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Simple Summary: Accounting for 10% of the new cases in 2020, colorectal cancer (CRC) is one of the
most prevalent cancers worldwide. Unfortunately, CRC is frequently identified at a later stage, despite
the fact that early detection greatly increases survival rates. Diagnostic endoscopy is the gold standard;
however, identifying abnormalities at an early stage is challenging. In particular, convolutional neural
networks (CNNs) are being used by researchers to improve detection through deep learning. But
prior approaches were primarily concerned with polyp detection. This work provided a novel method
for polyp segmentation and endoscopic pathological finding categorization using vision transformers
and spatial transformers for the early identification of colorectal cancer (CRC). These approaches
perform noticeably better than the current CNN-based algorithms. This work opens up exciting
possibilities for improving on early CRC detection beyond just identifying polyps.

Abstract: Endoscopic pathological findings of the gastrointestinal tract are crucial for the early
diagnosis of colorectal cancer (CRC). Previous deep learning works, aimed at improving CRC
detection performance and reducing subjective analysis errors, are limited to polyp segmentation.
Pathological findings were not considered and only convolutional neural networks (CNNs), which
are not able to handle global image feature information, were utilized. This work introduces a
novel vision transformer (ViT)-based approach for early CRC detection. The core components of the
proposed approach are ViTCol, a boosted vision transformer for classifying endoscopic pathological
findings, and PUTS, a vision transformer-based model for polyp segmentation. Results demonstrate
the superiority of this vision transformer-based CRC detection method over existing CNN and
vision transformer models. ViTCol exhibited an outstanding performance in classifying pathological
findings, with an area under the receiver operating curve (AUC) value of 0.9999 ± 0.001 on the Kvasir
dataset. PUTS provided outstanding results in segmenting polyp images, with mean intersection over
union (mIoU) of 0.8673 and 0.9092 on the Kvasir-SEG and CVC-Clinic datasets, respectively. This
work underscores the value of spatial transformers in localizing input images, which can seamlessly
integrate into the main vision transformer network, enhancing the automated identification of critical
image features for early CRC detection.

Keywords: vision transformer; spatial transformer; colorectal cancer; pathological findings; early
detection; endoscopy

1. Introduction

Colorectal cancer (CRC), excluding skin cancer, is the third most common cancer
by incidence and the second most common cause of death among other cancers in both
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sexes [1]. For several decades, the death rate from colorectal cancer in both sexes has de-
creased [2]. One of the reasons is that colorectal polyps are now more frequently discovered
through screening and removed before they can progress to cancer, or tumors are discov-
ered sooner when they can be treated more effectively [3,4]. Additionally, colorectal cancer
treatments have advanced, resulting in more than 1.5 million colorectal cancer survivors in
the United States alone [1,5]. Despite the fact that the total mortality rate has continued to
decline, colorectal cancer mortality among those younger than 55 years has increased by
1% annually since 2008 [5,6]. One of the most effective ways to prevent colorectal cancer is
routine screening [7]. When colorectal cancer is in its early stage, it is frequently smaller,
has not spread, and may be easier to treat. It can take up to 10 or 15 years for a polyp to
become cancerous [8,9]. Doctors can detect and remove polyps through screening before
they become cancerous. As CRC that is identified at an early stage has a five-year relative
survival rate above 90%, early detection of the disease is essential [10]. However, only 40%
of CRC cases are found in the early stages, and the survival probability drops if the disease
spreads outside the colon or rectum [11]. Endoscopy is recommended for the diagnosis of
CRC when clinicians notice an abnormal growth in the colon or rectum [10]. Endoscopic
observation of CRC mostly focuses on finding polyps; however, esophagitis and ulcerative
colitis might also be related to CRC [12,13]. Studies have found that esophagitis and CRC
share risk factors, and that the rate of CRC is significantly increased in the presence of
esophagitis [12,14–16]. Furthermore, patients with ulcerative colitis are at a higher risk of
developing colorectal cancer [17,18]. This phenomena of esophagitis and ulcerative colitis
cases increasing the risk of CRC affects the early diagnosis of CRC [19–21]. This warrants a
mechanism for the early identification of esophagitis, ulcerative colitis, and polyps, so that
efficient CRC treatment can be administered. Esophagitis, ulcerative colitis, and polyps
are referred to as pathological findings under endoscopy [8,22,23]. Early identification
of gastrointestinal endoscopic pathological findings is crucial for the early detection and
treatment of CRC [5,8,10]. However, the detection and identification of endoscopic patho-
logical findings at an early stage are cumbersome [24,25]. Deep learning has been sought
by researchers to overcome the general challenges of early detection of endoscopic CRC,
and it has brought about significant improvements, especially in polyp detection [26,27].
Although extensive research has been conducted on polyp detection, studies involving
esophagitis and ulcerative colitis for the early diagnosis of CRC are not available. Moreover,
most state-of-the-art deep learning studies for early detection of CRC are solely based on
convolutional neural networks (CNNs) [28–30]. CNNs can learn visual representations
for easy transfer and strong performance, owing to the strong inductive bias of spatial
equivariance and translational invariance provided by their convolutional layers [31–35].
However, vision transformers (ViTs) exhibit superior performance over CNNs for natural
image classification and segmentation [36–39]. In contrast to CNNs, which perform many
convolutions at different layers to focus on a given area of an image, ViT focuses on all areas
of the image at the beginning of its early layers [40,41]. Despite the numerous applications
of CNNs to endoscopic colorectal images, ViT has not yet been explored for its use in the
detection of CRC [42–44]. In this study, we propose a novel deep learning algorithm for the
classification of endoscopic pathological findings and polyp segmentation based on ViTs
for the early detection of CRC. The contributions of this study are as follows:

• Inclusion of other pathological findings in addition to polyp for early CRC diagnosis;
• ViTCol: Boosted ViT endoscopic pathological findings classifier for early CRC detection;
• PUTS: A novel Swin-Unet transformer-based polyp segmentation model;
• Comparison of ViTCol and PUTS with state-of-the-art CNN and ViT methods.

