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Simple Summary: The perspective of this paper will focus on high-resolution imaging of collagen
alterations in high-grade serous ovarian cancer (HGSOC). We will highlight the use of the collagen-
specific/sensitive Second Harmonic Generation (SHG) microscopy in delineating changes across
multiple size scales between HGSOC, other ovarian tumors, HGSOC precursors and normal tissues.
Specifically, we utilize machine learning techniques to differentiate these tissues with high accuracy
and further exploit the underlying SHG physics to determine sub-resolution information on fibril
assembly and macro/supramolecular collagen structure. We also describe how SHG can be combined
with other modalities including fluorescence and optical coherence tomography (OCT). Lastly, we
discuss challenges and opportunities for translation to in vivo applications, focusing on advances
in endoscopic technology. We postulate that successful diagnosis/treatment of HGSOC requires an
integrated approach of ex vivo microscopic and molecular analyses to establish the foundation for
in vivo imaging.

Abstract: High-grade serous ovarian cancer (HGSOC) is the predominant subtype of ovarian cancer
(OC), occurring in more than 80% of patients diagnosed with this malignancy. Histological and
genetic analysis have confirmed the secretory epithelial of the fallopian tube (FT) as a major site of
origin of HGSOC. Although there have been significant strides in our understanding of this disease,
early stage detection and diagnosis are still rare. Current clinical imaging modalities lack the ability
to detect early stage pathogenesis in the fallopian tubes and the ovaries. However, there are several
microscopic imaging techniques used to analyze the structural modifications in the extracellular
matrix (ECM) protein collagen in ex vivo FT and ovarian tissues that potentially can be modified
to fit the clinical setting. In this perspective, we evaluate and compare the myriad of optical tools
available to visualize these alterations and the invaluable insights these data provide on HGSOC
initiation. We also discuss the clinical implications of these findings and how these data may help
novel tools for early diagnosis of HGSOC.

Keywords: high-grade serous ovarian cancer; ECM alterations; collagen reorganization; clinical
interventions

1. Introduction

In 2023, an estimated 19,710 and 13,270 women will be diagnosed with and will
die from ovarian cancer in the United States, respectively. Ovarian cancer is the fifth
leading cause of death among all cancers in women and is the #1 cause of death among
gynecological cancers. The five-year survival rates of patients depend on the extent of the
spread of the cancer beyond the ovaries and to the peritoneal organs. In early stages (stages
Iand II, Figure 1) [1], when the cancer is confined to the ovarian surface, cytoreductive
surgery combined with chemotherapy results in maximum benefit to patients with five-year
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survival observed in ~90% of the cases. However, in the majority of the patients (70% or
more), ovarian cancer is detected at an advanced stage (stages III or IV, Figure 1) [1]) with
the tumors already metastasized to the serosal surface and organs in the peritoneal cavity.
While most patients with such advanced disease initially respond to debulking surgery
and platinum and taxol-based chemotherapy, recurrence of the tumor is often observed,
resulting in significantly lower five-year survival (~30%). Even with the development
of modern clinical approaches and targeted and biologic therapies (PARP inhibitors and
immunotherapies, for example), these statistics have remained unchanged over the past
several decades. Developing new strategies for early detection and treatment of high-grade
serous ovarian cancer is therefore a major unmet need for effective management of this
cancer. With worldwide estimates of 314,000 new cases and 207,000 deaths per year, ovarian
cancer is a major health problem for women across all continents [2].
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Figure 1. High-grade serous ovarian cancer (HGSOC) is a difficult disease to diagnose and treat. (A) 
Surgical staging of ovarian cancer correlates with the prognosis of patients to conventional debulk-
ing surgery combined with platinum and taxol-based chemotherapy. (B) Most women with HGSOC 
experience relatively common symptoms, which, by themselves, are insufficient for cancer diagno-
sis. (C) Serum levels of CA125, a repeating peptide epitope of the large molecular weight mucin, 
MUC16, are elevated in most patients with HGSOC. Elevation of CA125 is also observed in other 
cancers, as well as benign conditions. Therefore, while the FDA-approved serum CA125 test is use-
ful in monitoring the recurrence of HGSOC in women already diagnosed with this cancer, this test 
is not used as a screening tool for early detection of ovarian cancer. 

