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Abstract: It is widely accepted by the scientific community that cancer, including colon 

cancer, is a “stem cell disease”. Until a few years ago, common opinion was that all 

neoplastic cells within a tumor contained tumorigenic growth capacity, but recent 

evidences hint to the possibility that such a feature is confined to a small subset of cancer-

initiating cells, also called cancer stem cells (CSCs). Thus, malignant tumors are organized 

in a hierarchical fashion in which CSCs give rise to more differentiated tumor cells. CSCs 

possess high levels of ATP-binding cassette (ABC) transporters and anti-apoptotic 

molecules, active DNA-repair, slow replication capacities and they produce growth factors 

that confer refractoriness to antineoplastic treatments. The inefficacy of conventional 

therapies towards the stem cell population might explain cancer chemoresistance and the 

high frequency of relapse shown by the majority of tumors. Nowadays, in fact all the 

therapies available are not sufficient to cure patients with advanced forms of colon cancer 

since they target differentiated cancer cells which constitute most of the tumor mass and 

spare CSCs. Since CSCs are the entities responsible for the development of the tumor and 

represent the only cell population able to sustain tumor growth and progression, these cells 

represent the elective target for innovative therapies. 
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1. Introduction 

Colorectal cancer (CRC) is characterized by progressive mutations in oncogenes, or tumor 

suppressor genes: scientific evidences show that at least 4–5 mutations are necessary for a malignant 

tumor formation [1]. Some of these mutations seem to elapse often within the same sequences, and 

they are then shared by most individuals with this tumor, while others are different and therefore 

determine the final phenotype of cancer [2]. 

Most of the information on the mutations that cause CRC derived from studies on hereditary forms 

of cancer, making up 5% to 10% of all colon cancer cases. Familial adenomatous polyposis (FAP) is 

an autosomal dominant CRC syndrome caused by a mutation in the APC (adenomatous polyposis coli) 

gene which characterizes multiple CRC [3]. 

APC is at the base of the signaling pathway called wingless/wnt. The main function of APC is to 

modulate the cytoplasmic β-catenin levels, a protein that can migrate into the nucleus and activate 

transcription of protein complexes called TNA (transcription of cMyc and cyclin D1), responsible for 

the regulation of proliferation, differentiation, migration and apoptosis [4]. For subsequent progression, 

cancers need more mutations, including KRAS and TP53 and deletion on chromosome 18q [5]. 

According to the old paradigm of carcinogenesis, tumor cell population is heterogeneous and all 

neoplastic cells within a tumor have an equal capacity to proliferate and thereby to sustain tumor 

growth. Different from this notion, current evidences suggest that cancer growth is dictated by a small 

population called cancer stem cells. These cells have a self-renewal property and generate a progeny of 

non-tumorigenic cells. The latter gives rise to the non-tumorigenic differentiated population which 

represents the majority within tumor mass. Cancer stem cells can derive from either normal stem cells 

or progenitor cells as a consequence of genetic and/or epigenetic alterations [6]. Cancer stem cells 

commonly survive conventional treatment; even if therapy results in an apparent complete regression 

of primary tumor, remaining CSCs are able to induce the minimal residual disease (MRD). Therefore 

understanding the mechanism that maintains the immature state becomes crucial in order to develop 

new anti-tumor approaches. 

2. Colonic Crypt Organization 

The colon wall is composed of several layers: mucosa, submucosa, muscularis and serosa. 

The mucosa consists mainly of two cell types: epithelial cells, with cylindrical shape, whose 

function is to reabsorb water and salts, and goblet mucipare cells, whose function is to secrete a slimy 

substance in the lumen, in order to lubricate the same and facilitate stool passage. The epithelial cells 

show on their outer surface, toward the lumen, a series of invaginations, called crypts of Lieberkuhn, 

which are designed to increase the absorbent surface. The submucosa lies immediately under the 

mucosa and is very rich in vascular structures, lymph and nerve fibers, that regulate peristalsis 

(intestinal propulsive movements that promote the progression of the stool toward the rectum). The 

muscolaris consists of two layers of muscle: an inner, cross-trending, and an outer longitudinal 
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trending. They give the bowel a characteristic saccular appearance. The serosa, also called the 

peritoneum, constitutes an outer coating, covering the entire colon and also all other abdominal organs 

and viscera [6]. 