This study outlines several novel contributions to the field of CRC detection. Firstly, it
breaks away from the conventional approach that is solely focused on polyp detection by
incorporating additional pathological findings, such as esophagitis and ulcerative colitis,
into the early diagnosis of CRC. This expanded scope enhances the comprehensiveness
of CRC detection methodologies. Secondly, the introduction of ViTs represents a novel
departure from the predominant use of CNNs in CRC detection. ViTs offer superior
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performance in image classification and segmentation tasks, potentially revolutionizing
the accuracy and efficiency of CRC detection. Thirdly, the proposed deep learning models,
ViTCol for endoscopic pathological findings classification and PUTS for polyp segmentation,
introduce innovative solutions tailored specifically for CRC detection tasks. These models
present advancements in both classification and segmentation aspects crucial for early
CRC diagnosis. Lastly, the comparative analysis conducted against state-of-the-art CNN
and ViT methods highlights the unique strengths and potential superiority of the newly
proposed models, further emphasizing their novelty and contribution to advancing CRC
detection methodologies. Overall, this study introduces a multifaceted approach to CRC
detection, encompassing expanded pathological findings, innovative deep learning models,
and comparative evaluation, thereby significantly advancing the state-of-the-art methods
of CRC detection.

2. Related Works

A few studies have applied ViTs to the detection of colorectal cancer [39,45–50]. All
these studies focused only on polyp images, and the target task was the semantic seg-
mentation of these polyps. The main objective of previous studies was to compensate for
the global semantic information loss by CNNs without sacrificing the low-level and local
information from CNNs. Park et al. [39] combined CNN and ViT for polyp segmentation
to design a robust model for maintaining global semantics without sacrificing the low-level
features of CNNs. The authors combined EfficientNet (CNN) and Swin transformer (ViT)
to achieve their objectives and reported improved performance compared to current state-
of-the-art methods. Li et al. [45] also proposed a model that combined CNN and ViT, a
multi-information aggregation network (MIA-Net) for polyp segmentation, to overcome
the intra- and inter-class inconsistencies in previous approaches. Using a powerful global
contextual feature extraction module, they used a ViT to extract global characteristics and
pinpoint polyps more accurately. The impact of intraclass inconsistency was lessened by
this strategy. In addition, their model aggregated the high- and low-level data recovered
by the transformer with fine-grained local texture features captured by the convolutional
encoder. The model became more sensitive to edge information, and it reduced interclass
indistinctions owing to this rich feature information. According to their experimental
findings, the MIA-Net exhibited excellent generalization and good fitting capabilities. In
addition, MIA-Net surpassed previous algorithms and considerably increased the accuracy
of polyp segmentation. Pan et al. [46] designed a fusion of a transformer and a CNN for
polyp segmentation called EG-TransUNet. A progressive enhancement module (PEM) and
channel spatial attention (CSA) were used to create the EG-TransUNet architecture, a U-Net
variant that can increase feature discrimination at the level of spatial detail and semantic
placement. Based on self-attention, CSA uses semantic guidance attention (SGA) to seam-
lessly combine spatial and semantic information. The authors claimed that EG-TransUNet
could capture object variability and provide better results on various biological datasets,
including polyp images. The CNN backbone used was ResNet50. Similarly, Duc et al. [47]
designed a combined transformer and CNN network called ColonFormer, which was
motivated by earlier methods for modeling multi-scale and multi-level characteristics. The
transformer was used as an encoder, and a CNN was used as a decoder in the ColonFormer.
The encoder in ColonFormer is a lightweight, hierarchically organized transformer that can
learn multi-scale characteristics. The decoder employs a hierarchical pyramid structure and
can learn from heterogeneous inputs that include feature maps taken from encoder blocks
at various scales and subregions. Additionally, a refinement module was included to fur-
ther boost the segmentation accuracy on difficult locations and tiny polyps. ColonFormer
outperformed the previous methods in polyp segmentation. Other studies that focused on
improving polyp segmentation by detecting challenging features [49] and compensating
for feature fusion from ViTs and CNNs [48] have also been proposed and shown to improve
polyp segmentation.
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However, most of the previous studies focused only on polyp segmentation, not
considering other pathological findings for colorectal cancer detection and the combination
of ViTs and CNNs as encoders or decoders. Little attention was given to preprocessing the
input images so that all the necessary features were extracted accurately for ViTs to be able
to capture all local and global information simultaneously.

The current work improves upon the limitations of previous studies in several ways.
Firstly, while previous studies solely focused on polyp segmentation using ViTs and CNNs,
the current study expands the scope by considering other pathological findings crucial
for colorectal cancer detection. By incorporating additional pathological findings beyond
polyps, the current work enhances the comprehensiveness of CRC detection methodologies,
addressing a notable gap in existing research. Secondly, previous studies utilized ViTs
and CNNs primarily as either encoders or decoders in isolation. In contrast, the current
study proposes a novel approach by combining ViTs and CNNs as both encoders and
decoders, leveraging the strengths of both architectures to extract and process features
effectively. This integrated approach ensures comprehensive feature extraction and pro-
cessing, improving the accuracy and robustness of CRC detection models. Additionally,
the current study addresses the issue of feature extraction accuracy by emphasizing the
importance of preprocessing input images to accurately capture all necessary features for
ViTs to effectively capture both local and global information simultaneously. By focusing
on preprocessing techniques to optimize feature extraction, the current work ensures that
ViTs can leverage the full spectrum of information available in the input data, leading to
more accurate and reliable CRC detection outcomes. Overall, by expanding the scope of
the pathological findings considered, integrating ViTs and CNNs in a novel manner, and
emphasizing preprocessing techniques for enhanced feature extraction, the current study
significantly advances CRC detection methodologies beyond the limitations of previous
research efforts.