Figure 1 shows the staging and commonly associated symptoms of HGSOC. Early 
stage disease is often associated with bloating, vaginal bleeding and other clinical symp-
toms that are not truly indicative of cancer in the gynecologic tract (Figure 1B). The lack 
of specific clinical symptoms combined with the low sensitivity and specificity of the cur-
rently used biomarker, CA125 (Figure 1C) results in HGSOC being detected at an ad-
vanced stage in most patients. Imaging modalities (e.g., ultrasound, MRI, CT, PET) also 
do not have sufficient resolution or sensitivity to meet this early detection challenge and 
also lack sufficient specificity for discriminating subtypes of ovarian cancer [3–8]. Only a 
fortuitous clinical examination by trained clinicians and patients who are vigilant about 
the seemingly vague symptoms generally leads to early detection (stages I or II) of 
HGSOC.  

Figure 1. High-grade serous ovarian cancer (HGSOC) is a difficult disease to diagnose and treat.
(A) Surgical staging of ovarian cancer correlates with the prognosis of patients to conventional
debulking surgery combined with platinum and taxol-based chemotherapy. (B) Most women with
HGSOC experience relatively common symptoms, which, by themselves, are insufficient for cancer
diagnosis. (C) Serum levels of CA125, a repeating peptide epitope of the large molecular weight
mucin, MUC16, are elevated in most patients with HGSOC. Elevation of CA125 is also observed in
other cancers, as well as benign conditions. Therefore, while the FDA-approved serum CA125 test is
useful in monitoring the recurrence of HGSOC in women already diagnosed with this cancer, this
test is not used as a screening tool for early detection of ovarian cancer.

Figure 1 shows the staging and commonly associated symptoms of HGSOC. Early
stage disease is often associated with bloating, vaginal bleeding and other clinical symptoms
that are not truly indicative of cancer in the gynecologic tract (Figure 1B). The lack of specific
clinical symptoms combined with the low sensitivity and specificity of the currently used
biomarker, CA125 (Figure 1C) results in HGSOC being detected at an advanced stage
in most patients. Imaging modalities (e.g., ultrasound, MRI, CT, PET) also do not have
sufficient resolution or sensitivity to meet this early detection challenge and also lack
sufficient specificity for discriminating subtypes of ovarian cancer [3–8]. Only a fortuitous
clinical examination by trained clinicians and patients who are vigilant about the seemingly
vague symptoms generally leads to early detection (stages I or II) of HGSOC.

Similar to most epithelial cancers, HGSOC is characterized by early changes in the
extracellular matrix (ECM) within the tumor microenvironment [9,10]. However, unlike
most tumors that largely metastasize via the blood and lymphatic systems, the primary
mechanism in HGSOC is the exfoliation of cancer cells from primary lesions that are
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transported via ascites and can re-attach in the peritoneum. The ECM on the surfaces of
the ovaries and peritoneal organs plays an important role in promoting attachment and
metastasis of HGSOC [11]. Therefore, studying these corresponding cell–ECM interactions
at the microscopic level in both primary and metastatic sites is key to understanding the
progress of disease. As adhesion and migration are in part governed by the collagen fiber
morphology, probing this structure is a potentially powerful diagnostic/prognostic ap-
proach. This was first conclusively demonstrated by Keely and co-workers who, in a series
of seminal papers, showed that different stages of breast tumors had characteristic collagen
fiber alignment, and, moreover, that these patterns were prognostic of survival [12–14].
Collagen fiber patterns have also now been used to discriminate normal and malignant
tissues in several tissues [14–16], including those of the fallopian tubes and ovaries, as
noted below.

