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Simple Summary: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver
condition globally. The increasing incidence of NAFLD suggests that in the upcoming years, NAFLD-
related hepatocellular carcinoma (HCC) is poised to become the leading cause of this type of tumor.
The aim of this study is to evaluate the survival rates of these patients and identify the primary risk
factors contributing to a less favorable prognosis. To accomplish this, we have employed machine
learning techniques. This introduces a novel approach for identifying these factors that can be
targeted to enhance the life expectancy of these patients, offering a more personalized and effective
management strategy. This enhanced management approach not only aids in the optimization of
patient care but also facilitates the delivery of the most effective available treatments.

Abstract: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease
worldwide, with an incidence that is exponentially increasing. Hepatocellular carcinoma (HCC) is
the most frequent primary tumor. There is an increasing relationship between these entities due
to the potential risk of developing NAFLD-related HCC and the prevalence of NAFLD. There is
limited evidence regarding prognostic factors at the diagnosis of HCC. This study compares the
prognosis of HCC in patients with NAFLD against other etiologies. It also evaluates the prognostic
factors at the diagnosis of these patients. For this purpose, a multicenter retrospective study was
conducted involving a total of 191 patients. Out of the total, 29 presented NAFLD-related HCC. The
extreme gradient boosting (XGB) method was employed to develop the reference predictive model.
Patients with NAFLD-related HCC showed a worse prognosis compared to other potential etiologies
of HCC. Among the variables with the worst prognosis, alcohol consumption in NAFLD patients
had the greatest weight within the developed predictive model. In comparison with other studied
methods, XGB obtained the highest values for the analyzed metrics. In conclusion, patients with
NAFLD-related HCC and alcohol consumption, obesity, cirrhosis, and clinically significant portal
hypertension (CSPH) exhibited a worse prognosis than other patients. XGB developed a highly
efficient predictive model for the assessment of these patients.

Keywords: non-alcoholic fatty liver disease; hepatocellular carcinoma; NAFLD-related HCC; machine
learning; mortality; extreme gradient boosting; alcohol
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent chronic
liver disease worldwide. It is known to affect 25–30% of the global population, but is
estimated to actually impact around 40% [1]. There are geographical differences within
this prevalence [2]. It is defined as the presence of macrovesicular steatosis in ≥ 5% of
hepatocytes in the absence of other diseases, such as hepatitis B or C, or excessive alcohol
consumption (20 g/day in women and 30 g/day in men) [3]. It is closely correlated with
increasing rates of obesity and metabolic comorbidities. Its significance today is such that
there are various intercountry projects aimed at addressing this growing issue [4,5]. The
definition has also been modified and updated to better characterize patients [6], evolving
from the initial definition of NAFLD, transitioning through metabolic-associated fatty liver
disease (MAFLD) [7], to the currently proposed definition as metabolic-associated steatotic
liver disease (MASLD) [8,9].

The disease progression is erratic, characterized by numerous steps forward and
backward between a non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis
(NASH) [10]. These changes are influenced by multiple factors driving disease progression,
primarily comorbid conditions (diabetes mellitus, insulin resistance, dyslipidemia, obesity,
etc.) and lifestyle factors, such as alcohol, physical exercise, coffee consumption, or dietary
patterns [11,12]. Additionally, genetic predisposition in each individual plays a significant
role, being one of the primary contributors to the heterogeneity among patients [13,14].

It is estimated that only 10% of patients with NAFLD will eventually develop compli-
cations stemming from liver disease and cirrhosis [15]. Considering the total number of
patients in this situation, this figure is not negligible at all. One of these potential conse-
quences is the development of hepatocellular carcinoma (HCC). HCC is the most frequent
primary liver cancer, being the third most common cause of death due to cancer and the
sixth in terms of diagnosis [16].

Most HCC cases will develop on a cirrhotic liver irrespective of the etiology. However,
when referring to HCC related to NAFLD, this scenario varies. There is a possibility of
its development on a non-cirrhotic liver, which poses a significant challenge, particularly
concerning its detection [17–19].

