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Abstract: The focus of recent research has been on the development of siRNA vectors to 

achieve an innovative gene therapy. Most of the conventional vectors are siRNA nanoparticles 

complexed with cationic polymers and liposomes, making it difficult to release siRNA. In 

this study, we report on the use of MCD, a quaternary ammonium salt detergent containing 

a long aliphatic chain (L-chain) as an siRNA complexation agent using human HeLa cells 

(a model cancer cell). We prepared siRNA nanoparticles using various MCDs, and 

measured the diameters and zeta-potentials of the particles. The use of an MCD with a long 

L-chain resulted in the formation of a positively charged nanoparticle. In contrast, a 

negatively charged nanoparticle was formed when a MCD with a short L-chain was used. 

We next evaluated the gene silencing efficiency of the nanoparticles using HeLa cells 

expressing the luciferase protein. The results showed that the siRNA/MCD nanoparticles 

showed a higher gene silencing efficiency than Lipofectamine 2000. We also found that 

the efficiency of gene silencing is a function of the length of the alkyl chain in MCD and 

zeta-potential of the siRNA/MCD nanoparticles. Such information provides another 

viewpoint for designing siRNA vectors.  

  

OPEN ACCESS 



Cancers 2013, 5                            

 

 

1414 

Keywords: mono-cationic detergent; gene silencing; siRNA delivery; nanoparticle; 

multifunctional envelope-type nano device (MEND) 

 

1. Introduction 

To date, many siRNA vectors for in vitro and in vivo use have been reported, and most are 

comprised of siRNA nanoparticles complexed with cationic polymers and liposomes [1–7]. Since it is 

known that the physicochemical properties of nanoparticles affect their bioactivities, the formation  

of a nanoparticle that contains nucleic acids and polycations has been a subject of active  

investigations [1–3,8–14]. A considerable body of information is available concerning pDNA [8–14]. 

It has been reported that an important process for efficient transgene expression is the intranuclear 

disposition of pDNA rather than its delivery to the nucleus [15,16]. We previously reported that, for 

condensed DNA particles, a close relationship exists between the efficiency of DNA release and 

transfection activity, when biocleavable polyrotaxanes (DMAE-SS-PRX) are used, in which the 

cationic density can be easily controlled [17]. We also indicated that a very high efficiency of DNA 

release has a positive influence on transcription, but that it would inhibit the post-transcription process; 

nuclear mRNA export, translation and related processes [18].  

In the case of siRNA, it has also been reported that a close relationship exists between the efficiency 

of siRNA release and the knockdown effect [1–3,7]. Kissel and coworkers succeeded (using  

PEI-graft-polyethyleneglycol (PEG)) in improving siRNA release to enhance the siRNA effect, by 

decreasing the extent of electrostatic interactions between polycations and siRNA [7]. On the other 

hand, we demonstrated that different mechanisms are operative for nanoparticle formation between 

pDNA and siRNA using a polycation, suggesting the manner in which pDNA and siRNA are largely 

different [19]. Based on these reports, a study of the relationship between nanoparticle formation of 

siRNA and the siRNA knockdown effect can be important issue.  

We previously reported on an optimal mono-cationic detergent (MCD), a quaternary ammonium 

salt detergent, for use as a pDNA condensation agent that results in efficient release, and showed a 

high transfection activity in cultured HeLa cells [20]. Moreover, the results of MCD screening showed 

that the hydrophobic nature of the MCD is important for the condensation of pDNA. In this study, we 

investigated the issue of whether a different extent of hydrophobic interaction could affect the 

formation of siRNA/MCD nanoparticles using various types of MCD and gene silencing efficiency to 

determine whether an MCD variant could be useful as a siRNA complexation agent. We first prepared 

siRNA nanoparticles using various MCDs with different lengths of alkyl moiety, and measured their 

diameters and zeta-potentials to investigate how the magnitude of the hydrophobic interaction can 

affect the formation of siRNA/MCD nanoparticles. We next packaged the siRNA/MCD nanoparticles 

into a lipid bi-layer equipped with octaarginine (R8-MEND, an octaarginine-modified multifunctional 

envelope-type nano device) system [21–23], which was previously reported to function as a non-viral 

gene delivey system similar to that of adenovirus vector [24,25]. The gene silencing efficiencies 

between the siRNA/MCD nanoparticles and Lipofectamine 2000 were then compared using HeLa cells 
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expressing the Luciferase protein. Finally, we investigated the effect of siRNA nanoparticles formed 

with various types of MCDs on gene silencing efficiency.  