Our recent analyses of collagen structure in ex vivo human HGSOC [17,18] and its
precursor lesions [19,20] using high-resolution optical microscopy are pointing to a new
direction for the possibility of early detection of this cancer. Here, we will highlight our use
of the collagen-specific/sensitive Second Harmonic Generation (SHG) microscopy in delin-
eating changes across multiple size scales between HGSOC, other ovarian tumors, HGSOC
precursors and normal tissues. Specifically, we utilize machine learning techniques to dif-
ferentiate these tissues with high accuracy and further exploit the underlying SHG physics
to determine sub-resolution information on fibril assembly and macro/supramolecular
collagen structure. This overall direction is depicted in Figure 2. We note that SHG studies
provide more structural information than possible by standard pathology but can often be
carried out on the same slide. We further provide our perspective on the high-resolution
optical imaging modalities (separately and in conjunction with SHG) that can be developed
for clinical staging and early detection of HGSOC, including multiphoton microscopy
and optical coherence tomography-based optical scattering measurements and potentially
superior monitoring of treatment efficacy.
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Figure 2. Evaluation of the extracellular matrix surrounding ovarian tumors is providing new
insights into the biology of cancer and new technologies to understand the importance of altered
collagen architecture in HGSOC progression. SHG imaging of ovarian tumors has demonstrated
major alterations in the collagen architecture. Our recent studies have shown that these changes in
collagen occur early and can even be detected in the precursor lesion (serous tubal intraepithelial
carcinoma, STIC) of HGSOC. These changes can serve as biomarkers for the disease. Our group
has now developed a 3D printing approach to make mimics of the collagen based on normal and
HGSOC tissues. These 3D patterns have allowed us to demonstrate that cancer-associated collagen
promotes the migration of ovarian cancer cells. Finally, the demonstration that collagen is altered
early in the progression of HGSOC suggests that SHG-based endoscopic or other optical methods
can be developed for in vivo or ex vivo monitoring of tissues for the detection of HGSOC signatures.
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2. Imaging Extracellular Matrix ECM Alterations in Ovarian Cancer
2.1. Second Harmonic Generation (SHG) Microscopy of Ex Vivo Tissues

SHG is a nonlinear coherent technique that upconverts two lower-energy photons into
a photon with twice the frequency and half the wavelength [21]. The physical constraints re-
quire a non-centrosymmetric (lacking a center of symmetry) environment, on the size scale
of the λSHG or about 500 nm, where the organization of fibrils/fibers determine emission
characteristics [22] and, as shown below, can be exploited to extract macro/supramolecular
information [23], as well as fiber morphology [18]. We will describe how all these attributes
are different in HGSOC and other ovarian tumors relative to normal stroma. Additionally,
the modality is label-free and can image through several hundred microns of highly scatter-
ing dense collagen. Lastly, we note that SHG more clearly visualizes collagen fibers better
than H&E histology or Picrosirius Red polarization microscopy.

2.1.1. Collagen Fiber Morphology
Tumors in the Ovary

There now have been several reports by several labs using SHG to image human and
mouse ovarian cancers [24–27]. In our research, we have shown that normal stroma, high-
risk stroma (stroma surrounding the serous tubal intraepithelial carcinoma, the precursor
lesions of HGSOC) and low-grade serous, endometrioid, benign and HGSOC tumors
each have a characteristic fiber pattern [18]. Representative images are shown for these
classes in the top row of Figure 3. For example, in normal tissues, the collagen fibers
appear cross-hatched and interwoven and are arranged in no apparent order. However,
in HGSOC tissue, the collagen fibers have a highly characteristic sine wave pattern and
are aligned over up to a few hundred microns in length. To characterize these differences,
using machine learning, we used a novel form of texture analysis coupled with machine
learning as a classification algorithm to differentiate between the six classes noted above.
Here, we used a method known as “textons” [28], which does not rely on simple features
such as length, width and alignment, but identifies features based on convolution with a
38-element basis set. We developed this approach for both 2D [17] and 3D [18] and found
significantly improved accuracies in the latter embodiment (~15–20%). We suggested that
this arose because the intrinsic heterogeneity was better sampled. The texton method
is quite powerful because it is based on substantial data sets of several hundred images
per class.

Collagen Reorganization in Early HGSOC Precursor Lesions

It is now well documented that most HGSOC tumors originate in the fallopian tubes
(FT) from two precursor lesions: p53 signatures and serous tubal intraepithelial carcinoma
(STIC) [10,29]. The ovarian surface is the first site for metastasis of the HGSOC that
develops from these two precursors. We have now performed SHG imaging on STICs
and p53 precursors, that were occurring concurrently with HGSOC tissues [19], where
representative images are shown in the bottom row of Figure 3. Here, we developed a
linear discriminant based on multivariate variables derived from grey-level co-occurrence
matrix texture features, FFT features and fiber morphologies derived from CT-FIRE [30].
We achieved a classification accuracy of >95% for HGSOC vs. the others and a more
modest ~75% between STIC and normal regions. Interestingly, the collagen fibers in the
high-grade tumors in the FT (highly aligned wavy patterns) strongly resembled that of
HGSOC in the ovary itself, further supporting the idea of the FT as the origin site. We
further conducted analogous SHG imaging and classification on pure precursor lesions
that did not have a concurrent HGSOC lesion and found that there were subtle changes
in collagen organization in p53 signatures and STIC lesions that were distinct from each
other and normal regions [20]. Notably, the collagen appears relatively normal within a
couple of hundred microns from STIC regions. Collectively, these studies strongly suggest
that collagen changes occur early in HGSOC development and, moreover, that these can be
detected by SHG.
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2.1.2. Analysis of Sub-Resolution Features

