancer: The EXTREME trial. Expert Rev. Anticancer Ther. 

2009, 9, 1421–1428. 

189. William, W.N.; Kim, E.S.; Herbst, R.S. Cetuximab therapy for patients with advanced squamous 

cell carcinomas of the head and neck. Nat. Clin. Pract. Oncol. 2009, 6, 132–133. 

190. Fuchs, D.; Heinold, A.; Opelz, G.; Daniel, V.; Naujokat, C. Salinomycin induces apoptosis and 

overcomes apoptosis resistance in human cancer cells. Biochem. Biophys. Res. Commun. 2009, 

390, 743–749. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