2. Results and Discussion 

2.1. Preparation of siRNA/MCD Complex 

We first prepared siRNA nanoparticles that contained various MCDs, and investigated the 

relationship between the N/P ratio and the diameter or zeta-potential of siRNA/MCD nanoparticles. In 

this experiment, we used various MCDs, which are shown in Table 1 (see [20] for details).  

Table 1. Structures of the mono-cationic detergents (MCD). 

Group Name Basic structure R (L-chain) 

Type-C 

C-1 

 

-C
14

H
25

 

C-2 -C
16

H
33

 

Type-D 

D-1 

 

-C
12

H
25

 

D-2 -C
16

H
33

 

Type-E 

E-1 

 

-C
12

H
25

 

E-2 -C
14

H
29

 

E-3 -C
16

H
33

 

The basic MCD structure is a quaternary ammonium compound containing two methyl groups. Type-C 

and -D MCDs have one short aliphatic chain (S-chain) and one long aliphatic chain (L-chain). Type-E 

MCDs contain one L-chain and one aromatic group. Physicochemical properties of the siRNA/MCD 

nanoparticles are summarized in Figure 1 and Table S1. Figure 1A,B show the diameters and zeta 

potentials for siRNA/MCD nanoparticles formed using type-C and type-D MCDs. When MCDs 

containing a hexadecyl group (-C16H33) L-chain were used (C-2 and D-2), positively charged 

nanoparticles were formed at high N/P ratios (Figure 1A, closed circles (C-2); Figure 1B, closed 

triangles (D-2)). In contrast, MCDs that have an L-chain of 12 carbons in length (D-1) formed 

negatively charged nanoparticles at high N/P ratios (Figure 1B, open triangles). It is presumed that 

siRNA/MCD nanoparticles would be formed by an assembly of MCD and siRNA via electrostatic and 

hydrophobic interactions. In the case of MCD containing long L-chains (C-2 and D-2), the long  

L-chain of MCD could bind to the hydrophobic region of siRNA to support the formation of 

siRNA/MCD nanoparticles. Thus, several cationic groups of MCD would be displayed in the surface 

of siRNA/MCD nanoparticles, resulting in the formation of positively charged nanoparticles. In the 

case of MCD containing short L-chains (D-1), the cationic group of MCD would largely contribute to 

siRNA/MCD nanoparticle formation. Thus, siRNA would be displayed in the surface of the 

siRNA/MCD nanoparticle, resulting in the formation of negatively charged nanoparticles, even at high 
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N/P ratios. When MCDs containing a tetradecyl group (-C14H29) L-chain were used (C-1), aggregation 

was observed at high N/P ratios (Figure 1A, gray circles). In this situation, both the cationic group of 

MCD and the anionic region in siRNA may not be positions to permit them to be displayed in the 

surface of nanoparticles, resulting that the overall charge on the particle becoming neutral. We 

considered that the hydrophobic property of the nanoparticles promoted the assembly of nanoparticles 

via hydrophobic interactions to induce aggregation. 

Figure 1. Relationship between the N/P ratio and diameter or zeta-potential of 

siRNA/MCD nanoparticles prepared using various MCDs. In this experiment, siRNA 

targeting GFP was used for preparing the nanoparticles. (A): the diameters (a) and  

zeta-potentials (b) of siRNA/MCD nanoparticles formed using Type-C in a series of N/P 

ratios: gray circles, C-1; closed circles, C-2; (B): the diameters (a) and zeta-potentials (b) 

of siRNA/MCD nanoparticles formed using Type-D at a series of N/P ratios: open 

triangles, D-1; closed triangles, D-2; (C): the diameters (a) and zeta-potentials (b) of 

siRNA/MCD nanoparticles formed using Type-E in a series of N/P ratios: open squares,  

E-1; gray squares, E-2; closed squares, E-3. Data are the means (n = 1–3).  