3. Materials and Methods

We developed a novel deep learning algorithm for the classification of endoscopic
pathological findings and polyp segmentation based on a ViT network for the early diagno-
sis of CRC, as described below.

3.1. ViTCol: Vision Transformer-Based Classifier for CRC Detection
3.1.1. Motivation

Vision transformers enable a global view of an image from the first layer without
losing data regarding the position and orientation of an object. These advantages of ViTs
become more significant when smaller patch sizes are used or when the input images are
smaller. To achieve a smaller input image size while focusing on the important parts of the
image for CRC detection, we developed a boosted ViT model with a spatial transformer
module for weakly localizing the input image.

3.1.2. ViTCol Architecture

The proposed architecture has a spatial transformer network (STN) as a module
that helps localize the important part of an input image and feeds its output into the
ViT architecture for attention. The spatial transformer generates a localization of the
input image as its output, which is converted into patches to be fed into the transformer
encoder network [51].

The localization module has three parts: localization network, grid generator, and
sampler (Figure 1). The localization network generates θ parameters, which are learned
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as affine transforms for input U with width W, height H, and channel C. The affine
transformation is given by (1).
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The grid generator calculates the relevant sample positions in the input image using
Tθ on G transformation as it iterates across the target image’s regular grid. The result is
a collection of points with target coordinates (xt

i , yt
i ), which were modified based on the

transformation parameters. The sampler creates an output feature map V based on a new
set of coordinates (xt

i , yt
i ).

The output of the localization module was fed into a ViT model. A transformer model
is a type of neural network that tracks relationships in sequential data, similar to words in
a phrase, to learn meaning and context. Data sequences in the form of image patches are
used by vision transformers. The ViT operates as follows.

• Convert images into patches: Image patches are used as tokens of words by vision
transformers, as in the original paper by Vaswani et al. [52]. For images, it is possible
to take pixels; however, if pixels are considered, the computational cost will be high,
and it is challenging to find hardware to process high-resolution images, as in the case
of medical images. Thus, converting input images into patches has been proposed by
Dosovitskiy et al. [36], as shown in Figure 2A. An image with H×W is converted into
N patches of size P× P.
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• Flattening and patch embedding the patches: After that, a single feed-forward layer
is applied to the flattened patches to create a linear patch projection, as shown in
Figure 2B. This feedforward layer contains the embedding matrix E as mentioned
by [36]. Matrix E was randomly generated.

• Learnable and positional embeddings: Patch projection is concatenated together
with learnable embeddings, which are used later for classification. Transformers use
positional embeddings to construct a certain order in the patches since, unlike time
sequence models, patches do not spontaneously form into sequences. Similar to patch
embedding, the positional encoding matrix is produced at random.

• Multilayer perceptron (MLP) head: The MLP head receives the transformer encoder
unit’s outputs for classification. Despite the multiple outputs of the transformer
encoder, the MLP takes only one output related to the class embedding, while the
other outputs are ignored. The probability distribution of the labels that the associated
images belong to is output by MLP. Figure 3 shows the ViT architecture used in ViTCol.
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3.1.3. Model Definition

The goal is to learn a mapping∅, between two variables xP and t,∅ : xP∈ XN×(P×P×C)

→ t ∈ T, where xP stands for the D dimensional patches and T stands for the output class
space. In other words, we search for a mapping between the output class probabilities for
each series of input picture patches. A transformer encoder unit and MLP head were used
to implement this mapping. With its two components, an encoder and decoder, the trans-
former encoder unit converts the input patch sequence into an output. Multi-head attention
and feed-forward layers constitute the majority of the encoder and decoder components.

The attention mechanism is given by Equation (2).

A(Q, K, V) = so f tmax

(
QKT
√

dk

)
V (2)

where Q is the vector representation of a single patch from the input sequence, K is
the vector representation of all patches as keys, and V is the vector representation of
all patches as values. SoftMax produces values in the range of 0–1. The feedforward
algorithm then continues after the multi-head attention processes in the encoder and
decoder. Using feedforward layers, a distinct linear transformation is performed for each
component of the sequence. The features are then transformed into an output classification
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function by the MLP using the transformer encoder outputs. The transformer encoder
offers several outputs, but the MLP chooses only one output that closely resembles the
class being considered and disregards the other outputs. The probability distribution of the
corresponding classes under which the image is classified is output by MLP.

The pathological finding classes were encoded as probability distributions using
the SoftMax output. As a result, when it comes to training the network, we simply use
cross-entropy, as shown in Equation (3), where C is the collection of potential classes for
the images.

