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Abstract: Mastic oil from Pistacia lentiscus variation chia, a natural combination of 

bioactive terpenes, has been shown to exert anti-tumor growth effects against a broad 

spectrum of cancers including mouse Lewis lung adenocarcinomas (LLC). However, no 

studies have addressed its anti-metastatic actions. In this study, we showed that treatment 

of LLC cells with mastic oil within a range of non-toxic concentrations (0.01–0.04% v/v): 

(a) abrogated their Matrigel invasion and migration capabilities in transwell assays;  

(b) reduced the levels of secreted MMP-2; (c) restricted phorbol ester-induced actin 

remodeling and (d) limited the length of neo-vessel networks in tumor microenvironment 

in the model of chick embryo chorioallantoic membrane. Moreover, exposure of LLC and 

endothelial cells to mastic oil impaired their adhesive interactions in a co-culture assay and 

reduced the expression of key adhesion molecules by endothelial cells upon their 

stimulation with tumor necrosis factor-alpha. Overall, this study provides novel evidence 

supporting a multipotent role for mastic oil in prevention of crucial processes related to 

cancer metastasis.  
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adhesion; angiogenesis 
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1. Introduction  

Lung cancers are among the most mortal cancer types characterized by rapid metastasis and 

frequent resistance to current chemotherapy regimens and radiotherapy [1]. Therefore, novel agents 

preventing both cancer onset and metastatic spreading are urgently required for their treatment. 

Recently much attention has been focused on phytochemicals, i.e., bioactive compounds isolated from 

plants, due to their low toxicity and multiple chemopreventive/chemotherapeutic actions that have 

been attributed to the fine tuning of intracellular and intercellular signal transduction pathways 

regulating cell homeostasis [2,3]. Current data support that natural combinations of phytochemicals 

often possess enhanced reactivity compared to isolated substances due to their additive and/or 

synergistic interactions [4]. Mastic gum from Pistacia lentiscus var. chia and its essential oil, two 

natural products traditionally used for their food flavoring and medicinal properties, seem to be 

promising in this respect as they contain a wide spectrum of bioactive components, mainly terpenes [5-7] 

and have proved to be safe in humans and experimental animals at oral daily doses as high as  

40–60 mg mastic gum/kg of body weight for a period of 3–6 weeks [8-11]. Among mastic oil 

components, the isoprenoid perillyl alcohol (POH), an established inhibitor of the mevalonate 

biosynthetic pathway [12], has proved to efficiently attenuate tumor growth [13,14], metastasis [15] 

and angiogenesis [16] and it is undergoing phaseI/II clinical trials [17,18]. In concert, mastic gum and 

mastic oil have been also shown to exert in vitro anti-tumor growth activities against various cancer 

types including human prostate, leukemia and colon cancers [19-22] within a range of effective  

non-toxic concentrations (0.001–0.6% v/v). Using a Lewis lung adenocarcinoma (LLC) transplantation 

model we have further demonstrated that mastic oil (45 mg/kg body weight, i.p., every other day for 

about three weeks) can significantly limit tumor expansion in syngeneic mice without toxicity, by 

targeting in vivo cancer cell apoptosis, tumor-associated neovascularization and inflammation, in part 

through negative modulation of Ras/RhoA GTPases and NF-kappaB-dependent gene transcription [23]. 

Recently, by combining high-throughput transcriptomic technology and bioinformatics on mastic oil-

treated LLC cells we have been able to identify a number of target genes, such as those encoding 

PTEN, E2F7, HMOX1 (up-regulation) and NOD1 (down-regulation) and provide insights into the 

pathways involved in oncogenic growth inhibition [24]. Although some of the reported actions could 

also support a potential role of mastic oil in metastasis prevention, this issue has not yet been 

investigated. 