 

This trend also was observed when siRNA/MCD nanoparticles were prepared using MCDs 

containing an aromatic group (Type E MCDs), although MCDs that have L-chain lengths of 14 carbons 

(E2) resulted in the formation of positively charged nanoparticles at high N/P ratios (Figure 1C, gray 

squares). We considered that Type-E MCDs, which have an L-chain and an aromatic group, may form 

siRNA/MCD nanoparticles more effectively than Type-C and -D MCDs, due to the greater 

hydrophobicity of Type-E MCDs. A similar tendency was also observed when pDNA was used [20]. 
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In the case of MCDs containing a dodecyl group L-chain (E-1), aggregation was observed at high N/P 

ratios, although negatively charged nanoparticles were formed at low N/P ratios. Collectively, the use 

of an MCD molecule with a long L-chain resulted in the formation of positively charged nanoparticle 

at high N/P ratios. In contrast, negatively charged nanoparticles were formed at low N/P ratios when 

an MCD with a short L-chain was used. These results suggest that the length of the L-chain,  

which largely contributes to the hydrophobicity of MCD, plays an important role in siRNA/MCD 

nanoparticles formation. 

2.2. Comparison of Gene Silencing Efficiencies and Cell Viabilities Between siRNA/MCD 

Nanoparticles and LFN 2000 

To determine whether siRNA/MCD nanoparticles exhibit significant gene silencing, the cytosolic 

delivery of siRNA/MCD nanoparticles was examined using the R8-MEND system and the gene 

silencing efficiency was evaluated using HeLa cells expressing the Luciferase protein. In this 

experiment, we prepared the R8-D-MEND containing an siRNA nanoparticle complexed with the E-3 

MCD, which showed high transfection activity as a DNA condenser [20]. Gene silencing efficiencies 

after 12, 24, 48 and 72 h of transfection are shown in Figure 2A. In the case of the R8-D-MEND (E-3), 

the gene silencing efficiency was around 40% at 12 h after transfection and approached 80% at 24 h 

after transfection. The gene silencing of luciferase gene expression was maintained up to 48 h after 

transfection (Figure 2A, closed circles). We also found that the R8-D-MEND (E-3) showed a 

significantly higher gene silencing efficiency than Lipofectamine 2000 at 24–72 h after transfection 

(Figure 2A). We also investigated the cell viability based on protein content. As a result, no significant 

differences of cell viabilities between R8-D-MEND (E-3) and LFN2000 were observed (Figure 2B). 

We concluded that the R8-D-MEND (MCD) showed a higher gene silencing efficiency than 

Lipofectamine 2000, and the transfection could be safely performed. 

2.3. Investigation of siRNA Nanoparticle Formed with Various Type of MCD on Gene  

Silencing Efficiencies 

We investigated the gene silencing efficiency of siRNA nanoparticles formed with various type of 

MCDs, using the R8-D-MEND (MCD). In this experiment, we prepared an R8-D-MEND containing 

siRNA nanoparticles complexed with various MCDs. Since the cellular uptake of the carriers depends 

on the R8 modified to the envelope of the carrier, as previously reported [22], it was predicted that all 

of the formulations would be internalized to the same extent. We previously determined the lipid 

composition, which included PA (DOPE/PA/STR-R8 (7:2:1, molar ratio)) required for achieving an 

optimal endosome-fusogenic composition [26,27]. The lipid composition of the envelopes took this 

into consideration. We measured the sizes and zeta potential of the R8-D-MEND (MCD) for a range of 

N/P ratios (data not shown). We chose specific N/P ratio of each MCD to form R8-D-MEND (MCD) 

without aggregation. The characteristics of the siRNA/MCD nanoparticles and the R8-D-MEND 

(MCD) are summarized in Table 2. Figure 3 provides information on the gene silencing efficiency of 

various R8-D-MEND (MCD) at 12 h after transfection when 0.1 μg and 0.04 μg of siRNA was 

transfected to HeLa cells expressing Luciferase protein. In each MCD group, the increase in the gene 

silencing efficiency was proportional to the decrease in the length of the L-chain in the MCD. The 
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results suggest that the release of siRNA from siRNA nanoparticles complexed with MCD containing 

a long L-chain may not be effective, because the MCDs may form tight siRNA/MCD nanoparticles, 

depending on the extent of increase in the length of L-chains. It was not possible to confirm this 

hypothesis, because it was not possible to precisely determine the release efficiency of siRNA from 

each siRNA/MCD. This issue is a subject for being investigated in the future. We also found that 

siRNA/MCD nanoparticles with negative charge showed a higher gene silencing than siRNA/MCD 

nanoparticles with a positive charge. The results suggest that siRNA/MCD nanoparticles with a 

positive charge may interact siRNA released from a siRNA/MCD nanoparticle in the cytosol to inhibit 

gene silencing.  