The epithelial layer presents about 14,000 crypts/square centimeter in the adult human colon, each 

of these crypts contains 2,000 to 3,000 cells, and the colonic stem cells are located at the base, 

surrounded by mesenchymal cells to form the stem niche [5-11]. Each crypt in the intestine is mainly 

composed of three different cell types: the colonocytes or columnar cells, the mucin-secreting goblet 

cells and the endocrine cells. All these cells are generated starting from a colonic stem cell that, via 

asymmetric division, can generate a cell identical to itself (self-renewal capacity), and a transit cell that 

can proliferate and differentiate by migrating up to the top of the crypt. This “unitarian theory” (one 

single cell can generate all the cell types) was first formulated in 1974 [12] and later experimentally 

demonstrated [13,14]. These stem cells are responsible for the perpetual turn-over of the colonic 

epithelial cells during the whole lifetime of an individual. There is a continuous supply of these cells, 

every 2–7 days under normal conditions, and an increased turnover of them in tissue damage conditions. 

The complexity of the crypt structure was an obstacle in understanding the key mechanisms that 

lead to the formation of the crypt from a single stem cell. The first studies to identify the colonic stem 

cell population were based on Chang et al. studies by using 
3
H-thymidine injection [15], and recently 

confirmed by bromodeoxyuridine DNA-labeling dye [16] for slow-cycling stem cells localization. 

There are two models regarding the positioning of the stem cells: the “stem cell zone” model, and 

the “+4 position” model. The “stem cell zone” model describes the colon stem cells, the crypt base 

columnar cells (CBC), at the very bottom of the crypts. On the contrary, the “+4 position” model, 

related to the intestinal crypt, claims that the intestinal stem cells are located at the +4 position above 

the Paneth cells at the base of the crypt [17]. Actually the absence of specific colonic stem cell markers 

makes their identification and positioning rather difficult. 

Adult stem cells are defined by two fundamental properties: self-renewal and differentiation 

capacity to generate all the cyto-types of that tissue. An important aspect in studying stem cells is the 

mechanism of cell division: stem cells seem to divide more slowly than the progenitor cells and 

differentiated cells [18]. Stem cells may undergo asymmetric division, thus generating two different 

cells, one stem cell identical to the mother cell, and a specialized one; but they can also make 

symmetrical division, generating two identical stem cells. The asymmetric division is slower and 

ensures the persistence of a pool of adult stem cells, and through cell differentiation, the continuous 

regeneration of organs and tissues [19]. According to the cell type division, it is possible to obtain a 

“lineage expansion” if stem cells are generated, or “lineage extinction” if differentiated cells are 

propagated [20]. The idea is widely accepted that the stem cells are responsible for giving rise to 

cancer, just because their slow cycles of division and longevity of life allow them to accumulate 

different mutations over time that could lead to so-called cancer stem cells [18]. 

3. Intestinal Niche 

The intestinal niche is defined as the environment responsible for stem cells maintenance that is 

controlled by fine signals that ensure stem cells proliferation. The most determining effect seems to be 

due to the population of intestinal sub-epithelial myofibroblasts (ISEMFs), whose role is to regulate 
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the organogenesis and tissue repair, and whose growth appears to be regulated by several growth 

factors [21,22]. Recent findings show that maintenance of stem niche is controlled by Wnt, Bone 

Morphogenetic Protein (BMP), Notch and Sonic hedgehog (Shh) pathways (Figure 1). 

Figure 1. Graphic representation of a colon crypt. 

 
This image shows the distribution of different cell types along the colon crypt unit. At the base of 

the crypt the mesenchymal cells (ISEMFs) are represented and the factors responsible for the stem 

cell niche maintenance. The progressive cellular differentiation toward the villus apex is also 

shown, where many factors that inhibit Wnt activity are over-expressed. 