Collagen has a highly conserved hierarchical organization with many ranges of size
scales, beginning with the single α-chains, which are hydrogen bonded into the triple helix
(~300 nm × 1 nm), where these are covalently crosslinked into fibrils (~50 nm in diameter),
which are crosslinked into fibers (~1-micron diameter) and are the quantity viewed in the
SHG microscope. However, we can extract information on several of these sub-resolution
aspects through a combination of experimental and computational/theoretical approaches,
and, here, we provide an overview of the methods and findings.

Analysis of Macro/Supramolecular Structure

The macro/supramolecular structures can be interrogated through the use of SHG
polarization manipulation and analyses. Here, polarization refers to the direction of the
electric field vector relative to the direction of the collagen fibers. In one implementation,
we obtain the pitch angle of the single α-helical chains, where we define this as the angle
of the coil relative to the long-axis collagen molecule. As determined by ultrastructural
studies, in normal Col I, this angle is about 47 degrees, and our SHG approach on the
tendon (all Col I) is consistent with the result [23].

It had been suggested by immunostaining that the Col III isoform is up-regulated in
both HGSOC and benign ovarian tumors. Based on ultrastructural data, and our SHG
studies, its corresponding pitch angle is 49 degrees and we investigated if this was borne
out in human ovarian tissues [31]. We found that the angles were statistically different
between normal, HGSOC and benign tumors, as follows: (i) where the pitch angle in the
normal stroma was consistent with Col I; (ii) the angle in benign tumors was consistent
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with increased Col III; and (iii) HGSOC was different but the angle was lower than normal.
This was also borne out throughout our recent mass spectrometry analysis [20]. We further
completed a second approach combining SHG with circular dichroism (SHG-CD), which,
in an analogy to conventional CD, is sensitive to the chirality of the triple helix [32]. Our
results showed that the effective chirality was lower in the HGSOC and benign tumors
relative to the normal stroma [31]. Lastly, we performed an analysis of the SHG signal
that yielded the net alignment of molecules along the axis of the fibrils. In a normal fibril,
the collagen molecules lie essentially on the axis for its length [33]. In contrast, we found
that this alignment was highly disrupted in both HGSOC and benign tumors. Collectively,
these results indicate that the new desmoplastic collagen is made incorrectly relative to
normal Col I.

Analysis of Fibril Size and Packing

Unlike fluorescence, which emits isotropically, SHG has a spatial emission pattern that
arises from the sub-resolution fibril size and packing. Specifically, the fibril packing results
in a distribution of forward (F) and backward (B)-propagating components, which we
define as the SHG directionality, FSHG/BSHG, where larger values arise from greater fibril
alignment [34]. We determine this ratio via a combination of measurements and Monte
Carlo simulations using optical scattering data [35]. The resulting wavelength dependence
of FSHG/BSHG can then be used to assess the size and packing. This analysis showed that
fibrils in HGSOC were small, more uniformly distributed in diameter and packed more
regularly than normal tissues [36]. We obtained similar results by TEM, validating the
experimental and theoretical framework. The analogous results on other ovarian tissues
(e.g., low-grade and high-risk tissues) are characterized by a higher frequency of large
fibrils distributed widely throughout.

2.2. Multimodal Imaging Modalities Approaches

Although we have shown in various studies that collagen is significantly altered,
both structurally and biochemically, the significance of collagen remodeling in HGSOC
progression is still unclear. For example, is it causal or simply characteristic? As cells and
many other ECM components (e.g., fibronectin, laminin and Col IV) are transparent to
SHG, insight can be gained from multimodal approaches. This will be explored here and is
summarized in Table 1.

Table 1. Overview of imaging modalities. This table summarizes the typical imaging modalities
used in the basic and clinical research settings. While each individual modality has its advantages
and disadvantages, there is still useful information provided, especially when combined with other
imaging tools.