Loss = −
|C|

∑
i=0

ĉilog

 exp(∅(X)i)

∑
|C|
j exp

(
∅(X)j

)
 (3)

3.1.4. Implementation

The ViTCol method utilized three different ViT base models: vitb_16, vitb_32, and
vitl_32. An Adam optimizer with a learning rate of 0.0001 was used. The proposed model
was run for 50 epochs, with a batch size of 16. We used L2 regularization and the Gaussian
error linear unit (GELU) activation function. Augmentation was used to enrich the training
dataset. Several augmentations were used, including random rotation (range = 40), flip
(horizontal and vertical, range = 0.2), shift (width and height, range = 0.2), shear (0.1), and
zoom (0.1). We used a publicly available gastrointestinal endoscopic pathological findings
dataset called Kvasir (available online at https://datasets.simula.no/kvasir/ (last accessed
on 5 April 2024). Sample images from this dataset are shown in Figure 4. Pathological
findings were categorized into three classes: esophagitis, polyps, and ulcerative colitis,
with 1000 images in each class. The pathological findings dataset was categorized into
training and testing using a 9:1 ratio. The input image size was 224× 224 and the patch
sizes were 16× 16 and 32× 32, based on the base model type used. The model parameters
were initialized using weights that were pretrained on ImageNet. Experiments were run
on an RTX 3090 GPUs in Python 3.6, using the TensorFlow framework.
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3.2. PUTS: Vision Transformer-Based Polyp Segmentation
3.2.1. Motivation

U-Net-based models are popular for polyp segmentation. In general, these models
focus on updating the encoder, decoder, skip connection, progressive supervision, data
augmentation, and loss function to enhance the classical U-net network for improved polyp
segmentation. These approaches have weaknesses in handling challenging polyp segmen-
tation tasks, such as shape or size disparity, background noise, and vague boundaries.
Moreover, existing studies are mostly based on CNNs, which create image features using
convolutional kernels. Each convolutional kernel can only focus on one subregion of the
entire image because of the inherent inductive biases, which cause it to lose the global
context and fail to develop long-range dependencies. The downsampling process and
convolution layer stacking increase the receptive field and improve the local interaction;
however, this is not the best option because it complicates the model and makes it more
susceptible to overfitting. To model long-range dependencies, self-attention mechanisms
using transformers have been proposed and have improved medical image segmentation.
However, transformers are computationally complex and require more resources than
CNNs do. To reduce computation costs, window-based multi-head self-attention and shift-
ing window-based multi-head self-attention hierarchical Swin transformers are considered.
This leads to the creation of a Swin-Unet segmentation model that improves the perfor-
mance of medical image segmentation. Nevertheless, the loss of shallow characteristics,
such as edges and line information, will result from this method’s disregard for the intrinsic
structural features at the pixel level within each patch. Therefore, we designed a novel
Swin-Unet transformer-based polyp segmentation model (PUTS) to address the limitations
of the current study. On one hand, we introduced a localization module to improve the
performance of challenging polyp segmentation tasks. On the other hand, we used the
Swin-Unet transformer with spatial transformer as our encoder and decoder to improve
the Swin-Unet performance in feature extraction, overcoming the limitations of intrinsic
structure feature extraction.

3.2.2. PUTS Architecture

The proposed architecture has a spatial transformer module that helps to localize an
important part of an input image and feed its output into the Swin-Unet architecture with
a Swin transformer encoder and decoder. The spatial transformer generates a localization
of the input image as its output, which is converted into patches to be fed into the Swin
transformer encoder network, as in ViTCol. The Swin transformer extracts global contexts
using tokenized patches from an input image feature map as the input sequence. Then, to
enable accurate localization, the decoder samples the encoded features before combining
them with high-resolution feature maps. The Swin transformer encoder harvests features
at different resolutions using shifting windows for computing self-attention. At each
resolution, skip connections connect it to a Swin transformer-based decoder, as in [38]. The
proposed method is illustrated in Figure 5.

3.2.3. Model Definition

Let X = Ri×j and Y be the input image and output segmentation mask spaces,
respectively. For the segmentation task, we must distinguish between the polyp and
non-polyp parts, denoted S = {0, 1}. As such, Y = {0, 1}i×j. Our goal is to learn
mapping Φ : X → Y , which provides an input endoscopic image and outputs the corre-
sponding polyp segmentation mask. To design Φ, we propose a PUTS that has a local-
ization module based on a spatial transformer and an encoder and decoder based on the
Swin-Unet architecture.

The localization module produces an affine transformation of the input image as in the
ViTCol architecture. It generates θ parameters, which are learned as affine transforms for
input U with width W, height H, and channel C. The grid generator calculates the relevant
sample positions in the input image using Tθ on G transformation as it iterates across the
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target image’s regular grid. The result is a collection of points with target coordinates (xt
i ,

yt
i ), which were modified based on the transformation parameters. Following this, the

sampler creates an output feature map V based on the new set of coordinates (xt
i , yt

i ), as
shown in Equation (1).

The encoder, bottleneck, decoder, and skip connections make up Swin-Unet. A Swin
Transformer Block is the fundamental building block of Swin-Unet. A Swin transformer
block is built using shifted windows, in contrast to the traditional multi-head self-attention
(MSA) module. Two sequential Swin transformer blocks are shown in Figure 6. Each Swin
transformer block consists of a residual connection, multi-head self-attention module, layer
normalization (LN) layer, and two-layer MLP along GELU nonlinearity. The two subsequent
transformer blocks each employ window-based multi-head self-attention (W-MSA) and
shifted window-based multi-head self-attention (SW-MSA) modules. Continuous Swin
transformer blocks based on such a window partitioning approach can be given as in (7).

ẑl = W −MSA
(

LN
(

zl−1
))

+ zl−1 (4)

zl = MLP(LN)
(

ẑl
)
+ ẑl (5)

ẑl+1 = SW −MSA
(

LN
(

zl
))

+ zl (6)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (7)
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In the Equations (4) and (5), ẑl and zl represent the outputs of the SW-MSA module
and the lth block MLP module, respectively. Self-attention is given as in (8).

A(Q, K, V) = So f tMax

(
QKT
√

dk
+ B

)
V (8)

Q is the vector representation of a single patch from the input sequence, K is the vector
representation of all patches as keys, and V is the vector representation of all patches as
values. B is the bias and d is the dimension of the key.