 

In this signal network, the Wnt pathway definitely has a key role: the central role is played by  

β-catenin, that, in the absence of Wnt ligands, binds the APC protein, the glycogen synthase kinase 3β 

(GSK3β) and axin, to be then phosphorylated, ubiquitinated and finally degraded by the proteasome 

machinery [23]. Instead, Wnt activation requires the binding of Wnt family proteins to their receptors 

of the Frizzled family (Fz) that subsequently promotes β-catenin accumulation into the nucleus, which 

binds TCF4, activating the transcription of several genes involved in cell cycle regulation and 

proliferation [24]. β-catenin also induces the expression of Ephrin receptors EphB1 and EphB2, which 

regulate stemness maintenance, cell migration and differentiation [25]: these receptors, following 

interaction with ephrin ligands, extend the cell proliferation domain in areas higher up the crypts [26]. 
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Interestingly, Wnt pathway members are differently distributed along the axis of the crypt i.e. the 

mRNA for secreted Fz-related protein (sFRP)-5, Wnt-3, Wnt-6, Wnt-9b and Fz-5 were found at the 

base of the crypts, with decreasing concentration towards the apex of the crypts where more 

differentiated cells reside. Moreover the cells at the top of the crypt seem to express Wnt inhibitor 

factors [27]. 

Recently, Vermeulen et al. [29] have demonstrated the important effect of myofibroblasts and the 

factors secreted by them, such as the hepatocyte growth factor (HGF) in maintaining the stem cell 

niche of the intestinal crypts. Differentiated cells are able to revert to their phenotype, reverting to stem 

cells (tumorigenic) in response to the addition of myofibroblasts or HGF.  

In addition to Wnt, BMP, Notch and Shh pathways play crucial roles in niche homeostasis. BMP 

proteins are a subset of the TGF-β super-family members that, after linking their receptors, trigger 

different biological processes [28]. This pathway leads to the phosphorilation of Smad1, Smad5, 

Smad8/R-Smad [30], that together with Smad4 (co-Smad), move to the nucleus, and in cooperation 

with other transcription factors, can regulate the target genes expression [31]. It was recently 

demonstrated that BMP promotes terminal differentiation and apoptosis, increasing the conventional 

therapeutic activity in tumors that do not show concomitant mutation of SMAD4 and constitutive 

activation of PI3K [32]. 

Moreover, Kosinski et al. [33] demonstrated that there is a precise distribution of the different 

factors along the crypt: at the apex of the crypt the cells express high levels of BMP1, BMP2, BMP5, 

SMAD7, BMP7, and BMP receptor 2, while cells at the base of the crypt, probably due to the presence 

of myofibroblasts, produce high levels of BMP antagonists as GREM1, GREM2 and chordin-like-1, 

which contribute to the maintenance of stemness. 

Notch pathway is one of the most studied cell signaling systems that includes four different type I 

trans-membrane receptor: Notch1, Notch2, Notch3 and Notch4. Its activation involves the binding of 

five different ligands including Jagged-1 (JAG1), -2 (JAG2), Delta-like (DLL) 1, 2 (DLL2) and 4 

(DLL4): the extracellular binding of these ligands triggers the release of the intracellular domain 

(NICD) through proteolytic cleavage mediated by some metallo-proteases, such as ADAM10 or 

ADAM17. The NICD moves to the nucleus where it forms a complex with some DNA-binding 

proteins, converting them from inhibitors to activators of all the target genes transcription [34]. 

Finally, Sonic hedgehog (Shh) plays an important role during gut organogenesis. The activation 

requires Shh binding to its receptor, Patched (PTCH), which allows the release of the G-coupled 

protein Smoothened (SMO) that, together with the GLI transcription factors, migrates into the nucleus 

inducing target genes activation [35]. 

4. Cancer Stem Cell Theory 

The idea that cancer is composed of a morphologically heterogeneous population of cells, differing 

in markers expression, proliferation capacity and tumorigenicity, has been described more than a 

century ago [2,36-38]. It is widely recognized that this heterogeneity is caused by genetic/epigenetic 

hits and micro-environmental differences that determine several degrees of cell differentiation [39]. 

In recent years, novel insights in cancer research have suggested that the capacity to initiate and 
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sustain tumor growing is a unique characteristic of a small subset of cancer cells with stemness 

properties within the tumor mass, called “cancer stem cells” (CSCs) or “tumor-initiating cells” [40].  

This discovery has profoundly changed the way to look at cancer, which has previously only been 

seen as a genetic disease [41]. There are two different models of cancer that could explain the 

development of tumor: the first one, the “classic model” of tumorigenesis, postulated by Vogelstain 

and Nowell [2,36], describes the tumor development through sequential mutations in oncogenes and 

tumor suppressor genes. According to this theory, tumors consist of a heterogeneous cell population 

that, acquiring new mutations, undergoes uncontrolled proliferation and invasivity. This stochastic 

model considers all cancer cells able to reform a tumor, after implantation in  

immuno-compromised mice [42]. Contrarily the second theory, the “cancer stem cells” model, is based 

on evidence that only a small subset of cells, the CSCs, within the tumor population, can initiate and 

sustain tumor growth [43]. 