Imaging Technique How It Works Measurements Advantages Disadvantages Setting

Second Harmonic
Generations
(SHG) Microscopy

Nonlinear coherent
up-conversion of two
lower-energy
photons into one
higher energy photon

Collagen fibril/fiber
organization
in tissues

-No exogenous
dyes needed
-Detects inherent
fluorescence of
collagen molecule
-High-resolution images of
collagen fibers

-Transparent to cells
-Specific to collagen I,
cannot detect other
collagen types or
other ECM proteins
-Signal dependent on
collagen density

Mouse,
pre-clinical

Multiphoton
Fluorescence
Microscopy (MPM)

Laser scanning +
long wavelength
excitation

Biological processes
in living cells
and tissues

-Low negative impact on
cell/tissue viability
-Provides
3-dimensional view
-Near-infrared excitation
allows for deep penetration
into biological specimen

-Limited sensitivity,
excitation occurs only
at focal point
of microscope
-Must use
fluorophores to tag
molecule(s)
of interest

Mouse,
pre-clinical
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Table 1. Cont.

Imaging Technique How It Works Measurements Advantages Disadvantages Setting

Optical Coherence
Tomography (OCT)

Coherent
backscattered light
from bulk
tissue sample

Cross-sectional
tissue morphology

-Provides overview of
tissue architecture

-1–10 µm microscopic
resolution
-Cannot detect
nanoscale structures
(i.e.,
microvasculature
alterations such as
collagen alterations)

Mouse,
pre-clinical,
clinical (eye)

Inverse Spectroscopic
Optical Coherence
Tomography (ISOCT)

Tissue modeled as a
medium with a
continuously varying
refractive index (RI)

Collagen, cellular
content,
biological media

-Sensitive to tissue
ultrastructure, can provide
quantitative information
-detection range 30–450 nm
-Can also be used to
evaluate blood vessels

-Based solely on
scattering properties
of samples
-The inverse of
OCT measurements

Mouse,
pre-clinical

Combined SHG/MPM and MPM/OCT

As SHG does not detect cells, it is important to use other optical modalities that provide
cellular context for collagen remodeling. As an example, Sawyer et al. complemented
multiphoton fluorescence microscopy (MPM) with wide-field fluorescence imaging (WFI) to
acquire high-resolution images of the whole ovary and evaluate the expression of receptors
in several genotypes of a mouse ovarian cancer model. Using texture analyses of both
the fluorescence and SHG images, they were able to further differentiate between tissues
with high statistical significance [37,38]. Similarly, they used optical coherence tomography
(OCT) and multiphoton-excited fluorescence to image mouse ovaries in vivo to test the
feasibility of using a multimodal approach covering different size scales. They identified
and tracked the microscopic changes that occurred early in ovarian cancer development
and throughout a mouse’s lifetime, and ultimately determined that this combined approach
provided extensive diagnostic, qualitative and quantitative information on the entire mouse
ovary [39]. Together, these data show that combining SHG with other imaging techniques
significantly improves sensitivity to pathological areas of the ovary.

2.3. Optical Scattering and Inverse Spectroscopic Optical Coherence Tomography (ISOCT)

The cellular interactions within the tissue microenvironment during tumor progression
are one of the main lines of inquiry in the cancer biology field. However, there still is a
need to non-invasively analyze and quantify these interactions within 3D model systems
to further delineate physical changes in the TME due to cell–matrix interactions. Optical
scattering is an attractive modality for this purpose and has long been used as a tissue
characterization tool, where the strength and wavelength dependence is related to the size
and distribution of scatterers relative to the wavelength [40,41]. The Backman group has
shown how this technique is applicable to objects on the size scale of ~50 nm–1 micron.
Moreover, they have used this extensively to characterize colorectal and pancreatic cancers
with respect to field carcinogenesis (microarchitectural and microvascular alterations that
provide a fertile environment for focal mutations that lead to carcinogenesis) [42–44].

We used this theory in conjunction with our implementation of measuring scattering
coefficients for the six classes of ovarian tissues probed with texture and polarization
analyses and found that the HGSOC tumors were more highly scattering (consistent
with desmoplasia) but less organized than normal tissues, with the other tissues (benign,
endometrioid, low grade serous) showing intermediate behavior [36].