Metastasis unequivocally marks an advanced and generally incurable stage of tumor progression by 

which cells from the primary tumor invade the basement membrane, enter the circulation through 

newly formed blood vessels and disseminate to distant sites [25,26]. In the present work we 

explored—for the first time—the consequences of mastic oil treatment on this complex cascade using 

highly metastatic LLC cells in a series of assays simulating stages that critically influence cell 

invasiveness and tumor interactions with neighboring vasculature. POH was included for comparison 

as a reference bioactive component.  
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2. Results and Discussion 

Despite the substantial advancement in cancer treatment, metastasis remains the main cause of 

cancer fatality [27]. Discovering new relatively non-toxic agents capable of preventing this lethal 

condition is an important challenge with major implications for clinical practice. In this study, by 

combining a number of biological assays, we were able to demonstrate for the first time that mastic oil, 

a dietary plant extract with established anti-tumor growth activity, can negatively control pivotal steps 

of metastasis.  

2.1. Viability of Mastic Oil-Treated LLC Cells 

Using different experimental tumor growth models, we have previously shown that mastic oil combines 

pleiotropic anti-cancer actions with low toxicity even at relatively high concentrations [20,23]. In this 

study, we initially wished to confirm cell viability in LLC cultures under treatment conditions (cell 

density, culture media, concentrations of test agents, incubation time) simulating those of applied 

experimental protocols. Using an MTT-based method, we found that compared to vehicle control, 

mastic oil at concentrations ranging from 0.01 to 0.04 % v/v and POH at 0.5–1.0 mM for various time 

periods up to 48 h, did not significantly altere (p > 0.05) the number of living cells (Table 1). These 

concentrations were used in all the different assays. Viability tests were also performed in endothelial 

cells (EC) and no toxicity was observed (data not shown). 

Table 1. Viability of Lewis lung adenocarcinoma (LLC) cells after treatment. 

Incubation 
Time (h) 

Mastic Oil Concentration (% v/v) 

  0.01                    0.02                   0.04 

POH Concentration (mM) 
          0.5                       1.0 

6 99.6 ± 1.5 94.7 ± 1.6 95.8 ± 2.4 98.4 ± 2.0 94.7 ± 1.4 
24 101.7 ± 1.7 98.2 ± 2.9 96.1 ± 2.5 100.7 ± 1.7 91.2 ± 1.0 
48 102.6 ± 2.0 97.1 ± 2.4 93.3 ± 1.9 97.2 ± 2.5 92.1 ± 1.5 

Confluent cultures of LLC cells grown in 96-well plates were serum-starved for 24 h and  
then treated with test agents or vehicle for 6-48 h. Results are expressed as mean % of  
control ± SEM, n = 12. 

2.2. Mastic Oil Inhibits Tumor Cell Invasiveness 

Since invasion of the extracellular matrix (ECM) by cancer cells is essential for their dissemination, 

we first examined in a transwell in vitro assay the capability of mastic oil-treated tumor cells to invade 

and move through Matrigel-coated filters. Migration of tumor cells through identical uncoated 

membranes was also assessed in parallel using similar experimental conditions. As shown in Figure 1A, 

mastic oil even at low concentrations (0.01% and 0.02% v/v) significantly limited tumor cell invasiveness 

and migration capabilities indicating that it could target both the enzymatic machinery involved in 

ECM degradation and the cell motility mechanism [28]. Notably, POH at 0.5 mM (Figure 1A) and 1.0 mM 

(not shown) although affecting LLC cell migration, was not able to cause any significant change in the 

number of invading LLC cells, thus underlining the contribution of additional bioactive ingredients 

into mastic oil.  
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Figure 1. Mastic oil effects on tumor cell invasion/migration and MMP expression.  

(A) Mastic oil attenuates tumor cell invasion and migration. Serum starved LLC cells were 

treated with Moil (0.01–0.02% v/v), POH (0.5mM) or vehicle (CTL) for 2 h and then 

loaded onto BD Matrigel Invasion or Control chambers. The lower chambers were filled 

with complete medium containing test agents and plates were incubated for 20 h. Migrating 

cells were counted (200 X magnification, 10 HPF/membrane) and results are expressed as 

mean ± SEM; n = 9, *P < 0.05 from vehicle. (B) Mastic oil effects on MMP-2 and MMP-9 

expression. Serum starved LLC cultures were treated with Moil (0.02–0.04 % v/v), POH  

(1 mM) or vehicle (CTL) for 48 h and supernatants were analyzed for MMP-2 and MMP-9 

levels by ELISA. Results were normalized to total protein and are expressed as  

mean ± SEM; n = 12, *P < 0.05 from vehicle.  