Emerging evidences suggest that CSCs, isolated from a variety of tumor types, retain tumorigenic 

capacity and are responsible for the propagation, relapse and metastatic dissemination. CSCs are 

defined by sharing stem cell-like features with the normal stem cells, such as self-renewal and 

pluripotent differentiation capacity. CSCs could derive from self-renewing of normal cells after 

genetic/epigenetic changes, or from progenitor cells that acquire self-renewal capacity. The link 

between cancer and normal stem cells has also been demonstrated on the basis of common signaling 

pathways that regulate self-renewal, including Wnt, Notch and Sonic Hedgehog (Shh): the 

deregulation of these pathways plays a key role in the tumorigenesis process [44]. Many studies have 

shown the importance of self renewal pathway activation for CSCs maintenance [45]. Jamieson and 

colleagues [46] first identified the aberrant Wnt/βcatenin self renewal pathway activation in leukemic 

stem cell propagation; Wnt pathway has been later considered important also in breast cancer stem 

cells (BCSCs). Korkaya et al. [47] showed that the increased activity of Wnt/β-catenin was mediated 

by activation of Akt signaling activation. Defects in Notch pathway, normally implicated in stem cell 

growth and differentiation, have been seen in the colon CSC (CCSC) subset. It was observed that 

using antibody anti DLL4, an important component of Notch pathway, the growth of human colon 

cancer xenograft was inhibited, directly inhibiting Notch signaling. Notch pathway is also activated in 

breast [48] and glioblastoma CSCs model. Finally, alterations in Hedgehog signaling pathway, have 

been reported in many tumors: leukemia [49,50], pancreatic, gastric, prostate, breast [51,52], 

glioblastoma [53] and colon cancer [54]. 

The discovery of CSCs has changed the view of carcinogenesis and therapeutic approaches over 

recent years. Tumors are considered to be able to evade death signals induced by therapeutic drugs 

through multiple mechanisms, even if the molecular bases concerning the failure of chemotherapy 

have not yet been defined. The CSCs are characterized by high resistance to drugs and general toxins, 

which target rapidly proliferating cells and spare the slow dividing cells, due to an up-regulation of 

several ATP-binding cassette transporters, active DNA-repair capacity, over-expression of anti-

apoptotic molecules that cause changes in the signaling pathways controlling proliferation, 

differentiation and apoptosis [55].  

The first CSCs were isolated from acute myeloid leukemia (AML) and then characterized by the 

presence of immature cells, the blasts, detected in blood and bone marrow by John Dick and 

colleagues [56,57]. They have indeed isolated a sub-population of CD34
+
 CD38

-
 leukemic stem cell 



Cancers 2011, 3                            

 

1963 

from patients with AML and they observed that just a small number of leukemic cells were able to 

form colonies growing in vitro. They have also found that there was a sort of hierarchy in leukemic 

cells and that only CD34
+
 CD38

-
 cells, if transplanted into immunodeficient mice, were able to 

reproduce the parental tumor phenotype [55]. Using similar approaches, many types of tumor stem 

cells have been identified from a variety of solid tumors. In particular Al Hajj et al. [58] showed that 

CD44
+
/CD24

-
 cell population was enriched in breast cancer stem cells (BCSCs). After the publications 

about leukemia and breast cancer, many reports showed how to isolate the CSCs in several 

malignancies including: brain [59], colon [60-62], head and neck [63], pancreas [64,65], melanoma [66], 

mesenchymal [67], hepatic [68], lung [69], prostate [70], and ovarian [71] tumors. 

Despite several scientific evidences about CSCs existence, there is still an alternative theory 

sustaining that this cell population would not behave as an entity, but as a phenotypic state, which was 

observed in stem cells of melanoma [72] as well as during epithelial-mesenchymal transition [73], 

where stem cells acquire stemness properties. 

5. Colon Stem Cell Markers 

Stem cells characterization is yet unclear even if several molecules have been identified as putative 

stemness markers because none are considered exclusive. There are indeed important debates about the 

value of each marker: scientific evidences have shown that it is possible to obtain a cell population 

enriched in colon stem cells through cell sorting, using different combinations of markers (Table 1) [62]. 