In the encoder, the images that are generated by the localization module are split into
patch sizes of 4× 4, which are nonoverlapping, as in [38]. With C channels, the dimension
of the feature of every patch is 4× 4× C. The patches are then linearly embedded to obtain
a linear patch feature projection. To create hierarchical feature representations, the changed
patch tokens are passed through a number of Swin transformer blocks and patch merging
layers. The downsampling and increasing dimensions are handled by the patch merging
layer, whereas feature representation learning is handled by the Swin transformer block. In
the decoder, we have a Swin transformer block and patch expanding layer, as in [38]. To
compensate for the loss of spatial information brought on by downsampling, the recovered
context features are fused with multi-scale data from the encoder via skip connections.
The patch-expanding layer performs the upsampling task. With a two-time upsampling of
resolution, the patch expanding layer reshapes the feature maps of the adjacent dimensions
into a large feature map. After performing upsampling four times to obtain the resolution
of the feature maps back to the input resolution (H ×W), the last patch expanding layer is
used to apply a linear projection layer on the upsampled features, which then produces the
predictions for pixel-level segmentation.

3.2.4. Implementation

Two publicly available polyp image datasets, Kvasir-SEG (available online at https://
datasets.simula.no/kvasir-seg/ (last accessed on 5 April 2024)) and CVC-ClinicDB (avail-
able online at https://www.kaggle.com/datasets/balraj98/cvcclinicdb (last accessed on
5 April 2024)), were used to evaluate PUTS. Kvasir-SEG contains 1000 polyp images, and
the CVC-ClinicDB dataset contains 612 polyp images. Sample images of polyps and their
corresponding masks are shown in Figure 7. We split our dataset into 80% training and
20% testing sets. Given N image–mask pairs during training T = {(xn, yn)}N

n=1, where
xn ε X and yn ε Y, the model parameters are learned via back-propagation of categorical
cross-entropy using an Adam optimizer with a learning rate of 0.0001. In this study, we em-
ployed a pixel-wise categorical cross-entropy loss between the segmentation masks g(yn)
and model predictions ŷn = Φ(h(xn)). Every image–label pair is subjected to extensive
online manipulation during training via a set of augmentation functions that were each
triggered on the image–label pair to promote invariance to common polyp image transfor-

https://datasets.simula.no/kvasir-seg/
https://datasets.simula.no/kvasir-seg/
https://www.kaggle.com/datasets/balraj98/cvcclinicdb
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mations and hence, enhance the generalization of inference. We included augmentations
such as random rotation (range = 40), flip (horizontal and vertical, range = 0.2), shift (width
and height, range = 0.2), shear (0.1), and zoom (0.1). Training was stopped after 150 epochs.
The input image size was 224× 224 and the patch size was 4× 4. The model parameters
were initialized using weights that were pretrained on ImageNet. Experiments were run
on an RTX 3090 GPUs in Python 3.6, using the TensorFlow framework.
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3.3. Parameters Selection

Based on recent studies [53–55] on deep learning for CRC, we selected the following
five optimizers: Adam, Adadelta, Adamax, Adagrad, and stochastic gradient descent (SGD).
Next, we chose an activation function and ran tests using three different activation functions
as follows: rectified linear unit (ReLu), exponential linear unit (ELU), and GELU. Based
on the results, we selected GELU. Furthermore, we used three regularization techniques,
L1, L2, and L1/L2, and selected L2 regularization based on performance. Furthermore,
we thoroughly investigated the spectrum of learning rates to establish the ideal value for
each optimizer, as the learning rate value had a significant impact on performance. We
performed a grid search to find the best learning rate for each optimizer, which included
the following five learning rate values: 1, 0.1, 0.01, 0.001, and 0.0001 with early stop. Based
on the data, we used a learning rate of 0.0001 with the Adam optimizer to achieve the best
outcome. Following the selection of the ideal learning rates, we conducted an experiment
to determine whether to employ fixed epochs or early halting during training rounds. We
employed 50, 100, 150, 200, 250, and 300 fixed epochs, and 300 early stopping tests with
patience of 5, 7, and 10. Based on the experimental performance results and computational
time, we chose a fixed epoch of 50 for ViTCol and 150 epochs for PUTS.
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4. Results
4.1. Pathological Findings Classification Performance Results

To evaluate the performance of our proposed ViTCol CRC early detection method
and its constituent parts, we considered the following evaluations: (i) ViTCol method
using three ViT base models (vitb_16, vitb_32, and vitl_32); (ii) conventional ViT method
using three base models (vitb_16, vitb_32, and vitl_32) without the localization module
as in ViTCol; and (iii) comparison using three state-of-the-art CNN models (ResNet50,
EfficientNetB2, and InceptionV3). We evaluated the pathological finding classification
performance experiments carried out in this study in terms of accuracy, AUC, sensitivity,
specificity, and F1-score. Because these metrics are prone to misdiagnosis and cannot
provide exact performance, we also report the results generated using two additional
metrics: Matthew’s correlation coefficient (MCC) and Cohen’s kappa values.

As shown in Table 1, ViTCol with the vitb_16 baseline performed best among the
three ViT baselines in classifying pathological findings with an accuracy, AUC, sensitiv-
ity, specificity, F1-score, MCC value, and Kappa value of 0.9998 ± 0.001, 0.9999 ± 0.001,
0.9998 ± 0.001, 0.9998 ± 0.002, 0.9999 ± 0.001, 0.9995 ± 0.002, and 0.9997 ± 0.001, respec-
tively. The vitb_32 and vitl_32 base models also provided comparable performance to the
vitb_16 model. This demonstrated the effectiveness of the proposed ViTCol approach for
classifying endoscopic pathological findings for early CRC detection. In terms of compu-
tational complexity, it took approximately 40 min to train ViTCol with the vitb_16 base
model.

Table 1. ViTCol performance using different ViT base models.