Figure 2. Evaluation of the gene silencing efficiency and cell viability. Gene silencing 

efficiencies and cell viability were evaluated, when 0.1 μg of siRNA was transfected into 

HeLa cells stably expressing luciferase. (A) Gene silencing efficiencies of R8-D-MEND (E3) 

(closed circles) and Lipofectamine 2000 (open circles) were evaluated at 12, 24, 48 and 72 h 

after transfection. Significant differences between the R8-D-MEND (E3) and Lipofectamine 

2000 were determined by two-tail unpaired student’s t-test (** p < 0.01 * p < 0.05). Data 

are means ± S.D. (n = 3–4). (B), Cell viabilities of R8-D-MEND (E3) (closed bar) and 

Lipofectamine 2000 (open bar) were evaluated at 48 h after transfection. No significant 

differences between the R8-D-MEND (E3) and Lipofectamine 2000 were found when the 

two-tail unpaired student’s t-test was applied. Data are the means ± S.D. (n = 3–4).  

 

Table 2. Characteristics of nanoparticles of siRNA targeting Luciferase formed using 

various MCDs Data are represented by the mean ± S.D. (n = 3–6).  

MCD  

(N/P ratio) 

siRNA/MCD nanoparticle R8-D-MEND 

Size 

(nm) 

Zeta potential 

(mV) 
PDI 

Size 

(nm) 

Zeta potential 

(mV) 
PDI 

C-1 (1.0) 130 ± 65 −15.5 ± 19.3 0.48 ± 0.08 111 ± 9 32.4 ± 3.6 0.22 ± 0.04 

C-2 (5.0) 131 ± 60 13.1 ± 5.6 0.35 ± 0.11 110 ± 3 43.3 ± 3.1 0.24 ± 0.06 

D-1 (5.0) 51 ± 18 −13.1 ± 7.7 0.32 ± 0.15 92 ± 13 30.3 ± 13.4 0.20 ± 0.03 

D-2 (5.0) 85 ± 27 10.2 ± 3.9 0.25 ± 0.02 123 ± 10 45.0 ± 3.6 0.18 ± 0.03 

E-1 (2.5) 85 ± 26 −34.6 ± 11.4 0.28 ± 0.08 105 ± 9 30.9 ± 6.4 0.20 ± 0.05 

E-2 (7.5) 60 ± 8 4.9 ± 3.4 0.24 ± 0.03 109 ± 11 43.7 ± 0.8 0.20 ± 0.03 

E-3 (5.0) 67 ± 7 32.6 ± 2.5 0.33 ± 0.06 113 ± 7 51.0 ± 2.5 0.26 ± 0.02 
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Figure 3. Investigation of the relationship between the hydrophobicity of the MCD and the 

gene silencing efficiency of the R8-D-MEND (MCD). The gene silencing efficiencies at  

12 h after transfection were evaluated as described in Materials and Methods. Closed bars, 

0.1 μg of siRNA; open bars, 0.04 μg of siRNA. Data are means ± S.D. (n = 3).  

 

We also investigated cell viability based on protein content, when siRNA targeting Luciferase and 

siRNA targeting GFP were transfected into HeLa cells using R8-D-MEND, respectively (Figure S1). 

As a result, no significant differences in cell viability were found between siRNA targeting Luciferase 

and siRNA targeting GFP in each MCD. The results suggest that the R8-D-MEND (MCD) would rule 

out toxicity as a factor in the decrease in luciferase expression. 

