
Cancers 2013, 5, 1545-1565; doi:10.3390/cancers5041545 

 

cancers
ISSN 2072-6694 

www.mdpi.com/journal/cancers 

Review 

Interplay of Stem Cell Characteristics, EMT, and 

Microtentacles in Circulating Breast Tumor Cells 

Monica Charpentier 
1,2

 and Stuart Martin 
2,3,

* 

1
 Program in Molecular Medicine, University of Maryland School of Medicine, 655 W. Baltimore 

St., Bressler Bldg., Rm 10-20, Baltimore, MD 21201, USA;  

E-Mail: monica.charpentier@som.umaryland.edu 
2 

Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland 

School of Medicine, 655 W. Baltimore St., Bressler Bldg., Rm 10-29, Baltimore, MD 21201, USA 
3 

Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., 

Bressler Bldg., Rm 10-29, Baltimore, MD 21201, USA 

* Author to whom correspondence should be addressed; E-Mail: ssmartin@som.umaryland.edu;  

Tel.: +1-410-706-6601; Fax: +1-410-706-6600.  

Received: 2 September 2013; in revised form: 8 October 2013 / Accepted: 4 November 2013 /  

Published: 14 November 2013 

 

Abstract: Metastasis, not the primary tumor, is responsible for the majority of breast 

cancer-related deaths. Emerging evidence indicates that breast cancer stem cells (CSCs) 

and the epithelial-to-mesenchymal transition (EMT) cooperate to produce circulating 

tumor cells (CTCs) that are highly competent for metastasis. CTCs with both CSC and 

EMT characteristics have recently been identified in the bloodstream of patients with 

metastatic disease. Breast CSCs have elevated tumorigenicity required for metastatic 

outgrowth, while EMT may promote CSC character and endows breast cancer cells with 

enhanced invasive and migratory potential. Both CSCs and EMT are associated with a 

more flexible cytoskeleton and with anoikis-resistance, which help breast carcinoma cells 

survive in circulation. Suspended breast carcinoma cells produce tubulin-based extensions 

of the plasma membrane, termed microtentacles (McTNs), which aid in reattachment. CSC 

and EMT-associated upregulation of intermediate filament vimentin and increased 

detyrosination of α-tubulin promote the formation of McTNs. The combined advantages of 

CSCs and EMT and their associated cytoskeletal alterations increase metastatic efficiency, 

but understanding the biology of these CTCs also presents new therapeutic targets to 

reduce metastasis. 
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1. Introduction 

1.1. Breast Cancer Metastasis 

In the United States, improved early detection and new treatments have led to a decline in the 

overall mortality due to breast cancer, but the survival rates for patients with metastatic disease have 

not improved significantly [1]. As a complex and heterogeneous disease, there currently is no 

standardized or curative therapy for metastatic breast cancer [2]. With metastasis responsible for the 

vast majority of breast cancer-related deaths, research into the mechanisms of breast cancer metastasis 

warrants urgent attention. 

Metastasis is a multi-step process whereby cancer cells face numerous challenges. They must: (1) 

detach from the primary tumor, (2) invade through the basement membrane, (3) enter the bloodstream 

or lymphatic system, (4) resist anoikis (detachment-induced apoptosis), (5) evade immune 

surveillance, (6) exit circulation, (7) persist and (8) eventually colonize a distal site [3]. Metastasis was 

traditionally thought of as the final step in the linear progression of breast cancer, developing long after 

primary tumor formation, as multiple stepwise genetic mutations would need to accumulate before 

carcinoma cells could acquire the ability to migrate from the primary tumor and enter circulation [4]. 

However, recent evidence suggests that metastasis may be a much earlier event than previously 

suspected, where cancer cells competent for metastasis can disseminate early during primary tumor 

development [4]. In a HER2 PyMT mouse model and a PyMT mouse model, disseminated breast 

cancer cells could be detected in the bone marrow and the lungs, respectively, even before the full 

development of a primary tumor [5,6]. The development of single cell whole genome analysis allowed 

researchers to extend these studies to patients, where they found early disseminated breast cancer cells 

with fewer genetic changes than the cells from the primary tumors, suggesting that breast cancer cells 

can metastasize very early in tumor development, leading to the observed differences in genetic 

mutations between the primary tumors and the metastatic lesions [7]. 

1.2. Animal Models of Metastasis 

Animal models of metastasis are critical tools for improving our understanding of the biology of 

metastasis and for developing pharmaceutical compounds that can prevent or reduce metastatic spread. 

Murine modeling remains the mainstay for studying cancer metastasis. Multiple animal models for 

mimicking human cancer metastasis exist, with varying degrees of success in recapitulating the 

features of human metastasis. There are three general classes of mouse models of human cancer cell 

metastasis: (1) ectopic modeling implanting human tumor cells subcutaneously in nude mice; (2) 

orthotopic modeling implanting human tumor cells into the murine equivalent organ of their primary 

site; and (3) experimental metastasis models directly injecting human cancer cells into the murine 

circulation, either via the tail-vein or by intracardiac injection (reviewed in [8,9]). 
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Importantly, mouse modeling can also be used to study the CTC phase of metastasis, where cancer 

cells are suspended in the circulatory system. Technology for imaging and modeling CTCs in mice has 

rapidly developed. The use of human cancer lines labeled with fluorescent proteins such as GFP 

provides a powerful tool for non-invasive imaging to study the real-time behavior of cancer cells 

during the process of metastasis (reviewed in [10,11]). 