Model Accuracy
(95%) AUC (95%) Sensitivity

(95%)
Specificity

(95%) F1 (95%) MCC (95%) Kappa (95%)

vitb_16 0.9998 ± 0.001 0.9999 ± 0.001 0.9998 ± 0.001 0.9998 ± 0.002 0.9999 ± 0.001 0.9995 ± 0.002 0.9997 ± 0.001
vitb_32 0.9864 ± 0.002 0.9882 ± 0.001 0.9860 ± 0.002 0.9871 ± 0.003 0.9868 ± 0.002 0.9847 ± 0.003 0.9842 ± 0.002
vitl_32 0.9752 ± 0.001 0.9774 ± 0.002 0.9749 ± 0.001 0.9748 ± 0.002 0.9768 ± 0.002 0.9720 ± 0.002 0.9741 ± 0.002

To determine the effectiveness of the additional constituent parts of ViTCol in improv-
ing the performance, we compared it with conventional ViTs using the same base models
but without adding the localization module as in the ViTCol method. Consequently, as
shown in Table 2, the vitb_16 base model provided the highest performance values of
0.9845 ± 0.001, 0.987 ± 0.001, 0.9832 ± 0.002, 0.9836 ± 0.003, 0.984 ± 0.001, 0.9817 ± 0.002,
and 0.9826 ± 0.002 for accuracy, AUC, sensitivity, specificity, F1-score, MCC value, and
kappa value, respectively. Compared to the ViTCol method, the conventional ViT method
performed lower for all three base models used: vitb_16 (AUC of 0.987 ± 0.001 for conven-
tional ViT method vs. 0.9999 ± 0.001 for ViTCol method), vitb_32 (AUC of 0.9742 ± 0.001
for conventional ViT method vs. 0.9882 ± 0.001 for ViTCol method), and vitl_32 (AUC of
0.969 ± 0.001 for conventional ViT method vs. 0.9774 ± 0.002 for ViTCol method). This
demonstrated the superiority of the proposed ViTCol method over the conventional ViT
method for classifying endoscopic pathological findings for early CRC detection.

Table 2. Performance of conventional ViT base models.

Model Accuracy
(95%) AUC (95%) Sensitivity

(95%)
Specificity

(95%) F1 (95%) MCC (95%) Kappa (95%)

vitb_16 0.9845 ± 0.001 0.987 ± 0.001 0.9832 ± 0.002 0.9836 ± 0.003 0.984 ± 0.001 0.9817 ± 0.002 0.9826 ± 0.002
vitb_32 0.9684 ± 0.001 0.9742 ± 0.001 0.9644 ± 0.02 0.9642 ± 0.003 0.966 ± 0.001 0.9604 ± 0.003 0.9622 ± 0.002
vitl_32 0.9605 ± 0.001 0.969 ± 0.001 0.9618 ± 0.002 0.9616 ± 0.002 0.9614 ± 0.001 0.9598 ± 0.002 0.9599 ± 0.001

Table 3 depicts the results generated for classifying endoscopic pathological findings
using the following state-of-the-art CNN methods: ResNet50, EfficientnetB2, and Incep-
tionV3. ResNet50 performed slightly better than EfficientnetB2 and InceptionV3, with an
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AUC of 0.9749 ± 0.001, 0.9707 ± 0.004, and 0.9718 ± 0.001 for ResNet50, EfficientnetB2, and
InceptionV3, respectively. From the results in Tables 1 and 3, it can be observed that the
proposed ViTCol method outperforms the CNN method. Even with the worst performing
base model (vitl_32), ViTCol outperformed the best performing model (ResNet50) of the
CNN approach (AUC of 0.9774 ± 0.002 for ViTCol with vitl_32 base model vs. AUC of
0.9749 ± 0.001 for ResNet50 based CNN method). ViTCol models outperform CNNs due
to their superior ability to capture long-range dependencies and global context in images.
Unlike CNNs, which process images in a hierarchical manner through local receptive fields,
ViTCol models process the entire image at once using self-attention mechanisms, allowing
them to efficiently capture both local and global features. This enables ViTCol models to
learn more robust representations of complex patterns and relationships within images,
leading to improved performance.

Table 3. Performance of CNN-based models.

Model Accuracy
(95%) AUC (95%) Sensitivity

(95%)
Specificity

(95%) F1 (95%) MCC (95%) Kappa (95%)

ResNet50 0.9740 ± 0.001 0.9749 ± 0.001 0.9749 ± 0.002 0.9748 ± 0.002 0.9741 ± 0.001 0.9726 ± 0.003 0.9724 ± 0.002
EfficientNetB2 0.9642 ± 0.005 0.9707 ± 0.004 0.9627 ± 0.003 0.9640 ± 0.004 0.9624 ± 0.006 0.9628 ± 0.003 0.9624 ± 0.003
InceptionV3 0.9702 ± 0.001 0.9718 ± 0.001 0.9694 ± 0.003 0.9697 ± 0.002 0.9702 ± 0.001 0.9659 ± 0.004 0.9648 ± 0.004

4.2. Polyp Segmentation Performance Results

A quantitative assessment and comparison of segmentation performance for U-net,
ResUnet, Unet3+, Deeplabv3, Trans-Unet, Swin-Unet, and the proposed PUTS models are
provided in Table 4. Evaluation metrics include mean intersection-over-union (mIoU), mean
Dice (mDic) score, sensitivity, specificity, and MCC. We observed that using the localization
module in combination with the Swin-Unet model in PUTS yields a strong performance
gain over the conventional Swin-Unet, increasing the mIoU, mDic, sensitivity, specificity,
and MCC values from 0.8206, 0.8892, 0.8734, 0.8783, and 0.8642, respectively, to 0.8673,
0.9186, 0.9095, 0.9104, and 0.9048, respectively, for segmenting the Kvasir-SEG polyp image
dataset. Similarly, on the CVC-Clinic dataset, PUTS using Swin-Unet performed better
than the conventional Swin-Unet model, increasing mIoU, mDic, sensitivity, specificity, and
MCC value, from 0.8552, 0.9053, 0.8937, 0.8915, and 0.8906, respectively, to 0.9092, 0.9484,
0.9392, 0.9387, and 0.9317, respectively.