Table 1. Panel representing putative stemness markers. 

Putative marker Alternative name Roles  

CD34   Stemness maintenance 

Normal 

colon 

DCAMKL1  Kinase, resistance to apoptosis 

EphB receptors  Stemness maintenance, cell migration 

Msi-1   RNA-binding protein, asymmetric division 

Bmi-1   
Polycomb group repressor, self-renewal, 

senescence inhibitor 

Colorectal 

cancer 

CD24  HSA Cell adhesion molecule 

CD29 β1 Integrin Proliferation, matrix-cell interaction 

CD44  
Cell-cell interaction, hyaluronic acid receptor, 

cell migration 

CD133 Prominin1 Self-renewal, tumorigenesis 

CD166 ALCAM Cell adhesion molecule 

ESA EpCAM Cell adhesion molecule 

Lgr-5 Gpr49 G protein-coupled receptor, unclear function 

ALDH1  Detoxifying enzyme 

nuclear β-catenin   Cell cycle regulation, proliferation 

List of putative stem cell markers and their specific roles. 

Msi-1 is an RNA-binding protein, it was one of the first molecules studied as a colon stem cell 

marker and its role was mostly studied in Drosophila Melanogaster, where it seems to be essential in 

the mechanisms of asymmetric cell division that regulate neural development [74]. It is also 
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considered fundamental in the development of the nervous system of mammals [75]. Its location in 

murine and human small intestine, at the base of the crypts, makes it very important in the 

characterization of colon stem cells. 

Among all cell surface putative stemness markers, β1 integrin (CD29), reported as a marker of  

high-proliferation, was found at high expression levels at the base of the crypts, detecting both stem 

cells and progenitor cells [76]. According to these data, the EphB receptors expression consists 

in a gradient with the highest levels at the base of the crypts, and lower ones at the crypt-villus  

junction [77,78]. 

Bmi-1, a repressor of the Polycomb group, was found essential for self-renewal of hematopoietic 

stem cells and adult neural stem cells, through repression of genes involved in senescence, suggesting 

that stem cells developed specific mechanisms to extend their proliferative capacity. It is indeed 

expressed in the small intestine near to the crypt’s bottom, in line with the idea that this zone is the 

residence of colon stem cells [79]. Bmi-1 is over-expressed in patients and results in very poor 

survival [80]. 

DCAMKL-1 is proposed as a putative colon stem marker: it is a microtubule-associated kinase that 

can undergo auto-phosphorylation. DCAMKL-1
+
 cells are resistant to apoptosis after ionizing 

radiation injury. 

More recently Lgr5 protein (Gpr49), a G protein-coupled receptor, whose gene is a Wnt regulation 

target, has been recently studied as an elective colorectal stem marker, even if its function remains 

unclear. It was demonstrated, in agreement with the multi-lineage capacity, that a single Lgr5
+
 cell is 

able to generate a whole crypt-like structure in vitro, generating any cell type present in the colonic 

epithelium [81]. Recently some reports showed Lgr5 over-expression in advanced CRCs and its 

correlation with cancer progression [82]. 

The first direct evidence supporting the CSC hypothesis came from the recent finding of  

self-renewal and tumor-initiating cells with a common and distinct surface-expressed polypeptide, the 

CD133 pentaspan trans-membrane glycoprotein, also known as Prominin-1. This protein was first 

released as a marker for hematopoietic stem cells and progenitor cells and it was subsequently used to 

identify many tumors [83]: brain [59], prostate, hepatocellular and colon tumors [60,61,84,85]. 

The stemness value of CD133 has been much debated, in particular the tumorigenic potential of 

colon CD133
+
 cells and the ability of these cells to give rise to a tumor in NOD-SCID mice. Many 

research groups showed that only the CD133
+ 

cells within a colon carcinoma are able to initiate and 

sustain tumor growth [77,78,89,90]. 