Using green fluorescent protein (GFP)-labeled PC-3 prostate cancer cells, Glinskii et al. 

demonstrated that orthotopic xenografts generated viable CTCs that could be expanded after FACS 

sorting for GFP-positive cells from cardiac puncture [12]. This orthotopic model of PC-3-GFP cells 

produced extensive metastases and a high load of CTCs, compared to ectopic modeling of PC-3-GFP 

cells, which rarely generated metastases and were unable to generate viable CTCs [12]. Importantly, 

these GFP-PC-3 cells isolated from circulation were highly metastatic when reimplanted  

orthotopically [12]. Taking advantage of FACS analysis, they next orthotopically coimplanted the 

GFP-PC-3 cells isolated from circulation alongside an equivalent number of parental RFP-PC-3 cells. 

These coimplantation studies revealed a vastly greater enrichment of the CTC-derived PC-3-GFP cells 

compared to the parental RFP-PC-3 cells in circulation as well as in bone marrow and lymph node 

metastatic lesions. These results suggest that CTCs recovered from orthotopically injected metastasis 

models are highly capable of metastasis, potentially due to their successful survival under the extreme 

selective pressures imposed in the circulation [12]. Importantly, prostate cells derived from circulation 

after orthotopic implantation in a prostate mouse metastasis model had increased anoikis resistance and 

survival in suspension compared to parental cells that had not been selected from circulation [13]. 

These CTC-derived cells had increased mRNA and protein expression of inhibitor of apoptosis 

proteins (IAPs) [13]. Transfection of XIAP into anoikis-sensitive parental cells promoted anoikis 

resistance, while siRNA silencing of XIAP in CTC-derived cells lead to greater anoikis sensitivity [13]. 

Notably, small molecule inhibitors of XIAP selectively reduced viability in suspended cells and selectively 

reduced metastatic spread, rather than primary tumor growth, in an orthotopic mouse model [13]. 

Similar to methods used to detect CTCs in human patients, immunomagnetic beads can capture 

CTCs in mouse models of CTCs from orthotopic injection of GFP-PC-3 cells, confirmed by fluorescence 

microscopy [14]. This method of using immunomagnetic beads to capture fluorescently-labeled, viable 

CTCs in an orthotopic metastasis model provides a method to study the factors enabling successful 

metastasis in vivo, which is particularly useful because the captured cells readily proliferate for further 

biological studies. Similarly, the CellTracks System (Janssen Diagnostics, LCC, Raritan, NJ, USA) 

was adapted for use in enumerating and fluorescently-analyzing CTCs from breast cancer xenografts, 

although this system requires a fixation step that precludes further functional study [15]. 

1.3. Patient CTC Detection 

Up to 40% of patients with occult metastases detected in the bone marrow had no clinical 

symptoms or signs of metastatic disease by imaging [16]. To improve outcomes for patients with 

metastatic disease, we will need the ability to detect cancer cells in the process of metastasis at much 

earlier time points. The development of new technologies now allows the detection of circulating 

tumor cells (CTCs) in the bloodstream of patients with primary or advanced disease. A multicenter, 

prospective trial of patients with metastatic breast cancer using the CellSearch System (Janssen 
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Diagnostics, LCC, Raritan, NJ, USA) found that the presence of CTCs was a robust independent 

prognostic indicator of progression-free survival and overall survival [17,18]. The CellSearch system 

is currently the only US Food and Drug Administration-approved test for using CTC enumeration in a 

clinical setting [19]. CTC enumeration is an earlier and more reproducible method for assessing 

disease progression than radiological imaging, and can even be used to predict survival in patients with 

non-measureable metastatic breast cancer [20,21]. As methods to isolate and characterize CTCs 

develop, enumeration and characterization of CTCs from peripheral blood samples will be able to 

provide prognostic and predictive information throughout the course of a breast cancer patient’s 

treatment in a relatively non-invasive manner. In addition to its utility in clinical decision-making, this 

emerging technology to isolate and characterize circulating tumor cells is opening the door to directly 

test two intersecting theories that are changing the paradigms of breast cancer progression: the cancer 

stem cell hypothesis and epithelial-to-mesenchymal transition. 

2. The Cancer Stem Cell Hypothesis 

2.1. Mammary Stem Cells 

Somatic stem cells serve to populate the tissues of the body but are generally constrained by their 

ability to differentiate only into organ-specific cell types. Parallels have been drawn between the 

characteristics of these tissue-specific stem cells and tumor cells, leading to the cancer stem cell (CSC) 

hypothesis that tissue stem cells are the cell of origin for tumor development and the target for 

oncogenic transformation [22,23]. Tissue stem cells have long lifespans in order to repopulate organs 

as needed throughout the organism’s lifetime, rendering them more susceptible to the accumulation of 

oncogenic mutations than short-lived mature tissue cells; thus tissue stem cells are a more likely cell of 

origin for tumor development [24]. The mammary gland has the potential to remodel throughout adult 

life, therefore requiring a persistent population of cells with the stem cell characteristics of self-renewal 

and differentiation. The mammary gland undergoes significant self-renewal during each pregnancy 

cycle, as evidenced by the proliferation and differentiation which occur during pregnancy to increase 

the population of alveolar cells required for milk production and secretion, and the massive apoptosis 

which occurs as lactation ends and the gland returns to a pre-pregnant state. This cycle of tissue 

regeneration may repeat for multiple pregnancies, requiring breast stem cells to repopulate the 

mammary gland [24]. 