Table 4. Polyp segmentation performance on Kvasir-SEG and CVC-ClinicDB datasets.

Model mIoU mDic Sensitivity Specificity MCC

Kvasir-SEG dataset

U-net 0.7919 0.7941 0.7908 0.7916 0.7902
ResUnet 0.7914 0.8085 0.7819 0.8021 0.7528
Unet 3+ 0.7998 0.8275 0.8142 0.8156 0.8024

DeepLabV3 0.7932 0.8154 0.8068 0.8052 0.8014
TransUnet 0.8058 0.8691 0.8453 0.8512 0.8439
SwinUnet 0.8206 0.8892 0.8734 0.8783 0.8642

PUTS 0.8673 0.9186 0.9095 0.9104 0.9048

CVC-ClinicDB dataset

U-net 0.8416 0.8892 0.8793 0.8799 0.8724
ResUnet 0.8239 0.8792 0.8674 0.8683 0.8619
Unet 3+ 0.8427 0.8904 0.8817 0.8844 0.8786

DeepLabV3 0.8397 0.8829 0.8732 0.8719 0.8694
TransUnet 0.8502 0.8946 0.8915 0.8924 0.8852
SwinUnet 0.8552 0.9053 0.8937 0.8915 0.8906

PUTS 0.9092 0.9484 0.9392 0.9387 0.9317
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Furthermore, the proposed PUTS polyp segmentation method outperformed the state-
of-the-art segmentation models on the Kvasir-SEG dataset irrespective of whether the
models were purely CNN, as in the case of U-net with mIoU of 0.7919 vs. 0.8673 for PUTS,
ResUnet with mIoU of 0.7914 vs. 0.8673 for PUTS, Unet3+ with mIoU of 0.7998 vs. 0.8673
for PUTS, and DeepLabV3 with mIoU of 0.7932 vs. 0.8673 for PUTS or a mixture of CNN
and transformer, as in the case of TransUnet with mIoU of 0.8058 vs. 0.8673 for PUTS, and
Swin-Unet with mIoU of 0.8206 vs. 0.8673 for PUTS. Similarly, PUTS outperformed other
models that were made of CNNs and transformers on the CVC-ClinicDB dataset, as shown
in Table 4.

A visual assessment of the PUTS segmentation output for the Kvasir-SEG dataset is
shown in Figure 8. PUTS provides a segmentation output that is almost similar to the
segmentation mask, even for challenging images with a sophisticated polyp appearance.
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Figure 8. Sample segmentation outputs of PUTS model on Kvasir-SEG dataset.

The visual comparison in Figure 9 clearly shows the superiority of PUTS over previous
methods for polyp segmentation, providing a segmentation output that is the same as the
segmentation mask provided. The polyp image in Figure 9 is a challenging case for the
Kvasir-SEG dataset. PUTS captured every detail of the image provided to segment even
polyps, which can be difficult for professionals to distinguish.
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Figure 9. Visual comparison of segmentation output of different models on Kvasir-SEG dataset.

5. Discussion

Both the ViTCol endoscopic pathological findings classification model and PUTS en-
doscopic polyp segmentation model proposed in this study leveraged the contribution
of the STN-based localization module to improve the classification and segmentation
performance over other models. The STN offers two advantages. It offers weakly super-
vised localization without the use of fine-grained supervision, which makes it possible to
apply consistency-based regularization, which is particularly advantageous in terms of
performance [56]. STN offers weakly supervised localization capabilities, meaning it can
identify and localize objects within an image without relying on precise annotations or
fine-grained supervision. This capability is particularly advantageous as it allows for the
application of consistency-based regularization techniques, which enhance model perfor-
mance by enforcing consistency across different samples or augmentations of the same
data. By leveraging weak supervision and consistency-based regularization, STNs enable
more robust and effective learning, especially in scenarios where obtaining precise annota-
tions for training data may be challenging or impractical. This flexibility and performance
enhancement contribute to the versatility and effectiveness of STNs in various computer vi-
sion tasks. To further investigate if significant performance improvements occur because of
the STN, we conducted an experiment using STN and not using STN with the same models
and settings for both classification (using three ViT base models) and segmentation (using
the Swin-Unet model), as shown in Tables 2 and 4. As expected, the proposed models with
the localization module improved the performance of both classification and segmentation.

Regarding the ViTCol pathological findings classification performance, ViTCol based
on vitb_16 outperformed vitb_32 and vitl_32, resulting in reduced computing complexity.
The size of the patches utilized in the basic models may be the primary cause of this. The
vitb_16 base model utilized a 16 × 16 input patch size, whereas the vitb_32 and vitl_32
base models utilized an input patch size of 32 × 32. The effectiveness and efficiency of
the transformer encoder’s attention increase with decreasing patch size. Better results are
obtained when extracting local and global characteristics as a result, which consequently
improved both classification and semantic segmentation. The network’s size and tendency
to overfit the data in comparison to the vitb_16 and vitb_32 models are the other factors,
particularly with regard to vitl_32. In addition, the vitb_16 model is better in this situation
because it requires less computing power than the vitb_32 and vitl_32 models. For instance,
vitb_16 has 12 layers, 768 hidden layer size, 3072 MLP size, 12 heads, and 86 million
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parameters compared to 24 layers, 1024 hidden layer size, 4096 MLP size, 16 heads, and
307 million parameters of the vitl_32 model [36].