 

In view of the pivotal role of type IV collagenases, matrix metalloproteinases 2 (MMP-2) and 9 

(MMP-9) on ECM degradation and local invasion by solid cancers [29-31], we next evaluated the 

effect of mastic oil on their basal expression by LLC cells. In agreement with previous reports [29] we 

were able to detect only low constitutive levels of these enzymes (Figure 1B). Nevertheless, treatment 

with mastic oil further reduced the expression of MMP-2 but only when applied at the highest 

concentration (0.04% v/v). Similarly, POH decreased MMP-2 levels only at 1 mM (0.5 mM did not 

cause any significant effect, data not shown). Although these results do not directly correlate MMP-2 

reduction with the observed inhibition of in vitro anti-invasive activity (Figure 1A), which could be 

achieved at lower concentrations of mastic oil (0.01–0.02% v/v), they are, however, indicative of a 

negative modulation of signaling pathways controlling MMP-2 expression. This finding may have 

therapeutic relevance as MMP-2, unlike many other MMPs, is constitutively expressed by a wide 

range of malignant cell types and its over-expression has been suggested to be of independent 

prognostic value in cancer patients [31]. As for MMP-9, its secreted levels were not significantly 

affected by mastic oil nor POH. However, the chance of detecting some decrease was technically 

limited by the fact that the levels of MMP-9 at basal state of LLC cells were quite near the detection 

threshold of the applied assay. 
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Figure 2. Mastic oil inhibits actin polymerization in PMA-induced LLC cells.  

Serum-starved LLC cells were treated with Moil (0.04% v/v), POH (1.0 mM) or vehicle 

(CTL) for 3 h and then induced by 1 μM PMA or vehicle (basal) for 30 min. Cells were 

fixed and F-actin was visualized by phalloidin staining. Top panel: representative  

micro-photographs (630 X magnification); bottom panel: graphs from image analysis of  

F-actin staining normalized to cell numbers and expressed as mean (% of control) ± SEM;  

n = 96–160, *P < 0.05.  

 

2.3. Mastic Oil Reduces Actin Remodeling 

It has been well established that the process of cell motility requires the dynamic organization of the 

actin cytoskeleton, which in turn involves the polymerization and depolymerization of actin filaments 

in response to chemotactic stimuli [32]. Therefore, to explore the basis of mastic oil-mediated 

inhibitory action on LLC cell motility, we subsequently investigated its potential effects on actin 

cytoskeleton remodeling using phorbol 12-myristate 13-acetate (PMA) as inducer, a tumor promoter 

signaling phospholipid [33]. Actin rearrangement in mastic oil (0.01–0.04 % v/v), POH (0.5–1.0 mM) 

or vehicle treated LLC cells was assessed before and after addition of PMA by means of 

immunofluorescent labeling and confocal microscopy of filamentous (F)-actin. As shown in Figure 2 

(which illustrates the effects in the high concentration range), although non-induced LLC cells 

displayed low basal levels of polymerized F-actin, exposure to PMA caused a prominent staining 

especially at the periphery, indicating an increase in de novo actin polymerization. Importantly,  

pre-incubation with mastic oil and POH resulted in a significant attenuation of F-actin fiber formation 

in PMA-stimulated cells thus suggesting the ability of these agents to attenuate pathways triggering 

changes in the actin cytoskeleton such as those induced by the used phospholipid [32-34].  
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2.4. Mastic Oil Inhibits Tumor Interactions with Vascular Microenvironment  