CD133
+
 cells are maintained in culture for a long time without losing their ability to reproduce the 

parental human phenotype: CCSCs, after enzymatic digestion, can be expanded as tumor spheroids 

in vitro with a serum-free medium complemented with epidermal growth factor (EGF) and basic 

fibroblast growth factor (bFGF), using low adhesion conditions (to induce differentiated cells death 

due to the anoikis) [86]. In differentiation conditions CD133
+ 

cells are able to generate particular 

structures similar to crypt; moreover, during in vitro or in vivo differentiation these cells gradually 

acquire typical colon epithelial markers, such as CK20, and at the same time decrease CD133 

expression. According to these findings much clinical data identify CD133 as an independent negative 

prognostic marker [87]; its expression in combination with nuclear β-catenin is very important to 

determine poor patient survival [88,89]. 
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Since the use of one single marker it is considered insufficient for the identification and isolation of 

CCSCs, many researchers usually perform a sorting using several different putative markers. 

Dalerba et al. [62] showed that CD133
+
 cells express the stem-like epithelial specific antigen 

(EpCAM), CD44 and CD166. In their study the injection of CD44
+
 and EpCAM

hi 
cells, into  

NOD-SCID mice, reproduced a tumor xenograft phenotypically similar to parental one. 

Supporting this thesis, Du’s group [90] has shown that CD44 could be considered as an important 

marker in CCSCs that give rise to spheres in vitro and to a xenograft similar to the original tumor 

in vivo. More recently, aldehyde dehydrogenase-1 (ALDH1), a detoxifying enzyme, has been proposed 

as a marker to identify, isolate and track, human CSCs during CRC development [91]. 

The possibility to isolate and to study CSCs represents a revolutionary approach in cancer research 

to better understand the pathogenesis of cancer, so these cells are an elective target for new therapies. 

6. Alternative and Synergistic Therapies 

Today most of the existing conventional therapies are insufficient to permanently eradicate the 

tumor or to treat patients with advanced forms of CRC. Almost all colon cancers begin as benign 

polyps that can slowly develop into malignant tumors. 

To timely remove precancerous polyps, before malignant transformation and subsequent 

metastasization (the liver is the most common site), would be appropriate especially for patients with 

familiarity. Preventive colonoscopy could lead to the the surgical removal of the cancer as soon as 

possible. 

Nowadays, for patients with metastatic CRC to the liver, there are two useful treatments available, 

FOLFOX (Folinic acid/Fluorouracil and Oxaliplatin) and FOLFIRI (FOLFOX plus vitamin B and 

irinotecan). Sometimes Cetuximab, a monoclonal antibody, is added to FOLFIRI [92]. FOLFOX and 

FOLFIRI have demonstrated good efficacy in Phase III trials and are actually employed more 

frequently in younger than in older patients with metastatic CRC [93]. Neoadjuvant chemotherapy has 

been combined with anti-angiogenic drugs in metastatic colon cancer patients, treated with 

Bevacizumab, a humanized monoclonal antibody that targets the vascular endothelial growth factor 

(VEGF) [94], which is an important angiogenic factor in primary and metastatic human CRC [95]. 

VEGF expression is observed early in the progression from premalignant adenoma to invasive and 

metastatic disease. Additionally, VEGF expression has been correlated with increased micro-vessel 

count in colon tumors, and both VEGF and micro-vessels count have been associated with poor 

outcomes, as measured by tumor size, metastasis and patient survival. Another neo-adjuvant drug for 

colorectal cancer is Cetuximab, also known as Erbitux, a monoclonal antibody that inhibits the 

epidermal growth factor receptor (EGFR), involved in cell differentiation and proliferation [92]. 

Cetuximab is indicated for the treatment of EGFR expressing patients, KRAS wild-type metastatic 

colorectal cancer, alone or in combination with FOLFIRI. Two large clinical studies of cetuximab, 

OPUS and CRYSTAL, have recently been published, and have provided further evidence that 

cetuximab significantly improves response rates and disease-free survival in metastatic CRC patients 

with KRAS wild-type tumors [92]. New targeted therapies under investigation are directed not only 

against downstream factors of the EGFR pathway, but also toward correlated pathways, to overcome 

growth factor–mediated resistance.  
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An alternative therapy could selectively target CSCs pathways such as IL-4, that is a cytokine 

produced in an autocrine way by CCSCs; it is known for its involvement in activated B-cell 

stimulation, T-cell proliferation and the differentiation of CD4
+
 T-cells into Th2 cells [96]. 