The identification of surface markers to enrich for mouse mammary stem cells paved the way for 

studies supporting the existence of these mammary stem cells. Using the surface markers 

Lin
−
/CD29

hi
/CD24

+
 to enrich for murine mammary stem cells, a single isolated cell can reconstitute an 

entire functional mammary gland, providing convincing evidence for the existence of mammary stem 

cells [25,26]. These murine mammary stem cells are also capable of self-renewal, as demonstrated by 

serial transplantation assays [25]. Stem cells may divide asymmetrically to produce one daughter stem 

cell and one progenitor cell, which then differentiates into the different tissues lineages, or stem cells 

may divide asymmetrically, producing two identical stem cells and thus expand the proportion of stem 

cells in the tissue [27]. Asymmetric stem cell division leading to an increase in the proportion of 

cancer stem cells may account for the variation in the proportion of stem cells seen in the literature.  
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2.2. Breast Cancer Stem Cells 

Subversion of the normal stem cell signaling pathways by a mutated tissue stem-cell may drive both 

dysregulated proliferation, leading to tumorigenicity, and aberrant differentiation, leading to tumor 

heterogeneity. Traditional models suggesting that any of the cancer cells in a heterogeneous tumor may 

be continuously replicating and are equally capable of recreating a tumor or metastasis are not 

supported by studies showing that many thousands of these cancer cells must be transplanted into mice 

in order to generate tumors [28]. In contrast, the cancer stem cell hypothesis suggests that while the 

tumor is a heterogeneous population of cells, only the cancer stem cells are continuously dividing and 

repopulating the tumor [22]. In the cancer stem cell hypothesis, tumor heterogeneity arises from the 

division of a cancer stem or progenitor cell into lineage-specific cells.  

The identification of CSCs on the basis of unique surface marker phenotypes began in leukemia and 

brain cancers, and this technique for identifying CSCs continued in the hunt for breast CSCs. Based on 

the premise that only the CSC subpopulation is tumorigenic, studies beginning with the well-validated 

leukemia CSC model frequently use the number of cells needed to form a tumor in mice as an 

indication of the proportion of stem cells in a population, with populations that form tumors from 

fewer cells more representative of a stem cell population [29,30]. Flow cytometry was used to separate 

human primary and metastatic breast cancer cells on the basis of cell surface markers, showing that a 

CD44
hi

/CD24
lo

 and lineage-marker-absent population of cells from breast cancer patients, but not 

CD44
lo

/CD24
hi

 cells, was enriched in the ability to form tumors in NOD/SCID mice [28]. As few as 

100 CD44
hi

/CD24
lo

/lin
−
 cells could form tumors in mice, while tens of thousands of unenriched cells 

failed to form tumors [28].
 
The composition of these tumors recapitulated the heterogeneity of the 

original tumor, suggesting the existence of breast CSCs that are not only capable of self-renewal 

leading to the production of a tumor, but also capable of generating cells that are able to differentiate 

and constitute the bulk of the heterogeneous tumor. Thus the selected cancer cells displayed the 

identifying characteristics of tissue stem cells [28]. These tumors continued to contain a 

CD44
hi

/CD24
lo

/lin
−
 subpopulation of cells, which remained tumorigenic when transplanted again into 

mice a second time while the unsorted tumor bulk cells were not tumorigenic, providing support for 

the existence of breast CSCs that are able to divide to produce both stem cells capable of further 

division and differentiated progeny that lack such capability. 

Functional assays for stem cell character are important for validating the use of phenotypic surface 

markers. Based upon the model in which stem cells, including cancer stem cells, have innate 

chemotherapeutic resistance, a functional assay was developed initially in hematopoietic cells to select 

for CSCs based upon the expression of one mechanism of chemotherapeutic resistance, aldehyde 

dehydrogenase [31–34]. Aldehyde dehydrogenase ALDH1 was shown in hematopoietic cells to be the 

only ALDH enzyme critical for the regulation of stem cell activity. ALDH1 is present in cells from 

human breast tissue that have phenotypic and functional stem cell character and thus detection of 

ALDH1 expression via the ALDEFLUOR reagent has been used to isolate a putative cancer stem cell 

population from human breast carcinomas [35]. This population of putative breast CSCs can often 

overlap to a small degree with the CD44
hi

/CD24
lo

/lin
−
 population; however, most cell lines and tumors 

possess their own unique ratio of stem cell markers and populations. The observation that different sets 

of markers identify distinct and separate populations of self-renewing cells demonstrates a limitation in 
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the ability of surface markers to accurately and consistently define CSC populations. Thus functional 

determinants of the CSC population, such as the ability to recapitulate heterogeneous tumors similar to 

the phenotype of the original tumor upon limiting dilutions in mice, remain the most persuasive 

evidence for the existence of breast CSCs. 

Attempts to study mammary progenitor cells in vitro have been hampered by the inability to grow 

progenitor cells in large enough quantity for experimentation without inducing differentiation because 

traditional, adherent cell culture conditions promote differentiation of progenitor cells. Pioneering 

work by Dontu et al. is significant because it marks the first development of an in vitro system for the 

continuous propagation of non-adherent human mammary epithelial cells without differentiation [36]. 