There is limited published data on the difference in survival between patients with
HCC related to NAFLD compared to other causes. The aim of this study is to compare
the survival rates among patients with NAFLD-related HCC versus other etiologies. It
is also intended to identify prognostic factors that may impact on patient survival. The
identification of these factors will facilitate targeted interventions, designed to enhance
life expectancy outcomes. For this purpose, machine learning (ML) techniques will be
employed. ML presents remarkable superiority by enabling the identification of complex
patterns and precise result prediction. These methodologies not only handle large volumes
of data efficiently but also have the capability to adapt and learn from the data, unveiling
relationships that might go unnoticed using traditional methods [20,21]. The algorithm
extreme gradient boosting (XGB) was chosen as the reference method, and it was compared
to other systems widely used in the scientific literature [22]. XGB was selected for its fast
execution, high scalability, and superior accuracy in results obtained in other medical fields,
including hepatology [23,24].

2. Materials and Methods

A multicenter retrospective cohort study was conducted at the Virgen de la Luz Hospi-
tal in Cuenca and the University Hospital of Guadalajara in Spain. Data collection occurred
between January 2008 and December 2022. Inclusion criteria encompassed patients aged 18
and above with a confirmed HCC diagnosis via the presence of an imaging test compatible
with its vascular behavior in patients with liver cirrhosis or via liver biopsy for those with-
out cirrhosis or with diagnostic uncertainty [17,25]. Exclusion criteria involved patients
diagnosed in a different facility and those lacking available prognostic variables at the time
of diagnosis. This study obtained approval from the ethics committee of the University
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Hospital of Guadalajara. Due to the type of study, an exemption from obtaining informed
consent from the patients was granted.

The demographic variables and comorbidities collected were age, sex, date of HCC
diagnosis, date of death or censoring date, active alcohol consumption, active smoking, di-
agnosis of diabetes mellitus (DM) [26] and dyslipidemia (DL) [27], and obesity (considered
as a body mass index ≥ 30 kg/m2 [28]). The censoring date was considered as the last visit
date in the clinic for those patients who were alive. Alcohol consumption was categorized
as follows: for patients diagnosed with NAFLD, any amount of alcohol was considered
active consumption, taking into account the diagnostic criteria for NAFLD (<20 g/day
in women, <30 g/day in men); for the rest of the patients and etiologies, active alcohol
consumption was considered as consumption at risk (>20 g/day in women, >30 g/day
in men).

Regarding variables related to the diagnosis of HCC, the following were analyzed:
etiology (NAFLD vs. any other cause), presence of cirrhosis [29], Child–Pugh score [30],
diagnosis within an HCC screening program, Eastern Cooperative Oncology Group (ECOG)
stage [31], method of diagnosis (imaging technique or biopsy), model for rnd-stage liver
disease (MELD) [32], presence of clinically significant portal hypertension (CSPH) [33],
Barcelona Clinic Liver Cancer (BCLC) stage [34], meeting Milan criteria [35], number of
lesions, size of the largest lesion (cms), presence of portal thrombosis [36], metastasis, and
lymphadenopathy.

Analytical variables collected included the following: neutrophils (cells/mm3), lym-
phocytes (cells/mm3), platelets (103/dL), International Normalized Ratio (INR), creatinine
(mg/dL), albumin (g/dL), sodium (Na) (mEq/L), bilirubin (mg/dL), Aspartate Amino-
transferase (AST) (U/L), Alanine Aminotransferase (ALT) (U/L), and alpha-fetoprotein
(AFP) (ng/mL). These variables were collected at the time of diagnosis or within the first
month of diagnosis.

To conduct the data analysis, the XGB algorithm was proposed as the reference
method. As mentioned earlier, this algorithm was selected for its scalability, execution
speed, and excellent results in terms of accuracy. Furthermore, it is a versatile system
that allows for parallel computing [37]. Additionally, other ML methods employed in
the scientific literature were implemented. These was performed to assess the utility
and performance of this system. Those that achieved better performance were support
vector machine (SVM) [38], Bayesian linear discriminant analysis (BLDA) [39], decision
tree (DT) [40], Gaussian naïve Bayes (GNB) [41], and K-nearest neighbors (KNN) [42]. The
resulting models were developed using MATLAB (The MathWorks, Natick, MA, USA;
MATLAB R2023a).