More recently, Backman showed how this information is encoded in a form of OCT
known as inverse scattering OCT (ISOCT), thus providing the collagen/cellular context
for the scattering determinations [44]. Spicer et al. examined matrix remodeling in a 3D
in vitro model system and showed that cancer cells modify their shape to adjust to a stiffer
matrix scaffold due to increased crosslinking of collagen [45]. This further supports the
understanding that collagen may enhance the metastatic potential and motility of cells
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and contribute to poor prognosis and overall survival. The ability to detect and capture
early metastases in these systems via ISOCT shows great potential for improving cancer
therapeutics and interventions. Lee et al. expanded upon these ideas by utilizing ISOCT
and two-photon autofluorescence to quantify nanoscale ultrastructural and metabolic
changes, respectively, in ocular surface lesions leading to ocular surface squamous neoplasia
(OSSN) [46]. Their results suggested that lesions with increased malignant potential
had a higher D (mass density measurement) and a decrease in the optical redox ratio
(cancer association via increased cellular proliferation or differentiation), which collectively
supported ultrastructural compaction and modifications. Consequently, they were able to
differentiate between normal, premalignant and malignant tissue samples more readily [46].

2.4. In Vivo Imaging Developments

One of the major challenges of gynecologic cancer research is the lack of imaging
modalities capable of reaching and imaging the fallopian tubes and the ovaries, as they
are deep within the abdomen and are smaller in size and diameter in comparison to other
organs. Currently, microendoscopes capable of meeting this challenge do not exist, where,
for example, initial falloposcope designs lacked the ability to fit and traverse the narrow
diameter of the FT. They also lack the capability of simultaneously acquiring high-resolution
images and collecting fallopian tube epithelial (FTE) cells for future analyses. As a step,
Barton and co-workers developed the cell-acquiring fallopian endoscope (CAFE), which
met clinical size requirements for eventual in vivo use. This was successfully demonstrated
on ex vivo tissues where cells were scraped and then imaged, showing the promise of
identification of potentially pathological tissue for subsequent analyses [47]. The Barton
lab has further explored various ways to miniaturize imaging systems and components to
visualize these changes, and the optimal way to insert the falloposcope into the patient,
whether through the uterus and tubal ostium via a standard hysteroscope during surgery
or transvaginally [48]. While this work used OCT and widefield fluorescence, integration
with SHG is possible with further development. Moreover, they have also pinpointed
how much pressure the segments (proximal, middle, distal) of the FT can withstand in
order for dilation and allow for endoscopic exploration without bursting or damaging the
underlying plicae [49]. While these findings were in porcine FTs, they paved the way for
additional endoscopic exploration studies in corresponding human FTs.

2.5. SHG Image-Based Models

As steps to understanding the biological consequences of collagen remodeling, our
lab has developed a nano/microfabrication method based on multiphoton-excited poly-
merization, where we create tissue-engineered scaffolds with designs based on the SHG
images. As examples, representative SHG images and the corresponding scaffolds created
from a mixture of collagen/gelMA are shown in Figure 4 [50,51]. We have seeded these
scaffolds with normal and a series of HGSOC cells and studied aspects of migration, cy-
toskeletal dynamics and molecular expression of cadherins. This approach allows us to
hypothesis test the respective roles of the initial cell phenotype and matrix morphology. In
all measurements, we found that the latter dominates the cell response through a contact
guidance mechanism. For example, normal cells have greater motility on a cancer matrix
than a normal model. This platform will allow detailed biological analysis of cell response
as well as an approach to determine treatment efficacy.
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3. Future Directions/Perspectives

Understanding the changes that occur in the ECM holds the key to developing more
efficient and sensitive imaging modalities for early stage detection of ovarian cancer. Our
ability to study collagen reorganization and evaluate its role in ovarian cancer progression
is a promising piece of a complex puzzle. In this perspective, we have described ways in
which imaging collagen and other components of the TME have provided new insights
into specific changes in the macro/supramolecular, fibril and fiber architecture in HGSOC.
However, we have not yet determined if these changes are predictive or prognostic of
HGSOC, as has been shown to be the case in high-grade breast cancer [14]. Ovarian cancers
are far less common than those of the breast and we do not yet have the numbers to
statistically validate this relationship.