The mammosphere assay is based on the culture of mammary epithelial cells under non-adherent 

conditions, as normal mammary epithelial cells are unable to survive without attachment to a substrate 

and die by anoikis, while stem cells survive and are enriched in floating spheres [37]. In addition to 

serving as a system for the continuous culture of mammary stem cells in an undifferentiated state, the 

mammosphere culture system can also serve as an assay for the indirect measurement of stem cell 

character, because mammosphere formation depends on the presence of self-renewing stem cells [36]. 

Further studies have confirmed that mammospheres contain stem-like cells that can generate an entire 

mammary ductal tree when implanted into a cleared mouse mammary fat pad [38]. 

While evidence has been accumulating in support of the CSC hypothesis in breast carcinogenesis, it 

is far from becoming widely accepted. One troubling aspect of the cancer stem cell theory is that it is 

unclear whether or not the cancer stem cell population is indeed a very small subset of the tumor 

population, as some studies in lymphoma and melanoma have shown that a much larger than expected 

proportion of the population is tumorigenic [39,40]. This melanoma study illustrates the limitations of 

our in vitro and in vivo models for cancer stem cells, as it used the NOG mouse as a model host, which 

is further immunocompromised than the NOD/SCID mice used in most of the preceding CSC studies, 

and thus more easily accepts heterologous cells. The increased tumorigenicity seen using the NOG 

mouse model suggests that the host immune system interacts in crucial but yet undefined ways with 

the cancer stem cell population. Indeed, a recent study has shown the potential for immune targeting of 

breast CSCs [41]. Additionally, it is unclear whether breast CSCs originate by the oncogenic 

transformation of normal mammary stem cells or by the dedifferentiation and acquisition of stem-cell 

characteristics by carcinoma cells, or if both pathways contribute to the generation of breast CSCs. 

Recent studies indicate that reprogramming non-tumorigenic mammary epithelial cells with embryonic 

stem cell transcription factors OCT4, SOX2, Klf-4 and c-Myc can generate breast CSCs [42]. While 

further research is needed to definitively address the origin of breast CSCs, the CSC theory itself has 

become well-established and highlights the need to target breast CSCs if we hope to prevent or reduce 

breast cancer mortality. 

3. CSCs and Metastasis 

Most research has focused on the role of breast CSCs in primary tumor development, but recent 

studies suggest that breast CSCs may also play a critical role in metastasis. If the cancer stem cells are 

the only cells in a tumor with inherent tumorigenicity, then it is reasonable to conclude that the cancer 

stem cells are involved in the metastatic process, as metastatic outgrowth requires many of the same 
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characteristics as primary tumor development [43]. Emerging evidence from mouse models of 

metastasis and from studies of human breast cancer patients suggest that CSCs may be the critical cells 

responsible for metastasis. ALDEFLUOR was used to identify cancer stem cell-like populations of 

breast cancer cell lines, which demonstrated in vivo stem cell activity by tumorigenicity assays in mice. 

Importantly, these breast CSCs were shown to have increased metastatic potential by intracardiac 

injection into NOD/SCID mice and subsequent luciferase assays for metastasis formation [44]. In 

support of these findings, additional studies show that the breast cancer stem cell population defined 

by the CD44
hi

/CD24
lo

 population may be more associated with metastasis than primary tumor 

development [45]. A recent study used an optical reporter fusion gene to track as few as 10 CD44
hi

/lin
−
 

human patient tumor cells in a mouse xenograft model, where they saw an enrichment of breast cancer 

stem cells in spontaneous metastases, suggesting that breast CSCs are more capable of metastasis [46]. 

Importantly, studies in human breast cancer patients also suggest that breast CSCs are essential to 

metastasis. Disseminated tumor cells in human breast cancer patients were recently shown to express 

the stem cell phenotype CD44
hi

/CD24
lo

 [47]. Additionally, another study showed that 70% of patient 

blood samples that were positive for circulating tumor cells that expressed the functional stem cell 

marker ALDH1 [48]. Interestingly, patients with triple-negative breast cancer have a poor prognosis; 

relapsed tumors and distant metastases of triple-negative breast cancers are associated with CSCs [49]. 

These findings suggest that an increase in CSCs highly competent for metastasis may be responsible 

for the worse prognosis of triple-negative breast cancer. While this research provides strong evidence 

linking breast CSCs with metastasis, very challenging studies to track a single cell with CSC 

characteristics through circulation and development into a metastatic lesion will be required to 

definitively demonstrate that breast CSCs are the cells responsible for metastasis. The role of breast 

CSCs in metastasis may be distinct from their role in primary tumor carcinogenesis, as successful 

metastasis requires significant changes to cellular morphology and signaling pathways as the cancer 

cells travel through and respond to the different microenvironments en route to a site of dissemination. 