To enhance the ML algorithms performance, hyperparameters of each method were
adjusted during training utilizing Bayesian techniques in this study. Bayesian optimization,
a sequential model-based algorithm, optimized hyperparameter values by leveraging
outcomes from previous iterations, reducing the number of model tests, and focusing on
parameters likely to improve validation scores [43]. This approach significantly improved
the developed model performance. The simulations involved 100 iterations for mean
and standard deviation values, reducing noise impact and ensuring statistically valid
results [44].

The representation of the steps carried out for the implementation of the ML algorithms
is shown in Figure 1. Cross-validation with 5 folds was performed. The analysis was
conducted in this manner to prevent overfitting. The developed database was divided into
two groups: 70% of it was used in the training phase and the remaining 30% in the testing
phase. This approach ensured that patients were not used in both phases simultaneously.
After completing this process, the analysis was conducted.
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3. Results

This section presents the results for the training and validation phases for identifying
the main prognostic factors for mortality in patients diagnosed with HCC and NAFLD.
It also demonstrates the comparison between (the proposed method) and the rest of the
analyzed ML algorithms.

A total of 191 patients were included in the study based on the inclusion and exclusion
criteria. Among them, 29 patients developed NAFLD-related HCC, with 24.2% being
women. Within this group, low-level alcohol consumption was present in 48.3%. Only 31%
of these patients had obesity, and 55.2% were diagnosed with diabetes mellitus (DM). The
majority of them (>85%) were incidentally diagnosed outside the HCC screening program,
but 41.4% had cirrhosis. Nearly 69% presented with an ECOG score of 0 at diagnosis, and
79.3% had a BCLC score between 0 and A.

In the control group (n = 162), the main causes of HCC were alcohol (38.3%) and
hepatitis C (34.6%). Except for patients whose primary cause was alcohol consumption,
most of them were either undergoing treatment or had received treatment for their under-
lying condition causing liver damage. In this group, 61.73% of patients reported abusive
alcohol consumption, with DM prevalence at 40.1% and obesity at 31.5%. The percentage
of patients with cirrhosis was higher than in the NAFLD group, with 93.2% of patients
being cirrhotic. A total of 53% of cases were diagnosed by the screening program. Up to
66.5% of them presented with an ECOG score of 0 at diagnosis, and 42.6% had a BCLC
score of 0 or A. More data are available in Table 1.

The average survival within the NAFLD patient group was 9.65 months, while in
the rest of etiologies, it approached 12.4 months. The difference between both groups
was statistically significant, with a p-value of 0.003. Patients with NAFLD-related HCC
had portal hypertension (CSPH) diagnosed in 41.38% of cases, compared to 66.66% in the
control group. The MELD score was 9 in the NAFLD group, while the other group had a
score of 11. Summary of these data is found in Table 2.
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Table 1. Summary of descriptive characteristics of included patients. NAFLD: non-alcoholic fatty
liver disease. BMI: body mass index. ECOG: Eastern Cooperative Oncology Group. BCLC: Barcelona
Clinic Liver Cancer stage.

Other Etiologies (%) NAFLD

N 162 29

Sex
Female 18 (11%) 7 (24.2%)

Male 144 (89%) 22 (75.8%)

Alcohol
None/low risk 62 (38.27%) None: 15 (51.7%)

Low risk: 14 (48.3%)

Risk 100 (61.73%) 0

Smoker
Never 53 (32.71%) 19 (65.51%)

Active/ex-smoker 109 (67.28%) 10 (34.48%)

Diabetes mellitus
No 97 (59.87%) 13 (44.82%)

Yes 65 (40.12%) 16 (55.17%)

Obesity
BMI < 30 kg/m2 111 (68.51%) 20 (68.96%)

≥30 kg/m2 51 (34.48%) 9 (31.03%)

Dyslipidemia
No 127 (78.39%) 18 (62.06%)