3. Experimental  

3.1. Materials 

The anti-Luciferase siRNA (21mer, Antisense sequence: 5'-GGGUUG GCACCAGCAGCGCTT-3', 

Sense sequence: 5'-GCGCUGCUGGUGCCAACCCTT-3'), anti-green fluorescent protein (GFP) siRNA 

(21mer, Antisense sequence: 5'-GAUGAACUUCAGGGUCAGCTT-3', Sense sequence: 5'-GCUGAC 

CCUGAAGUUCAUCTT-3') were purchased from Hokkaido System Science Co., Ltd (Hokkaido, 

Japan). Diethylpyrocarbonate (DEPC)-treated water was purchased from Nacalai Tesque, Inc (Kyoto, 

Japan). Trimethyltetradecylammonium bromide (C-1), cetyltrimethylammonium bromide (C-2), 

dodecylethyldimethylammonium bromide (D-1), ethylhexadecyldimethylammonium bromide (D-2), 

benzyldodecyldimethylammonium bromide (E-1), benzyldimethyltetradecylammonium chloride (E-2) 

and benzyldimethylhexadecylammonium chloride (E-3) were purchased from Sigma-Aldrich (St. Louis, 

CA, USA), as purified form. 1, 2-Dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) was purchased 

from AVANTI Polar Lipids Inc. (Alabaster, AL, USA). Phosphatidic acid (PA) was purchased from 

Sigma-Aldrich. Stearyl octaarginine (STR-R8) was purchased from Kurabo Industries Ltd. (Osaka, 

Japan). Dulbecco’s modified Eagle medium (DMEM), Opti-MEM, and Lipofectamine 2000 Reagent 

(LFN2000) were purchased from Invitrogen Corp. (Carlsbad, CA, USA). Fetal bovine serum was 

purchased from HyClone (South Logan, UT, USA). G418 disulfate was purchased from Nacalai 

Tesque, Inc. All other chemicals used were commercially available reagent-grade products. 

3.2. Preparation of siRNA/MCD Nanoparticle 

1 M MCD stock solutions were prepared by dissolving various MCDs in EtOH. The MCD stock 

solutions were diluted to the optimal concentration with DEPC-treated water before use. siRNA 
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dissolved in DEPC-treated water (0.1 mg/mL) was mixed with an equal volume of MCD solution to 

form siRNA/MCD nanoparticles by vortexing at room temperature. siRNA/MCD nanoparticles were 

formed using various MCDs in a series of nitrogen/phosphate (N/P) ratios. 

3.3. Measurement of Size and Zeta-Potential of Carriers 

Particle sizes of siRNA/MCD nanoparticle (0.05 mg/mL siRNA concentration) and R8-D-MEND 

(0.55 mM lipid concentration) were measured using a quasi-elastic light scattering method. The  

zeta-potentials of siRNA/MCD nanoparticle (0.01 mg/mL siRNA concentration) and R8-D-MEND 

(0.1 mM lipid concentration) were determined electrophoretically by means of an electrophoretic light 

scattering spectrophotometer (Zetasizer Nano ZS; Malvern Instruments, Malvern, Worcestershire, UK). 

The samples were evaluated at 25 °C. 

3.4. Construction of R8-D-MEND Containing siRNA/MCD Nanoparticle 

A lipid film was prepared by the evaporation of a chloroform solution of 1.1 µmol lipid  

(DOPE/PA = 7:2 (molar ratio)) on the bottom of a glass tube, followed by hydration with 2 mL of 

DEPC-treated water for 15 min at room temperature. The glass tube was sonicated in a bath-type 

sonicator (AU-25C; Aiwa Co., Tokyo, Japan), followed by sonication for 10 min in ice-cold water 

with a probe-type sonicator (Digital Sonifier 250; Branson Ultrasonics Co., Danbury, CT, USA) to 

produce small unilamellar vesicle (SUV). To prepare octaarginine-modified SUV (R8-SUV), a 

solution of STR-R8 (10 mol% of total lipids) was added to an SUV suspension and the resulting 

suspension was then incubated for 30 min at room temperature. The physicochemical properties of the 

materials are summarize in Table S2. siRNA/MCD nanoparticles (final siRNA concentration, 0.05 mg/mL) 

were prepared at optimized N/P ratio of 1.0 (C-1), 5.0 (C-2), 5.0 (D-1), 5.0 (D-2), 2.5 (E-1), 7.5 (E-2), 

5.0 (E-3), respectively. In the case of positively charged siRNA nanoparticles complexed with  

C-2, D-2 and E-3 MCDs, the R8-D-MEND was constructed by mixing siRNA/MCD nanoparticles 

with twice the volume of negatively charged SUV suspension, followed by incubation with STR-R8 

(10 mol% of total lipids) for 30 min at room temperature. When the other MCDs were used to prepare 

siRNA/MCD nanoparticle, R8-SUV was used to prepare R8-D-MEND. 