4. Cytoskeletal Alterations as Breast Cancer Cells Enter Circulation 

4.1. EMT and Circulating Tumor Cells 

Dynamic cytoskeletal alterations are one of the most critical requirements for metastasis, as breast 

cancer cells must dissociate from the primary tumor site, migrate towards the bloodstream, and 

intravasate to become circulating tumor cells (CTCs). The epithelial-to-mesenchymal transition (EMT) 

has been implicated as a mechanism responsible for endowing epithelial cancer cells with the 

necessary traits and cytoskeletal alterations for successful metastasis. EMT is well characterized as an 

embryonic process whereby epithelial-like cells in the developing embryo convert into motile 

mesenchymal cells that can migrate to alternative sites in the embryo. This developmental program is 

thought to occur in a deregulated manner in epithelial cancers, allowing stationary, polarized breast 

cells tightly connected to adjacent cells to disband their cell-cell junctions and invade as non-polarized 

single cells [50–52]. Activation of the EMT program leads to downregulation of epithelial proteins 

required for maintenance of the polarized epithelial sheet such as occludins, E-cadherin, and claudins, 
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and upregulation of more plastic mesenchymal proteins such as vimentin, N-cadherin, and smooth 

muscle actin. 

The majority of the studies of EMT’s effects on the cytoskeleton focused on cancer cells attached to 

the extracellular matrix (ECM), which is a dramatically different environment than a CTC in 

circulation. This research on attached cells heavily stresses the role of actin reorganization and actin-based 

motility structures. How the EMT program may help cancer cells resist anoikis and survive in 

circulation as CTCs is a currently developing area of research. In the bloodstream, the mechanical 

forces on a CTC are vastly different from those when the cell is migrating or invading within tissues. 

In circulation, epithelial cells tend to die from anoikis, an apoptotic cell death that occurs in response 

to detachment. Prior activation of the EMT program during the initial invasion steps of metastasis may 

provide resistance to anoikis once in the bloodstream. EMT-induced loss of cell polarity in metastatic 

cancer cells can help downregulate the Hippo pathway, leading to resistance to anoikis [53,54]. One of 

the hallmarks of EMT, loss of E-cadherin, also serves as a mechanism for anoikis resistance. Loss of 

E-cadherin at the cell membrane disrupts a complex including Ankyrin-G and NRAGE that renders 

cells sensitive to apoptosis; when this complex is lost, NRAGE translocates to the nucleus, where it 

can form a repressor complex to prevent expression of the p14ARF gene, an anoikis sensitizer, to 

confer anoikis resistance [55]. EMT transcription factors may also contribute to anoikis resistance, as 

master EMT regulator Twist prevents expression of p14ARF, thus conferring anoikis resistance [56].  

Many studies suggest that EMT occurring in metastasizing cancer cells is induced by 

microenvironmental factors such as TGF-β, leading to reversible changes in master regulators of the 

EMT program, such as transcription factors Twist and Snail, or epigenetic modulation by changes in 

microRNA expression of the mir200 family, rather than by permanent genetic changes [50,51]. The 

complex reprogramming of both signaling pathways and cytoskeletal reorganization during an EMT 

may necessarily be a transient phenomenon, as the cancer cells must revert back to a more epithelial 

state in order to eventually grow out as metastatic lesion. A recent study using Twist regulation to 

control epithelial or mesenchymal status revealed that a reversible or transient EMT is required for 

disseminated mesenchymal cancer cells to proliferate and colonize a distant site for metastatic 

outgrowth [57]. 

4.2. EMT-Directed Cytoskeletal Alterations May also Promote the Metastatic Potential of CTCs 

In addition to aiding in detachment from the primary tumor, invasion, and anoikis resistance in 

circulation, EMT also has specific effects on the cytoskeleton of breast cancer cells that affect the 

tumor cell during the CTC phase of metastasis. The environment of the circulatory system presents a 

unique challenge for circulating epithelial tumor cells, and they must develop a more flexible 

cytoskeleton to avoid fragmenting in small capillary beds due to shear forces in circulation [58]. The 

cellular tensegrity model describes the balance of cytoskeletal forces on a suspended epithelial cell: the 

inward-directed force of the actin cortex is balanced with an outward-directed microtubule force to 

maintain cellular morphology [59]. Existing in a state of ECM detachment, a CTC no longer has 

connection to the ECM to assist in generating traction; indeed, a less rigid cellular shape is essential 

for a CTC to deform and survive passage through narrow capillaries [58]. Interestingly, this more 

deformable CTC may be a characteristic associated both with transformation and with stemness [60,61]. 
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After surviving in circulation, a CTC must first attach to the capillary endothelium and then 

extravasate into the tissue to effectively develop into a metastatic lesion. The mechanism by which 

CTCs reattach to the capillary endothelium is poorly characterized. Intravital imaging studies  

using colon carcinoma cells revealed that CTCs attach to the liver sinusoid capillaries in a 

microtubule-dependent, but not actin-dependent manner [62]. Recent studies modeling CTCs using 

suspended breast carcinoma cells have identified a novel cellular structure, termed microtentacles 

(McTNs, seen in Figure 1), which may explain these findings. McTNs are dynamic microtubule-based 

protrusions extending from the plasma membrane of carcinoma cells detached from the extracellular 

matrix [63]. Tubulin-based, McTNs are mechanistically distinct from actin-based structures such as 

invadopodia and filopodia, and are antagonized by the inwardly-directed actin cortex, matching the 

mechanism of the in vivo studies of CTC retention [62–64]. Functionally, McTNs promote the 

reattachment of suspended breast carcinoma cells, a critical step in metastasis necessary for CTCs to 

exit the bloodstream [63,65,66]. Live confocal imaging revealed that flexible McTNs on attaching 

tumor cells penetrate the junctions between endothelial cells [67]. Importantly, McTNs are increased in 

frequency and length in breast cancer cell lines with increasing metastatic potential, and persist on the 

surface of suspended, anoikis-resistant breast epithelial cells for several days [63,66]. These data 

support a model that McTN formation in response to carcinoma cell detachment could enhance the 

reattachment and metastatic potential of CTCs. 