Yes 35 (21.6%) 11 (37.93%)

ECOG

0 124 (76.54%) 20 (68.96%)

1 16 (9.8 7%) 3 (10.34%)

2 14 (8.64%) 3 (10.34%)

3 7 (4.32%) 1 (3.44%)

4 1 (0.61%) 2 (6.89%)

Diagnostic method
Biopsy 54 (33.33%) 16 (55.17%)

Imaging test 108 (66.66%) 13 (44.87%)

Surveillance
No 76 (46.91%) 25 (86.2%)

Yes 86 (53.08%) 4 (13.79%)

Cirrhosis
No 11 (6.79%) 12 (41.37%)

Yes 151 (93.2%) 17 (58.62%)

Etiology

Alcohol 62 (38.27%) 0

HCV 56 (34.56%) 0

NAFLD 0 29 (100%)

Other etiologies 42 (25.92%) 0

CSPH
No 54 (33.33%) 17 (58.62%)

Yes 108 (66.66%) 12 (41.37%)

Ascites
No 101 (62.34%) 19 (65.51%)

Yes 61 (37.65%) 10 (34.48%)

Encephalopathy
No 142 (87.65%) 27 (93.1%)

Yes 20 (12.34%) 2 (6.89%)

Portal thrombosis
No 130 (80.24%) 23 (79.31%)

Yes 30 (19.75%) 6 (20.69%)

Metastasis
No 146 (90.12%) 21 (72.41%)

Yes 15 (9.87%) 8 (27.89%)
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Table 1. Cont.

Other Etiologies (%) NAFLD

Lymphadenopathy
No 140 (86.41%) 22 (75.86%)

Yes 21 (13.58%) 7 (24.13%)

Milan criteria
No 100 (61.73%) 20 (69%)

Yes 62 (38.27%) 9 (31%)

BCLC

0 9 (5.56%) 1 (3.45%)

A 60 (37.03%) 11 (37.93%)

B 27 (16.67%) 2 (6.9%)

C 48 (29.63%) 10 (34.48%)

D 18 (11.11%) 5 (17.24%)

Table 2. Descriptive values of survival, MELD, and laboratory parameters used. NAFLD: non-
alcoholic fatty liver disease. MELD: model for end-stage liver disease. INR: international normal-
ized ratio.

Mean Value ± Standard
Deviation

Survival (months)
Other etiologies 12.4 ± 23.9

NAFLD 9.65 ± 22.64

MELD
Other etiologies 11

NAFLD 9

Albumin (g/dL)
Other etiologies 3.70 ± 0.67

NAFLD 3.58 ± 0.75

INR
Other etiologies 1.27 ± 0.58

NAFLD 1.20 ± 0.40

Na (mEq/L)
Other etiologies 138.61 ± 3.42

NAFLD 139.14 ± 3.49

Lymphocytes (cells/mm3)
Other etiologies 1436.69 ± 762.29

NAFLD 1638.21 ± 825.72

Neutrophils (cells/mm3)
Other etiologies 3772.69 ± 1999.79

NAFLD 4663.93 ± 2233.46

Platelets (103/dL)
Other etiologies 140.13 ± 81.60

NAFLD 178.80 ± 99.15

Creatinine (mg/dL)
Other etiologies 1.02 ± 0.65

NAFLD 0.95 ± 0.22

In Figure 2, the results of the developed predictive model are presented. Alcohol
consumption emerged as the most important variable, followed at some distance by the
second variable, obesity. The presence of cirrhosis and the presence of CSPH data were the
subsequent variables concerning the mortality of these patients. Both variables showed a
similar weight. The prognostic differences among ECOG, MELD, and Child–Pugh stage
were not remarkable, as all three presented a similar value. The most significant factor
was an advanced ECOG stage. It is noteworthy that alpha-fetoprotein (AFP) levels are
insignificant for the prognosis of these patients.
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In the next table, the values obtained for various metrics analyzed for the developed
models are presented. On one hand, the values for balanced accuracy, recall, specificity,
and precision were analyzed. On the other hand, to assess the performance of the methods,
area under the curve (AUC), F1 score, Matthews correlation coefficient (MCC), Youden’s
dependent index (DYI), and Kappa score were employed. The latter are commonly used
methods in the scientific literature for this validation purpose.