We subsequently wished to address the consequences of mastic oil treatment on critical connections 

between tumor cells and the neighboring vasculature leading to tumor-related angiogenesis, 

endothelial adhesion and vascular penetration [25,35]. Previous experimental evidence from our 

laboratory indicated an inhibitory role of mastic oil on vascularization of LLC tumors and on the 

expression of two important chemotactic/pro-angiogenic mediators, namely vascular endothelial 

growth factor and monocyte chemoattractant protein-1 [23]. Herein, by using an alternative tumor 

growth model in chicken embryo chorioallantoic membrane (CAM), which recapitulates several of the 

in vivo tumor-host interactions [16,36], we were able to directly estimate the length of the vascular 

network in tumor microenvironment. As revealed by image analysis of pictures taken two days after 

the initial inoculation of tumor cells on the CAM, mastic oil treatment at 0.01% to 0.04% v/v reduced 

the length of the microvessel networks surrounding LLC implants in a concentration-dependent 

manner, compared to the vehicle control, whereas POH (0.5 and 1.0 mM) had a similar but weaker 

effect. Figure 3 shows the effects of test agents at the lower concentration range. Although MMP-2 has 

been shown to promote tumor-associated vascular remodeling [30,31], the anti-angiogenic effects 

presented in Figure 3 may not be related to the decrease of secreted MMP-2 by mastic oil as it was 

mediated only at the highest test concentration (0.04% v/v, Figure 1B).  

Figure 3. Mastic oil attenuates tumor-related angiogenesis. Tumor cells pre-treated with 

vehicle (CTL), Moil (0.01-0.02 % v/v) or POH (0.5 mM) for 2 h were applied onto the 

CAM and further incubated for 48 h at 37 oC in the presence of test agents.  

(A) Representative photographs of vessel networks in the CAM; (B) Graphs from image 

analysis of vessel network length (mean % of control ± SEM, n = 30, *P<0.05 from vehicle. 
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Furthermore, by using a simple quantitative assay, we examined whether mastic oil was able to 

modify tumor cell adhesiveness to EC monolayers. Results were similar for EC originated from two 

different vascular beds (human umbilical vein and bovine coronary vein, HUVEC and CVEC, 

respectively) and are presented in total. As shown in Figure 4A, pre-treatment of LLC and EC with 

mastic oil at the high concentration range (0.02–0.04% v/v) reduced the number of tumor cells 

adhering to endothelial monolayers in a concentration-dependent manner. In line with this data, 

Western blot analysis of mastic oil-treated EC revealed a dose-dependent reduction, at an overlapping 

concentration range (0.01-0.02% v/v), in the expression of two important adhesion mediators, ICAM-1 

and VCAM-1 [37], upon induction with an inflammatory cytokine known to potentate in vivo cancer 

metastasis, tumor necrosis factor-α (TNF-α, Figure 4B) [38]. POH (0.5-1 mM) displayed a similar 

activity pattern to mastic oil in both assays (Figure 4A and 4B). 

Figure 4. (A) Mastic oil inhibits LLC cell adhesion to endothelial cell (EC) monolayers. 

Fluorescently labeled tumor cells treated with Moil (0.02–0.04% v/v), POH (0.5–1 mM) or 

vehicle (CTL) for 2 h were loaded onto confluent EC monolayers treated similarly and  

co-cultures were further incubated in the presence of test agents for 1 h. After washing, 

LLC adherent cells were lysed and fluorescence was measured at 485–535 nm. Results are 

expressed as means ± SEM; n = 18. (B) Mastic oil decreases the expression of endothelial 

ICAM-1 and VCAM-1. HUVEC monolayers were treated with Moil (0.01–0.02% v/v), POH 

(0.5–1 mM) or vehicle (CTL) for 2 h and then TNF-α (10 ng/mL) was added and incubated 

for 4 h. Cell lysates were analyzed for the presence of ICAM-1 and VCAM-1 by Western 

blotting. Blots are representative of three independent experiments. Total densitometry 

data were normalized to β-actin and expressed as mean % of control ±SEM, *P < 0.05. 