To further discuss our findings using PUTS, we made a comparison with state-of-the-
art polyp segmentation papers published in the past two years on the Kvasir-SEG and
CVC-Clinic-DB datasets, as shown in Table 5. To perform the comparison, we followed
data settings as in [45], where the datasets were categorized as 90% training and 10%
testing. The other settings of the PUTS were set the same as in this study. Following
this, the proposed PUTS method, using the Swin-Unet base model, achieved the highest
performance on both datasets compared to works published in the past two years. PUTS
provided mIoU values of 0.889 and 0.909 for the Kvasir-SEG and CVC-Clinic-DB datasets,
respectively. The highest available results published by Li et al. [45] recorded mIoU
values of 0.884 and 0.905 for the Kvasir-SEG and CVC-Clinic-DB datasets, respectively.
In terms of computational complexity, PUTS showed relatively better results compared
to Swin-Unet. PUTS has 36, 142, 374 trainable parameters whereas, Swin-Unet has 35,
072, 374 trainable parameters. For instance, Swin-Unet provided mDic value of 0.8892 on
Kvasir-SEG dataset while PUTS provided mDic value of 0.9186. Comparing computational
complexity, PUTS provided a 3.306% increment in mDic for a 3.0503% increment in number
of training parameters compared to Swin-Unet, showing PUTS’s relative effectiveness in
computational complexity.

Table 5. Comparison of PUTS with state-of-the-art polyp segmentation works.

Dataset Paper Year mIoU mDic

Kvasir-SEG

Zhang et al. [57] 2020 0.820 0.884
Nguyen et al. [58] 2021 0.834 0.894

Fan et al. [59] 2020 0.840 0.898
Huang et al. [60] 2021 0.844 0.903

Wei et al. [61] 2021 0.847 0.904
Xie et al. [62] 2021 0.864 0.915

Dong et al. [48] 2021 0.864 0.917
Li et al. [45] 2022 0.876 0.926

Liu et al. [63] 2023 0.728 0.803
Song et al. [64] 2023 0.876 0.924
Khan et al. [65] 2023 0.874 0.923

PUTS 2023 0.889 0.935

CVC-ClinicDB

Zhang et al. [57] 2020 0.828 0.883
Nguyen et al. [58] 2021 0.849 0.904

Fan et al. [59] 2020 0.849 0.899
Huang et al. [60] 2021 0.865 0.916

Wei et al. [61] 2021 0.859 0.916
Xie et al. [62] 2021 0.882 0.931

Dong et al. [48] 2021 0.889 0.937
Li et al. [45] 2022 0.899 0.942

Liu et al. [63] 2023 0.893 0.941
Song et al. [64] 2023 0.892 0.940
Khan et al. [65] 2023 0.903 0.950

PUTS 2023 0.909 0.949

The proposed ViTCol classification and PUTS segmentation methods can be used in
areas other than early diagnosis of endoscopic CRC. In particular, cancer diagnosis imaging
modalities in which the tumor is concentrated in a given area could benefit from the method
proposed in this study. One such application could be the ultrasound-based early detection
of breast cancer. In ultrasound-based early breast cancer detection, the identification of
lesions as benign and malignant, and extracting the tumor part from the image, is crucial.
The proposed ViTCol and PUTS methods could play a significant role in this task. Moreover,
the proposed approach may also be applicable to histopathological image-based cancer
diagnosis. In histopathology-based cancer diagnosis, whole-slide images, which are large
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in size, are used to determine the state of the disease. Studies in this area utilize patches
made from whole slide images because the whole slide images possess large pixel sizes that
are challenging to process, making them computationally expensive, and the important
parts of whole slide images to determine the state of disease can be determined using a
portion of the whole slide image. The approach proposed in this study may help tackle this
challenge while improving performance.

This study introduced novel deep learning methods, ViTCol, for endoscopic patholog-
ical findings classification, and PUTS for endoscopic polyp segmentation, both integrating
a Spatial Transformer Network (STN) for localization enhancement. The utilization of STN
offers two key advantages: weakly supervised localization and consistency-based regu-
larization. This enables the models to identify and localize objects within images without
relying on precise annotations, enhancing performance by enforcing consistency across
data samples or augmentations. The findings highlight the versatility and effectiveness
of the proposed methods beyond clinical colorectal cancer detection, suggesting potential
applications in other cancer diagnosis modalities, such as ultrasound-based breast cancer
detection and histopathology-based cancer diagnosis. By effectively localizing tumors and
enhancing model performance, the approach holds promise for improving image-based
diagnosis processes in clinical settings, aiding healthcare professionals in making informed
decisions regarding cancer diagnosis and treatment.

6. Conclusions

We designed a novel deep learning method for colorectal cancer early detection using
vision transformers. We employed a spatial transformer network for simple localization of
tumor prior to the self-attention procedure of vision transformers. We incorporated other
gastrointestinal pathological findings that increase the risk of colorectal cancer in our early
detection problem in contrast to previous works that only focus on polyp identification.
Our classification and segmentation tasks were evaluated on three publicly available en-
doscopy image datasets. The proposed method achieved superior performance both on the
classification and segmentation tasks outperforming state-of-the-art convolutional neural
network- and vision transformer-based deep learning approaches in terms of every metric
applied. The conventional vision transformer approach often faces lack of localization,
and our approach resolved this problem using the spatial transformer network for weakly
localizing the tumor area. Our approach can make a significant contribution to image-based
diagnosis processes in the clinical setting, assisting professionals in making the best choice
regarding colorectal cancer.
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