As can be observed in Table 3, XGB presents values higher than 94% for balanced
accuracy, recall, and specificity, and very close to this value for precision. This implies a
significant difference compared to the closest method, KNN, with differences of around
8% for these values. The differences are more substantial for the rest of the algorithms,
especially with GNB. In this case, the differences are around 12%. This superiority also
translates into the rest of the metrics.

Table 3. Compilation of the analyzed metrics for all algorithms. SVM: support vector machine. BLDA:
Bayesian linear discriminant analysis. DT: decision tree. GNB: Gaussian naïve Bayes. KNN: K-nearest
neighbors. XGB: extreme gradient boosting. AUC: area under the curve.

Methods Accuracy Recall Specificity Precision AUC

SVM 86.96 87.06 86.85 86.34 0.87

BLDA 84.32 84.42 84.23 83.72 0.84

DT 86.11 86.51 86.41 85.69 0.86

GNB 82.18 82.27 82.08 81.59 0.82

KNN 88.93 89.03 88.82 88.29 0.89

XGB 94.29 94.40 94.18 93.61 0.94
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When MCC results are observed, there is a difference of 4.75% between XGB and KNN
in favor of the proposed model. This is one of the most reliable statistical indices, yielding
high values only when correctly performed across all four categories of the confusion
matrix [45]. The differences are significantly higher when comparing the values of F1
score, Kappa, and DYI. Clearly, the differences are also more pronounced for the other
proposed algorithms compared to XGB, ranging favorably between 8–12% for XGB. All the
aforementioned data are detailed in Table 4.

Table 4. Summary of metrics collected and analyzed for all methods. SVM: support vector machine.
BLDA: Bayesian linear discriminant analysis. DT: decision tree. GNB: Gaussian naïve Bayes. KNN:
K-nearest neighbors. XGB: extreme gradient boosting. MCC: Matthews correlation coefficient. DYI:
degenerated Youden index.

Methods MCC DYI F1 Score Kappa

SVM 77.16 86.96 86.70 77.41

BLDA 74.82 84.32 84.07 75.07

DT 76.54 86.11 86.02 76.89

GNB 72.92 82.18 81.93 73.16

KNN 78.91 88.93 88.66 79.17

XGB 83.66 94.29 94.00 83.94

Regarding the receiver operating characteristic (ROC) curves, XGB achieves an AUC
superior to the rest of the systems. These curves represent sensitivity and specificity for the
study’s purpose (Figure 3). The XGB algorithm obtained a value of 0.94, the largest curve
among the proposed methods. This higher AUC translates to it being the best method for
predicting mortality in patients diagnosed with HCC-NAFLD and for identifying the most
influential variables affecting their mortality.
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Figure 3. Representation of ROC curves of the analyzed algorithms. XGB: extreme gradient boosting.
KNN: K-nearest neighbors. SVM: support vector machine. DT: decision tree. BLDA: Bayesian linear
discriminant analysis. GNB: Gaussian naïve Bayes.

Finally, to depict all this data collectively, a radar plot was created. It showcases the
training phase data (above of Figure 4) and the test phase data (below of Figure 4). As
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observed, the obtained XGB algorithm presents similar data in both phases. This indicates
there is no overfitting, implying that the resulting model generates a good predictive model
with the capacity for generalizability. A smaller area obtained in this representation implies
lower reliability for the study’s objective.
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4. Discussion