In CCSCs, the inhibition of IL-4 signaling transduction pathway with anti–IL-4 neutralizing 

antibody or IL-4 receptor α antagonist, leads to the sensibilization of these cells to chemotherapeutic 

agents through down-regulation of anti-apoptotic proteins, such as cFLIP, Bcl-xL, and PED. IL-4 

antibodies treatment, in combination with standard chemotherapeutic agents (5-fluorouracil or 

oxaliplatin) reduces tumor growth: this phenomenon is confirmed also in vivo where this treatment 

significantly reduces xenograft tumors growing [85]. Recent studies have demonstrated that the up-

regulation of IL-4 cytokine in CD133
+
 CCSCs stem cells is an important mechanism that protects 

these tumorigenic cells from apoptosis [97]. 

BMP4 is another important molecule because of its ability to activate a differentiation program and 

stimulate apoptosis in CCSCs, reducing β-catenin activation through inhibition of PI3K/AKT pathway 

and up-modulation of Wnt-negative regulators. Also in this case chemotherapeutic agents, such as 

oxaliplatin and 5-flourouracil, increase the anti-tumor activity of BMP4 since their concomitant 

administration induces complete long-term regression of colon CSC-derived xenograft tumors [32]. 

Cancer immunotherapy could be considered an important approach taking advantage of the 

forcefulness and specificity of the immune system.
 
Although cancer cells are less immunogenic than 

their normal counterpart, the
 
immune system is clearly able to recognize and eliminate

 
them. Thus, the 

challenge for immunotherapy
 
is to use advances in cellular and molecular immunology to develop

 

strategies that effectively and safely increase antitumor responses [98]. 

Most cancers are resistant to current therapies due to the slow-cycling CSCs and because of the 

location of these cells within hypoxic niches [99,100]. Clinical studies have demonstrated that, in 

terms of survival, the synergic use of chemotherapy and immunotherapy greatly benefited the health of 

the patient compared to chemotherapy alone [101]. Chemotherapeutic agents can also stimulate tumors 

to immune cell-mediated killing, increasing sensitivity of tumor cells to cytotoxicity through T cells 

across the up-regulation of death receptors Fas and TRAIL-R2 (DR5) ligands to FasL (CD95L) and 

TRAIL, respectively [102]. 

Most current immunotherapeutic approaches aim at inducing antitumor response sensitizing the 

adaptive immune system, depending on MHC-restricted αβ T cells. Anyway, in cancer cells, loss of 

MHC molecules is recurrently observed, making tumor cells resistant to αβ T cell-mediated 

cytotoxicity. γδ T cells show potent MHC-unrestricted lytic activity versus different tumor cells 

in vitro, suggesting their potential employment in anticancer therapy. Moreover, γδ T cells have been 

isolated and identified from tumor infiltrating lymphocytes in different cancer types, including prostate 

carcinoma [103]. Antigen recognition of γδ T-cell receptors is strictly selective and the responses 

frequently exhibit native characteristics. Furthermore peripheral γδ T cells exert several regulatory 

functions, rapidly producing cytokines, such as interferon (IFN)-γ and IL-17, and they also promote 

inflammation. Nevertheless, γδ T cells improve tumor clearance, directly through target cell lysis. The 

fruitful interaction of γδ T-cell and other immune cells may be critical for immune regulation and host 

defense [104]. Moreover, the incubation of the CCSCs with bisphosphonate zoledronate leads to a 

relevant γδ T-cell response against different tumor cells in vitro, even if this experiment represented 

the first report in employing γδ T cell to target CSCs [103]. 
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All the therapies mentioned above should be validated in order to avoid survival of CSCs 

responsible for tumor recurrences. 

7. Concluding Remarks 

CSCs might derive from normal stem cells or SC-like progenitor cells that acquire 

genetic/epigenetic hits necessary for tumorigenesis; they also retain important biological features in 

common with normal stem cells, such as self-renewal and pluripotent capacities. Many  

self-renewal pathways undergo deregulation during neoplastic development. Moreover, CSCs’ 

plurypotency properties support the idea that a tumor is an aberrantly developed organ, constituted by 

a heterogeneous cell population. 

The role of CSCs in CRC is gaining interest, since this hypothesis could explain carcinogenesis, 

helping to define innovative therapeutic strategies focused on the tumorigenic sub-population. The 

highly negative prognosis of CRC is due to the inefficacy of current treatments in definitively 

eradicating the tumor. Accordingly, tumor growth/progression arrest requires the targetted elimination 

of CSCs considered responsible for minimal residual disease in order to prevent recurrences and 

metastasization. 
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