 



Cancers 2011, 3                            

 

 

796

Taken together, our data indicate that mastic oil could limit the metastatic potential of LLC cells 

through negative regulation of MMP-2 expression, actin cytoskeleton remodeling and tumor 

endothelial adhesion. Although additional experiments are required to provide further mechanistic 

insights, several of these actions may be associated with the established inhibitory effects of mastic oil 

on small RhoA GTPase [20,23] and NF-κB [22-24] signaling known to control relevant metastasis-

promoting processes [39,40]. Furthermore, up-regulation of tumor suppressor pten in LLC cells treated 

by mastic oil, previously revealed by genomic microarray analysis [24], may also provide an additional 

mechanistic link, as PTEN over-expression has been shown to suppress the process of lung cancer 

invasion [41] 

3. Experimental Section 

3.1. Phytochemicals 

Mastic oil was from Chios Gum Mastic Growers Association (Chios, Greece) and POH was from 

Fluka (Buchs, Switzerland). Chemical composition of mastic oil was in accordance with published 

data [5,6]. Different batches of extract displayed significant reproducibility in all types of assays. 

Selection of bioactive concentrations was based on previous studies [16,20,23] and verified by 

preliminary experiments. POH concentration (0.5–1 mM) corresponded always to molar excess 

compared to its content (about 1%) into the examined concentrations of mastic oil. Working dilutions 

contained up to 0.1% DMSO (Sigma, St. Louis, MO, USA). 

3.2 Cell Culture and Viability Assay 

LLC cells (American Type Culture Collection, Manassas, VA, USA) were cultured according to [23]. 

Human umbilical vein and bovine coronary vein endothelial cells (HUVEC and CVEC, respectively) 

were isolated and maintained as described before [16,42]. Cell viability was monitored under 

experimental conditions specified for each biological test by the methylthiazoletetrazolium (MTT) 

assay (Sigma, St. Louis, MO, USA) and by trypan blue exclusion. Briefly for MTT assay, 90% 

confluent LLC cultures grown in 96-well plates were serum-starved for 24 h. Test agents were then 

added (mastic oil at 0.01–0.04 % v/v, POH at 0.5-1.0 mM or DMSO vehicle) and incubation continued 

for various times up to 48 h. After the exposure period, MTT (5 mg/mL) was added and cells were 

further incubated for 4 h at 37 °C. The MTT formazan crystals were solubilised by the addition of 

0.1N HCl in anhydrous isopropanol and the absorbance was measured on a microtiter plate reader at 

595 nm with correction at 630 nm. Sample absorbance was correlated with cell number using a 

reference standard curve.  

3.3. Invasion and Migration Assays  

Invasion and migration of LLC cells were assayed using 8μm-pore size membrane BD BioCoat 

Matrigel Invasion and Control Chambers respectively (BD Biosciences, Erembodegen, Belgium). 

Confluent tumor cell cultures grown in 6-well plates were serum-starved for 24 h and then treated with 

mastic oil (0.01–0.04% v/v), POH (0.5–1.0 mM), or DMSO for 2 h. Cells were then trypsinized and 

0.5 mL of suspension containing 3 × 104 cells were loaded on the upper compartment, the lower 
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chamber was filled with DMEM containing 10% FCS (or serum-free medium in controls) in the 

presence of test agents or vehicle and the plate was incubated for 20 h at 37 °C. Membranes were then 

fixed and stained using the Rapi- Diff II kit (Bios Europe, Lancashire, UK). Cells located in randomly 

chosen fields on the lower surface of the membrane were counted in blind on a microscope (Å = 200; 

10 high power field/membrane).  

3.4. Determination of MMP Expression 

LLC cells were seeded onto 12-well plates at a density of 1 × 105 cells/well and 24 h later the cells 

were treated with mastic oil (0.01–0.04% v/v), POH (0.5–1.0 mM) or DMSO-vehicle for 24–48 h in 

serum-free medium. Culture supernatants were analyzed for the presence of total MMP-2 and MMP-9 

by ELISA (R&D Systems, Minneapolis, MN, USA) according to the manufacturers’ instructions. 

Results were normalized to total protein. 