Figure 1. Breast cancer cells produce microtentacles in response to detachment. Confocal 

microscopy of a suspended breast tumor cell reveals tubulin-based long, flexible microtentacles. 

 

McTNs are promoted by specific cytoskeletal modifications. Matching the mechanism of in vivo 

CTC reattachment, inhibitors of actin polymerization increase the formation of McTNs, while 

inhibitors of tubulin polymerization decrease McTNs [62,63]. Microtubules are composed of α- and  

β-tubulin heterodimers, and can be regulated by multiple post-translational modifications [68,69]. The 

carboxy-terminal tyrosine on α-tubulin is subjected to cyclical removal, by a yet-unidentified tubulin 

carboxypeptidase (TCP), to generate detyrosinated tubulin (Glu-tubulin) and re-ligation, by tubulin 

tyrosine ligase (TTL), to regenerate tyrosinated tubulin (Tyr-tubulin). Glu-tubulin microtubules have a 

vastly increased stability in vivo, persisting for hours rather than the 3 to 5 minutes seen in 

microtubules composed of Tyr-tubulin [70]. Interestingly, protein levels of Glu-tubulin increase 

dramatically immediately upon detachment and are found enriched in the McTN protrusions rather 
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than the cell body [63]. Importantly, tubulin detyrosination in breast cancer predicts poor prognosis 

and metastasis [71,72]. In an immunohistochemistry study of 134 breast cancer patient samples, 

tubulin detyrosination was associated with tumor aggressiveness, and when combined with the  

Scarf-Bloom-Richardson grade, significantly correlated with poor clinical outcome [72]. In a later 

immunohistological study comparing 78 cases of malignant breast cancer and 69 benign cases,  

Glu-tubulin staining was observed in 71.8% of malignant cases but only 8.3% of benign tumor 

samples and 4.7% of samples of other benign breast disease, providing a significant association 

between the presence of Glu-tubulin and malignancy [71]. 

Microtubules can increase their stability by associating with intermediate filaments, an association 

that also enhances McTN formation. Western blotting and immunofluorescence of suspended breast 

carcinoma cells revealed that vimentin intermediate filaments, but not cytokeratins, extend into 

McTNs and that vimentin-expressing breast cancer cell lines had higher McTN frequencies [66]. These 

data match studies using cell lines generated from micrometastatic lesions in the bone marrow of 

breast cancer patients revealing a downregulation of cytokeratins and an upregulation of vimentin [73]. 

Furthermore, disrupting vimentin through phosphatase PP1/PP2A inhibition or by dominant-negative 

vimentin expression reduced McTN extension and inhibited reattachment from suspension [66]. 

Vimentin has been previously shown to preferentially interact with detyrosinated tubulin and, 

importantly, vimentin coaligns with Glu-tubulin in McTNs to enhance McTN formation [66,70,74]. 

The cytoskeletal alterations promoting McTN formation, increased vimentin expression and 

increased tubulin detyrosination, are enhanced in EMT. Vimentin is an intermediate filament strongly 

associated with EMT, and is a poor prognostic indicator in triple negative breast cancer [75,76]. 

Induction of an EMT through ectopic Twist or Snail expression increased detyrosinated tubulin levels 

and enhanced McTN formation and subsequent reattachment from suspension by downregulating 

tubulin tyrosine ligase (TTL) expression [67]. Importantly, clinical tumor samples display a 

concordant elevation of Twist and Glu-tubulin expression at the invasive front of patients with ductal 

carcinoma in situ, suggesting that EMT can promote microtubule stability as breast cancer cells escape 

the tissue and become CTCs [67]. Since EMT and vimentin are also induced at epithelial wound edges, 

this raises the possibility that migration from the primary tumor could expose tumor cells to wounding 

stimuli that would only increase when CTCs enter the free-floating environment of the circulation [77,78].  

4.3. Convergence of EMT and CSCs 

The CSC hypothesis and EMT both provide compelling insight into the mechanisms of metastasis; 

recent studies revealing the convergence of these two research fields has considerable ramifications for 

our understanding of breast cancer progression. When human mammary epithelial cells undergo a 

forced EMT by the expression of transcription factors Twist or Snail, they acquire the CD44
hi

/CD24
lo

 

breast cancer stem cell phenotype and increased mammosphere formation, a measure of stem cell  

self-renewal [79]. Importantly, inducing EMT in tumorigenic mammary epithelial cells dramatically 

increased their tumorigenicity in immunocompromised mice, the gold standard for identifying cancer 

stem cells [79]. In complementary experiments, naturally-arising normal and neoplastic human 

mammary epithelial stem-like cells displayed mesenchymal morphology and a gene expression pattern 

associated with EMT [79]. The precise molecular mechanisms connecting EMT and CSCs are just 
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beginning to be appreciated. One of the EMT transcription factors used in the landmark study 

connecting EMT and CSCs, Twist, may itself increase self-renewal by directly stimulating CSC 

polycomb complex protein Bmi1 and by downregulating the CSC phenotypic surface marker  