Still, there are paths forward where we can use this type of data to help improve patient
health outcomes. For example, a largely unexplored target is correlating collagen alterations
with genetic signatures. The prominent genes mutated in HGSOC are BRCA I, BRCA II and
Tp53 [52–54]. About 5–10% of women have the BRCA I and/or BRCA II mutations [55],
while the Tp53 tumor suppressor gene (TSG) is pathogenically mutated in more than
97% of HGSOC diagnoses [56], resulting in a deficient synthesis of the protein and a gain of
cancer-promoting features such as increased proliferation, apoptosis evasion, epithelial-to-
mesenchymal transition (EMT), and invasion and metastatic behaviors. However, there is
still much uncertainty about how aberrant p53 is involved in facilitating cellular interactions
with remodeled collagen. In order to understand this, we must consider both the indirect
and direct roles wildtype p53 has on ECM and ECM-related gene expression patterns,
specifically on collagen synthesis, maturation, and activation. As a first step, we showed
that the distribution of the SHG emission pattern was more heterogeneous for low-grade
disease than HGSOC, and postulated that this was due to the broader range of mutations
in the former [57].

We also foresee a couple of possibilities related to determining therapeutic efficacy
based on the SHG data. The standard of care is to remove the ovary either before or after
chemotherapy. That tissue could be imaged and then its structure correlated with survival
following chemotherapy. The primary metastatic site is the omentum [58–60], and most
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deaths occur from this metastasis and other sites within the peritoneal cavity, so this is
still a viable strategy even with the ovary being removed. Analogously, we could image
removed tissues and create imaged-based models as described in Section 2.5, and seed
with these with a patient’s cells collected from ascites and then treat with combinations of
chemotherapies to predict the best course of treatment.

While in vitro experiments have shown that increased collagen density affected sev-
eral signaling pathways, these measurements were not performed in tissues with known
mutations [61,62] (and references therein) and were not imaged by SHG. Burdette and co-
workers have developed several FT lines with known mutations that form tumors in vivo,
and, moreover, the migration/invasion in vitro was sensitive to the collagen microenvi-
ronment [63–65]. We suggest that imaging these and related tissues by SHG and other
high-resolution optical methods described in this perspective will provide new insight
into the etiology and progression of HGSOC. These concepts are depicted in Figure 5. We
propose that in vivo and in vitro experiments with HGSOC tumors whose mutations are
defined using genomics, transcriptomics and proteomic approaches can be used to study
the molecular and cellular parameters that initiate collagen remodeling as determined by
SHG imaging. This information will be critical to defining the earliest time interval when
collagen remodeling occurs in the progression of HGSOC. Imaging approaches can be
developed and employed to specifically identify these early changes in collagen with the
goal of developing novel diagnostic tools for early detection of HGSOC. In addition to
diagnosis, the understanding of the structural modifications in collagen in early and ad-
vanced HGSOC can be used to develop specific targeted therapies (for example, antibodies
or engineered T cells that recognize disordered collagen) as means for treatment of the
cancer leading to increased survival of women with HGSOC. We postulate that successful
diagnosis/treatment of HGSOC requires an integrated approach of ex vivo microscopic
and molecular analyses and the use of in vitro models to establish the foundation for
in vivo imaging.
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A second area with significant potential is the development of high-resolution optical
tools that can be used in vivo. While their development is still somewhat nascent, this goal
has great merit, as we have shown optical changes in both the ovary and FT that coincide
with pathology. Notably, cellular changes in precursors are subtle and difficult to identify,
even by a trained pathologist. In contrast, collagen changes in p53 precursors and STICs
were readily revealed by SHG and accurately classified by image analysis. Given that
it is likely these precursors require several years to develop into high-grade disease, an
SHG-based microendoscope could be a viable approach for screening patients at high risk
of developing HGSOC. Thus, the development of an imaging tool that is compact, flexible,
sensitive, steerable, non-ionizing and minimally invasive would significantly improve our
ability to detect these lesions and diagnose ovarian cancer in the early stages. Many of
these tools described in this perspective could serve as the foundation for the development
of this endoscopy technology.

4. Conclusions

In this perspective, we described the limitations of existing imaging and screening
techniques for the detection of HGSOC. To address this problem, we described the use of
high-resolution SHG imaging of collagen alterations in the ECM as a means to identify early
changes in this disease, where we can delineate between precursors in the fallopian tubes
and frank tumors therein, as well as between HGSOC, other ovarian tumors and normal
tissues. For a more complete characterization of the ECM changes, we also described how
SHG can be combined with other modalities including fluorescence and optical coherence
tomography (OCT). For eventual direct translation to clinical imaging, SHG will need
to be implemented via a microendoscope and we describe the state of the art in these
developments. We postulate that successful diagnosis/treatment of HGSOC requires
an integrated approach of ex vivo microscopic and molecular analyses to establish the
foundation for in vivo imaging.
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