3.5. Evaluation of Gene Silencing Efficiency and Cell Viability 

HeLa cells stably expressing luciferase (HeLa-Luc) (4.0 × 10
4
 cells) [1] were incubated in DMEM 

containing 400 µg/mL G418 and 10% fetal bovine serum under 5% CO2/air at 37 °C for 24 h.  

R8-D-MEND (MCD) containing 0.04, or 0.1 µg of siRNA-suspended in 0.25 mL of serum-free 

DMEM were added to the cells, followed by incubation under an atmosphere of 5% CO2/air at 37 °C 

for 3 h. LFN2000, as a control, was used according to the manufacturer’s protocol. siRNA/LFN2000 

complex-suspended in 0.25 mL of serum-free Opti-MEM were added to the cells, followed by 

incubation under an atmosphere of 5% CO2/air at 37 °C for 3 h. After washing the cells with 

phosphate-buffer saline (PBS, 137 mM NaCl, 2.68 mM KCl, 8.05 mM, Na2HPO4, 1.47 mM KH2PO4, 

pH 7.4), 1 mL of fresh DMEM containing 10% serum was added to the cells, followed by incubation 

for 9, 21, 45, or 69 h. The cells were then washed, and luciferase activity was measured using a 
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Luciferase Assay System with a Reporter Lysis Buffer kit (Promega; Madison, WI, USA) by means of 

a luminometer (Luminescencer-PSN; ATTO, Japan). Cellular protein content was determined using a 

BCA protein assay kit (PIERCE; Rockford, IL, USA) and microplate reader (Benchmark Plus; Bio-Rad 

laboratories, Inc, Hercules, CA, USA).  

Gene silencing efficiency was calculated as follows: 

Gene silencing efficiency (%) = (1 − LLuc/LGFP) × 100 

where LLuc, LGFP represent the luciferase activity when samples which containing anti-Luc and anti-GFP 

siRNAs were transfected, respectively.  

Cell viability was calculated as follows: 

Cell viability (%) = CS/CN × 100 

where CS, CN represent the cellular protein concentration when cells were treated with samples 

containing of siRNA and with naked siRNA, respectively. 

3.6. Statistical Analysis 

The diameter, zeta-potentials and polydispersity index (PDI) of siRNA/MCD nanoparticles formed 

using various MCDs at a series of N/P ratios were measured from one to three times respectively. Each 

value shown in Figure 1 and Table S1 is represented by the mean (n = 1−3). Gene silencing efficiency 

and cell viability compared between R8-D-MEND (E3) and LFN2000 were evaluated three to four 

times. Each value shown in Figure 2 is represented by the mean ± S.D. (n = 3−4). Statistical 

significances between the R8-D-MEND (E3) and Lipofectamine 2000 were examined by the by two-tail 

unpaired student’s t-test. Levels of p < 0.05 were considered to be significant. The construction of each 

R8-D-MEND were repeated three to six times respectively. Each value shown in Table 2 is represented 

by the mean ± S.D. (n = 3−6). Gene silencing efficiencies of each R8-D-MEND were investigated 

three times respectively. Each value shown in Figure 3 is represented by the mean ± S.D. (n = 3). 

4. Conclusions  

The formation of siRNA nanoparticles using various MCDs was investigated, and the findings 

indicate that an MCD with a long L-chain formed positively charged nanoparticles. It is presumed that 

the long L-chain of MCD binds to the hydrophobic region of siRNA to support the formation of 

siRNA/MCD nanoparticles, in which several cationic groups of MCD would be displayed on the 

surface of the nanoparticles. In contrast, negatively charged nanoparticles were formed when MCD 

with a short L-chain was used. In this case, the cationic group of the MCD would largely contribute to 

siRNA/MCD nanoparticle formation, resulting in the siRNA displayed on the surface of the 

nanoparticle. We also confirmed that the siRNA/MCD nanoparticles showed a higher gene silencing 

efficiency than Lipofectamine 2000. Moreover, the increase in the gene silencing efficiency was 

proportional to the decrease in the length of L-chain in MCD. We also found that siRNA/MCD 

nanoparticles with a negative charge showed a higher gene silencing than siRNA/MCD nanoparticles 

with a positive charge. Such information provides an alternate viewpoint for design of siRNA vectors. 
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Supplementary Materials  