NAFLD is one of the most relevant chronic diseases today and is clearly on the rise.
Since 1990, it is estimated that the prevalence of this disease has risen by 50% [46]. This
disease is becoming a significant challenge, especially from the perspective of gastroenterol-
ogy, particularly hepatology. So much so that different scientific societies and governments
of multiple countries are attempting to implement programs and public policies for aware-
ness and to collectively confront this new epidemic [5,47]. The large number of NAFLD
patients makes it one of the leading causes of HCC, and in the future, it will be the main
one [48,49]. In addition, detecting fibrosis in these patients is complex. This point is crucial
because the primary risk factor for this progression is the degree of hepatic fibrosis present,
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with patients in stages F3-F4 being highlighted, along with the presence of non-alcoholic
steatohepatitis (NASH) [50]. To this fact, the possibility of developing NAFL-associated
HCC must be added [49]. That is, these patients can develop HCC without significant
fibrosis or cirrhosis. The number of patients, its silent nature, and the lack of adequate
screening make it impossible for healthcare systems to manage. Moreover, the diagnosis of
HCC remains challenging despite the available advances in imaging tests, as depicted in
Figure 5.
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In line with all the aforementioned information, the trends in HCC etiology are
changing. While years ago the primary causes of HCC development were viral hepatitis
(chronic hepatitis B and C) and alcohol consumption, NAFLD is now becoming one of
the main causes of HCC, already being the leading cause when referring to non-cirrhotic
patients [51,52]. Simultaneously, it is also becoming one of the main reasons for liver
transplantation. The importance of early detection is crucial since it is a potentially curable
tumor. Adequate assessment and monitoring of these patients are essential to detect the
disease in time. It is crucial to identify potential risk factors that may contribute to the
development of HCC, aiming to act upon them and prevent their occurrence. The list is
extensive, including smoking, alcohol consumption, obesity, lifestyle, detection of other
underlying liver pathologies, and exposure to certain substances such as aflatoxin [25].

In this study, initially, the differences in mortality between patients with NAFLD-
related HCC and other causes are compared. As can be observed, the difference in terms of
survival between both groups was statistically significant. Once this was assessed, it was
decided to investigate the main prognostic factors at the diagnosis of HCC associated with
a poorer prognosis and higher mortality.

It is concluded that the primary risk factor for mortality in these patients is alcohol con-
sumption. Alcohol has been shown to be a potential carcinogen not only at the hepatic level
but also in other locations, such as the pancreas or colorectal area, among many others [53].
In this case, alcohol consumption emerges as the worst prognostic factor at the diagnosis of
HCC in patients with NAFLD. This can be explained because alcohol acts as an additional
incentive for liver damage. Even in low amounts, alcohol consumption enhances the pro-
gression of hepatic fibrosis, the degree of inflammation, and the development of HCC [54].
Additionally, although there are no significant histological differences between NASH
and alcohol-induced steatohepatitis, alcohol induces characteristic epigenetic changes and
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alteration in the intestinal microbiome, leading to increased intestinal permeability that
may pose a higher risk of HCC [55–57].

The second factor with a worse prognosis is obesity. Obesity stands as one of the
principal risk factors for the development of NAFLD. These patients also present a higher
degree of fibrosis and the possibility of progressing to cirrhosis in proportion to BMI
and abdominal circumference. This results from hepatic immune activation, leading to
secondary inflammation and fibrosis, heightening the risk of HCC development [58,59].
Additionally, obesity also shows an association and a worse prognosis among patients who
consume alcohol. This is explained by the direct relationship between alcohol intake and
an increased risk of overweight and obesity [60]. The higher cardio-metabolic risk of these
patients is likely an explanation for the worse prognosis.

Other factors associated with a worse prognosis are the presence of cirrhosis and
CSPH, both equally significant. It is noteworthy that, despite these results, the Child–Pugh
score exhibits lower significance within the predictive model. Unlike the risk factors for
HCC development and the published literature, smoking and the presence of DM are not
decisive regarding the prognosis of these patients [25]. In fact, being or having been a
smoker hardly showed any significance within the predictive model. The low importance
of AFP in the prognosis of patients is remarkable. This aligns with the latest scientific
evidence published. It is also noteworthy that among the variables related to the tumor,
only the largest nodule attains significant value within the predictive model for survival
prognosis upon the diagnosis of these patients.