CD24 [80,81]. Epigenetic regulation by the mir200 family has been implicated in maintaining both an 

EMT and a CSC phenotype, as well as regulating cell motility and anoikis resistance [82]. Importantly 

for CTCs and metastasis, both EMT and CSCs may lead to a more deformable cytoskeleton, a 

requirement for successful transit through small capillaries [60]. This discovery that EMT is linked to 

the acquisition of CSC traits suggests a dangerous combination in which may prime CTCs for more 

successful metastasis. Not only would these breast cancer cells have the EMT-like ability to invade, 

migrate, and become CTCs, but with the CSC traits of enhanced tumor-initiation, self-renewal, and 

chemotherapeutic resistance, these CTCs are primed for more successful metastatic outgrowth. 

5. Emerging Evidence for EMT, CSC, and Related Cytoskeletal Alterations in CTCs from Breast 

Cancer Patients  

While EMT and CSCs have been implicated in the metastatic process, definitive evidence in cancer 

patients has been limited by available technology to observe CTCs during the process of metastasis. 

Recent technology to isolate CTCs from the peripheral blood of breast cancer patients has created a 

unique opportunity to assess CTCs during the metastatic process. Multiple studies of metastatic breast 

cancer patients using the CellSearch System (Janssen Diagnostics, LCC, Raritan, NJ, USA) have found 

that the presence of CTCs was a robust independent prognostic marker of progression-free survival 

and overall survival [17,83]. CTC enumeration methods like CellSearch and other studies on breast 

cancer patient CTCs and disseminated tumor cells have generally relied on immunohistochemistry or 

flow cytometry to determine if such cells in the process of metastasis express markers implicating 

EMT or CSCs. In a recent prospective study of patients with early breast cancer, the presence of 

disseminated CD44
hi

/CD24
lo

 CSCs in the bone marrow was identified for the first time as an 

independent predictor for reduced disease-free survival [84]. Differential centrifugation, magnetic cell 

separation, immunostaining, and flow cytometry were used to extend these studies by directly 

identifying CTCs with the CD44
hi

/CD24
lo

 CSC phenotype from the peripheral bloodstream, providing 

further evidence that CSCs are important in breast cancer metastasis [85–87]. CSCs have previously 

been associated with poor prognosis in triple negative breast cancer in immunohistochemistry studies 

on relapsed tumors and metastases, and patients with triple negative primary breast cancers were more 

likely to have CD44
hi

/CD24
lo

 cells disseminated in the bone marrow [49,88,89]. These studies have 

used recently-developed technology to detect CTCs and disseminated cancer cells with breast CSC 

characteristics. To determine if these rare stem-like CTCs are responsible for later metastasis, our CTC 

technologies need to be further refined to rapidly and reproducibly isolate live and intact CTCs for 

functional studies of metastasis. CTC technology is rapidly evolving, and will soon allow for such 

testing of metastatic competence. Already, a study examined the metastatic competence of patient-derived 

CTCs in vivo by expanding the CTCs in culture and injecting them into the tail-vein or intracardiacally 

into immunodeficient mice to find metastases to the brain and lung [90]. A recent study injected CTCs 

from patients with progressive metastatic breast cancer into immunocompromised mice to demonstrate 

the existence of metastasis-initiating cells (MIC) that could give rise to bone, lung, and liver 
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metastases [91]. The metastatic efficiency of the bulk isolated CTCs was low, but the MIC cells were 

found to express EpCAM, CD44, CD47, and MET [91]. The levels of CD44
+
/MET

+
/CD47

+
 CTCs 

paralleled clinical progression and was a better indicator of overall survival than the frequency of bulk 

CTCs [91]. 

In addition to detecting CTCs with CSC character, many breast CTCs display evidence of EMT. 

Immunostaining of breast cancer patient CTCs revealed EMT markers Twist and vimentin in 73% and 

77%, respectively, of CTCs from patients with early disease, and in 100% of the CTCs from patients 

with metastatic disease [92]. Interestingly, these findings of high Twist and vimentin levels in CTCs 

from patients with metastatic breast cancer support the model in which EMT promotes vimentin and 

glu-tubulin enriched McTNs to enhance CTC reattachment (Figure 2) [66,67]. A recent study by Yu et al. 

used dual-colorimetric RNA-in situ hybridization (RNA-ISH) to assess breast tumor cells for EMT 

markers in circulation and at the primary tumor site and draining lymph nodes [93]. They report 

finding biphenotypic tumor cells expressing both epithelial and mesenchymal markers at the primary 

tumor and draining lymph nodes, supporting the idea that EMT can start at the primary tumor to help 

cells escape and enter circulation, notably finding that mesenchymal cells were enriched in CTCs. 

Serial monitoring of patients revealed that disease progression was associated with an increase in these 

mesenchymal CTCs. RNA sequencing of the CTCs indicated an increased expression of TGF-β 

pathway components and the FOXC1 transcription factor, both strongly associated with EMT [93]. In 

a clinical study of patients with metastatic breast cancer undergoing high-dose chemotherapy with 

autologous hematopoietic stem cell transplantation, patients whose CTCs overexpressed EMT 

transcription factors had an increased risk of disease relapse and shorter progression-free survival  

times [94]. These studies suggest that EMT-associated CTCs contribute to metastasis and poor prognosis. 