Figure S1. Cell viabilities of R8-D-MEND and Lipofectamine 2000 were evaluated at 24 h 

after transfection, using siRNA targeting Luciferase (closed bar) and siRNA targeting GFP 

(open bar). No Significant differences between the siRNA targeting Luciferase and siRNA 

targeting GFP were determined by the two-tail unpaired student’s t-test. Data are 

represented the means ± S.D. (n = 3–4). 

 

Table S1. Characteristics of nanoparticles of siRNA targeting GFP prepared using various 

MCDs at a range of N/P ratios.  

Nanoparticles prepared using C-1 Nanoparticles prepared using C-2 

N/P ratio Size (nm) Zeta potential (mV) PDI N/P ratio Size (nm) Zeta potential (mV) PDI 

0.25 94  −37.9  0.72  0.25 162  −42.9  0.63 

0.5 124  −29.8  0.55  0.5 2520  −19.9  0.37 

1.0 66  −28.8  0.33  2.5 616  1.6  0.60 

1.5 90  −37.5  0.36  3.75 584  10.7  0.57 

2.0 90  −28.6  0.26  5.0 151  18.7  0.43 

2.5 1480  −28.1  0.58  6.25 108  19.9  0.27 

5.0 1650  −9.3  0.39  7.5 58  27.7  0.37 

10 1360  0.8  0.56  8.75 84  29.3  0.42 

    10 57  31.7  0.36 

Nanoparticles prepared using D-1 Nanoparticles prepared using D-2 

N/P ratio Size (nm) Zeta potential (mV) PDI N/P ratio Size (nm) Zeta potential (mV) PDI 

0.25 244  −5.6  0.67  0.25 156  −47.8  0.44 

0.5 302  −19.9  0.35  0.5 2560  −18.6  0.70 

2.5 162  −18.5  0.34  2.5 888  4.5  0.62 

3.75 113  −34.4  0.34  3.75 69  18.3  0.24 

5.0 123  −37.0  0.22  5.0 95  18.7  0.32 
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Table S1. Cont. 

N/P ratio Size (nm) Zeta potential (mV) PDI N/P ratio Size (nm) Zeta potential (mV) PDI 

6.25 69  −35.0  0.30  6.25 82  21.0  0.34 

7.5 55  −31.9  0.21  7.5 65  30.4  0.36 

8.75 99  −33.5  0.24  8.75 50  30.0  0.34 

10 102  −35.0  0.25  10 53  31.3  0.36 

Nanoparticles prepared using E-1 Nanoparticles prepared using E-2 

N/P ratio Size (nm) Zeta potential (mV) PDI N/P ratio Size (nm) Zeta potential (mV) PDI 

0.25 713  −19.9  0.85  0.25 133  −50.2  0.410 

0.5 198  −20.0  0.49  0.5 129  −29.6  0.240 

1.25 324  −20.7  0.66  2.5 3140  −9.3  0.455 

2.5 74  −34.2  0.28  3.75 918  0.3  0.450 

3.75 159  −29.1  0.18  5.0 221  8.2  0.386 

5.0 165  −28.5  0.14  6.25 132  12.9  0.220 

7.5 2030  −20.5  0.70  7.5 53  16.5  0.260 

10 2160  −18.8  0.60  8.75 54  16.9  0.280 

    10 63  20.5  0.313 

Nanoparticles prepared using E-3 

N/P ratio Size (nm) Zeta potential (mV) PDI   

2.5 54  25.2  0.27    

3.75 63  40.1  0.25    

5.0 53  39.7  0.36    

7.5 45  44.4  0.32    

10 57  42.8  0.42    

Data are represented by the mean (n = 1–3). 

Table S2. Characteristics of SUV and R8-SUV. 

 Size (nm) Zata potential (mV) 

SUV 74 ± 10 −66.8 ± 8.9 

R8-SUV 86 ± 14 29.9 ± 11.3 

Data are represented by the mean ± S.D. (n = 6).  
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