3.5. Immunofluorescent Detection of F-Actin  

Localization of F-actin was performed by immunofluorescent cell labeling as described before [43] 

Briefly, tumor cells (1 ×105 cells/mL) were plated on 1% gelatin-coated glass culture coverslips in 

complete medium for 24 h. The medium was replaced with serum-free DMEM containing 0.25% BSA and 

cultures were further incubated for 24 hours. Cells were then treated with mastic oil (0.01–0.04 %v/v), 

POH (0.5–1.0 mM) or DMSO for 3 h and then 1 μM PMA (Sigma, St. Louis, MO, USA) or vehicle 

was added for 30 min. Cells were then washed twice with PBS, fixed with 3.7% formaldehyde solution 

for 5 min, lysed with 1% Triton X-100 and dyed with 5 units Alexafluor 488 phalloidin (Invitrogen, 

Carlsbad, CA, USA). Coverslips were mounted onto slides with Prolong Gold antifade reagent with 

DAPI (Invitrogen, Carlsbad, CA, USA) for nuclear staining. Pictures from non-overlapping random 

fields were taken under a confocal laser scanning microscope (DMI400B, Leica Microsystems AG, 

Wetzlar, Germany) using a 630x oil immersion objective. For quantification of F-actin, photographs 

were analyzed with ImageJ software (NIH Image, Bethesda, MD, USA) and data normalized to  

cell number. 

3.6. Tumor Angiogenesis Model in the Chorioallantoic Membrane (CAM)  

To asses neo-vessel formation in tumor microenvironment, we used the CAM of the chick embryo 

model in a modified version that combined two previously described protocols [16,36]. Briefly, 5 × 105 

tumor cells that had been pre-treated for 2 h with mastic oil (0.01–0.04% v/v, POH (0.5–1 mM) or 

vehicle (0.05% DMSO), were applied on the exposed upper part of the membrane on day 9 of embryo 

development, onto an area of 1 cm2 restricted by a plastic ring. After incubation of eggs for 48 hours at 

37 °C in the presence of test compounds, the upper CAM was fixed in situ, excised from the eggs and 

pictures were taken from the tumor periphery through a stereoscope equipped with a digital camera. 

The total vessel length was measured using image analysis software (Scion Image, Scion Corporation, 

Frederick, MD) according to [16].  

 

3.7. Tumor-Endothelial Cell Adhesion Assay 
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Adhesion capability of LLC cells to EC monolayers was evaluated as described previously [44] 

with some modifications. Tumor cells pre-treated with mastic oil (0.01–0.04% v/v), POH (0.5–1 mM), 

or DMSO vehicle for 3 h at 37 °C, were labeled with 10 μg/mL of 2,7-bis-(2-carboxyethyl)-5-(6)-

carboxyfluorescein acetoxymethyl ester (BCECF-AM; Sigma, St. Louis, MO) for 30 min at 37 °C, 

washed twice with PBS and collected. Subsequently, 1 × 105 labeled cells were seeded onto EC grown 

in 96-well plates similarly pre-treated with test agents and co-cultures incubated for 1 h. After three 

washes with PBS, cells were solubilized by 0.5% Triton X-100 and fluorescence of lysates measured 

at 485/535 nm excitation/emission wavelengths. Numbers of adherent cells were evaluated using a 

reference standard curve.  

3.8. Detection of ICAM-1 and VCAM-1 by Western Blotting 

EC were treated with medium containing various concentrations of mastic oil (0.01–0.04% v/v), 

POH (0.5–1.0 mM) or DMSO vehicle (0.1%) for 2 h. Subsequently, tumor necrosis factor-alpha  (TNF-α, 

10 ng/mL) or PBS was added and cultures were further incubated for 4 h. Cells were then solubilized 

and lysates were resolved by 10% SDS-PAGE as described previously [20] using anti-human ICAM-1, 

VCAM-1 (R&D Systems, Minneapolis, MN, USA) or anti-beta-actin (Chemicon, Temecula, CA, 

USA) antibodies. Gel-Pro Analyzer software (Media Cybernetics, Silver Spring, MD, USA) was used 

for densitometry analysis of blots and results were normalized to beta-actin. 

3.9. Data Analysis and Statistics 

Data are presented as means  SEM of the indicated number of observations. Statistical 

comparisons between groups were performed using one-way ANOVA followed by a post hoc test as 

appropriate. Differences among means were considered significant when P < 0.05.  

4. Conclusions 

Overall, in this study, by using experimental models and assays evaluating critical processes of the 

metastatic cascade, we provided novel evidence for the inhibitory actions and some potential 

underlying mechanisms of mastic oil against cancer cell metastatic spreading.  
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