Providing further support for the connection between EMT and CSCs, patient CTCs with CSC 

characteristics were also found to have EMT markers [95]. Patient CTC samples with high expression 

of EMT transcription factor TWIST1 had a higher percentage of CSCs, as determined by Aldefluor 

assay, and patients who had a complete response had a significantly lower percentage of CSCs [94]. 

Recently, Zhang et al. isolated CTCs from the peripheral blood of patients with invasive breast cancer 

by multiparametric fluorescence-activated cell sorting. Interestingly, Zhang et al. relied on cancer stem 

cell marker ALDH1 in their CTC isolation, further emphasizing the role of CSC character for 

metastasis. After culturing these isolated CTCs, they found that these CTCs had high levels of the 

other breast CSC markers, CD44
hi

/CD24
lo

, and high levels of mesenchymal marker vimentin [90].  

While CellSearch remains the only U.S. Food and Drug Administration-approved test for CTC 

enumeration, this test relies on the EpCAM antibody to identify CTCs and thus is unable to capture 

CTCs that have become more mesenchymal than epithelial and have downregulated EpCAM 

expression. If EMT increases the chances of successful metastasis, then the CellSearch method may 

not be the best choice for metastasis studies, as it would miss a significant fraction of CTCs having 

undergone EMT. In a prospective study of HER2
+
 patients with metastatic breast cancer, Giordano et al. 

isolated CTCs from the peripheral bloodstream and found a heterogeneous CTC population, where 

some CTCs expressing an EMT or CSC-like phenotype did not express EpCAM and thus would be 

missed by CellSearch [96]. These findings highlight the need to expand CTC detection methods to 

include CTCs that have undergone an EMT. 
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Figure 2. EMT and Stemness promote cytoskeletal alterations that enhance CTC 

reattachment. EMT and cancer stem cell traits cooperate to promote successful metastasis. 

Breast cancer cells with EMT and cancer stem cell characteristics (yellow cells), have 

enhanced invasive and migratory potential that aid in their ability to enter circulation as 

CTCs. Activated anoikis-resistance pathways and a more deformable cytoskeleton allow 

the circulating CSCs (yellow cells) to survive in the bloodstream, while more epithelial-like 

tumor cells (green cells) die by anoikis or fragmentation in the capillaries. Upregulation of 

the intermediate filament vimentin (purple) and detyrosination of α-tubulin to generate 

Glu-tubulin (teal) at the invasive front of the primary tumor predispose CTCs to produce 

microtentacles (McTNs) when suspended in circulation. These McTNs penetrate between 

endothelial cells junctions to promote CTC reattachment at a distal site, where CSC 

characteristics promote outgrowth as a metastatic lesion. 

 

6. Chemotherapeutics Targeting Primary Tumor Growth may have Unintended Consequences 

for CTCs 

Current clinical trials for cancer chemotherapeutics assess the ability to shrink existing tumors, 

rather than prevent metastatic spread and outgrowth. This approach neglects the fact that the biology of 

metastasis may be very different than that of primary tumor development [97]. Indeed, chemotherapeutics 

may have very different effects on tumor cells in an already established lesion than on CTCs in 

circulation. Studies using suspended breast cancer cell lines to model CTCs show that treatment with 

Taxol, a commonly used antiproliferative chemotherapeutic, enhances the level of detyrosinated 

tubulin and formation of McTNs, as well as their ability to reattach from suspension [98]. In addition 

to their effects on the cytoskeleton of CTCs, chemotherapeutics may have unintended effects on the 

behavior of CTCs. Adriamycin treatment can induce EMT in a Twist-dependent manner in breast 

cancer cells, providing an unintended metastatic advantage [99]. Additionally, irradiation, a common 

treatment modality in breast cancer, can increase EMT and CSC characteristics [100]. Importantly, 

patients receiving neoadjuvant therapy were more likely to express EMT transcription factors in their 

CTCs [101]. Given the connection between EMT and CSCs, and the therapeutic resistance associated 
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with CSCs, this finding suggests that either EMT-like CTCs are resistant to neoadjuvant therapy, or 

that the stress of neoadjuvant therapy could trigger CTCs to undergo an EMT [101]. Taken together, 

these studies suggest that the effects of therapies on CTCs need to be considered when designing 

treatment plans with the aim of treating or preventing metastasis. A compelling recent study shows that 

when CTCs increase during neoadjuvant chemotherapy, breast cancer patients have a 25-fold higher 

risk of relapse after seven years, emphasizing the importance of understanding how existing cancer 

therapies affect CTC metastatic potential [102]. 

7. Conclusions  

In order to enter the circulatory system, breast cancer cells must undergo extensive cytoskeletal 

alterations. The EMT program has been widely studied as a mechanism that enhances cancer cell 

motility and escape from the primary tumor, but recent studies using developing technology to isolate 

CTCs suggest that the EMT program provides additional advantages to cancer cells in the very 

different microenvironment of the circulatory system. The EMT program can be particularly 

advantageous for breast CTCs since it appears to increase invasiveness to aid in the generation of 

CTCs, confers resistance to anoikis once the cells are in circulation, and promotes McTN formation 

and CSC character, giving the CTCs a metastatic advantage in exiting the bloodstream and surviving 

to emerge later as dangerous metastatic lesions. 
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