A bibliographic search was conducted on prognostic factors at the diagnosis of HCC
focusing on ML techniques, but no results were obtained. Studies conducted previously
have focused more on imaging techniques, genomics, and molecular biology [61,62]. For
this reason, it was decided to perform the analysis by evaluating various methods. The
XGB system demonstrated the best results in all parameters analyzed compared to others.
Except for two metrics, the results obtained are around 94%. These figures confirm the
utility of XGB for classifying these patients. Moreover, the similarity between the training
and test phases shown in the radar plot indicates the absence of overfitting and overtraining.
This implies high generalizability, so that when introducing new data, the results obtained
are consistent with those obtained at the current time [63]. The method also exhibits high
scalability and execution speed, allowing its usefulness in daily clinical practice to assist in
decision making.

There are two limitations that need to be addressed. Apart from those inherent
in a retrospective study, the primary variable being alcohol consumption raises doubts
about whether it was accurately recorded. After analyzing the database, the data were
corroborated by at least two researchers from each center, reviewing available medical
records of the patients. On the other hand, there might be a question about whether
the number of included patients was sufficient to draw these conclusions. To address
this, ML techniques can mitigate this issue by optimizing hyperparameters to achieve the
highest possible accuracy [64]. These methods more efficiently surpass traditional logistic
regressions. The study is replicated 100 times to obtain primary values and standard
deviations. This way, statistically significant results are obtained with small samples, also
avoiding the potential noise present within [65].

5. Conclusions

In conclusion, patients with NAFLD-related HCC exhibit an unfavorable prognosis in
terms of survival. Even low alcohol consumption in patients with NAFLD was associated
with a poorer prognosis. Obesity, cirrhosis at any stage, and CSPH emerged as additional
risk factors conditioning increased mortality at the time of HCC diagnosis in these patients.

XGB proved to be the algorithm that developed a more efficient predictive model
in identifying prognostic factors for mortality at the diagnosis of HCC in patients with
NAFLD. This model can serve as a valuable tool in the daily management of these patients.
Thanks to these results, a more personalized management approach can be offered for
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these individuals. In addition to the established therapeutic approach, optimizing these
conditions may contribute to an improvement in the survival of these patients.

Author Contributions: Conceptualization, M.S., S.G.-R., P.M.-B., A.M.T., M.T. and J.M.; methodology,
M.S., S.G.-R., A.M.T., M.T. and J.M.; software, A.M.T. and J.M.; validation, A.M.T. and J.M.; formal
analysis, A.M.T. and J.M.; investigation, M.S., S.G.-R., P.M.-B. and M.T.; resources, M.S., S.G.-R.,
P.M.-B., A.M.T., A.R., M.T. and J.M.; data curation, M.S., S.G.-R., P.M.-B., A.M.T., M.T. and J.M.;
writing—original draft preparation, M.S. and J.M.; writing—review and editing, M.S., S.G.-R., P.M.-B.,
A.M.T., A.R., P.B.-S., M.T. and J.M.; visualization, M.S., S.G.-R., P.M.-B., A.M.T., A.R., P.B.-S., M.T. and
J.M.; supervision, M.T. and J.M.; project administration, M.S., S.G.-R., M.T. and J.M.; and funding
acquisition, A.R., P.B.-S. and J.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by Fundación Investigación Hospital General Universitario de
Valencia and University of Castilla-La Mancha (Spain).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethics Committee of University Hospital of Guadalajara.

Informed Consent Statement: Patient consent was waived due to the number of patients, study
design (retrospective), absence of medical prescription, and the number of deceased patients.

Data Availability Statement: The datasets used and/or analyzed during the present study are
available from the corresponding author on reasonable request.

Acknowledgments: This study was sponsored by Virgen de la Luz Hospital of Cuenca (Spain),
Fundación Investigación Hospital General Universitario de Valencia and the Institute of Technology
of the University of Castilla-La Mancha (Spain).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Le, M.H.; Yeo, Y.H.; Li, X.; Li, J.; Zou, B.; Wu, Y.; Ye, Q.; Huang, D.Q.; Zhao, C.; Zhang, J. 2019 Global NAFLD prevalence: A

systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2022, 20, 2809–2817.e28. [CrossRef]
2. Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver

disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [CrossRef]
[PubMed]

3. Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R.
AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77,
1797–1835. [CrossRef]

4. Lazarus, J.V.; Ekstedt, M.; Marchesini, G.; Mullen, J.; Novak, K.; Pericàs, J.M.; Roel, E.; Romero-Gómez, M.; Ratziu, V.; Tacke, F.
A cross-sectional study of the public health response to non-alcoholic fatty liver disease in Europe. J. Hepatol. 2020, 72, 14–24.
[CrossRef] [PubMed]

5. Lazarus, J.V.; Mark, H.E.; Allen, A.M.; Arab, J.P.; Carrieri, P.; Noureddin, M.; Alazawi, W.; Alkhouri, N.; Alqahtani, S.A.; Arrese,
M. A global research priority agenda to advance public health responses to fatty liver disease. J. Hepatol. 2023, 79, 618–634.
[CrossRef]

6. Lonardo, A.; Leoni, S.; Alswat, K.A.; Fouad, Y. History of nonalcoholic fatty liver disease. Int. J. Mol. Sci. 2020, 21, 5888. [CrossRef]
7. Eslam, M.; Sanyal, A.J.; George, J.; Sanyal, A.; Neuschwander-Tetri, B.; Tiribelli, C.; Kleiner, D.E.; Brunt, E.; Bugianesi, E.; Yki-

Järvinen, H. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology
2020, 158, 1999–2014.e1991. [CrossRef]

8. Staufer, K.; Stauber, R.E. Steatotic Liver Disease: Metabolic Dysfunction, Alcohol, or Both? Biomedicines 2023, 11, 2108. [CrossRef]
[PubMed]

9. Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.;
Arab, J.P. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. Ann. Hepatol. 2023, 29, 101133.
[CrossRef]

10. McPherson, S.; Hardy, T.; Henderson, E.; Burt, A.D.; Day, C.P.; Anstee, Q.M. Evidence of NAFLD progression from steatosis
to fibrosing-steatohepatitis using paired biopsies: Implications for prognosis and clinical management. J. Hepatol. 2015, 62,
1148–1155. [CrossRef]

11. Shaikh, A.; Pedra, G.; Ruiz-Casas, L.; Franks, B.; Dhillon, H.; Fernandes, J.D.d.R.; Mangla, K.K.; Augusto, M.; Romero-Gómez, M.;
Schattenberg, J.M. Risk factors for fibrosis progression in non-alcoholic steatohepatitis: Analysis of the European cohort in the
real-world GAIN study. Gastroenterol. Y Hepatol. 2023, in press. [CrossRef]

https://doi.org/10.1016/j.cgh.2021.12.002
https://doi.org/10.1097/HEP.0000000000000004
https://www.ncbi.nlm.nih.gov/pubmed/36626630
https://doi.org/10.1097/HEP.0000000000000323
https://doi.org/10.1016/j.jhep.2019.08.027
https://www.ncbi.nlm.nih.gov/pubmed/31518646
https://doi.org/10.1016/j.jhep.2023.04.035
https://doi.org/10.3390/ijms21165888
https://doi.org/10.1053/j.gastro.2019.11.312
https://doi.org/10.3390/biomedicines11082108
https://www.ncbi.nlm.nih.gov/pubmed/37626604
https://doi.org/10.1016/j.aohep.2023.101133
https://doi.org/10.1016/j.jhep.2014.11.034
https://doi.org/10.1016/j.gastrohep.2023.10.005


Cancers 2024, 16, 1114 14 of 16

12. Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P.
Modeling nafld disease burden in china, france, germany, italy, japan, spain, united kingdom, and united states for the period
2016–2030. J. Hepatol. 2018, 69, 896–904. [CrossRef] [PubMed]

13. Zhu, Y.; Zhang, H.; Jiang, P.; Xie, C.; Luo, Y.; Chen, J. Transcriptional and Epigenetic Alterations in the Progression of Non-
Alcoholic Fatty Liver Disease and Biomarkers Helping to Diagnose Non-Alcoholic Steatohepatitis. Biomedicines 2023, 11, 970.
[CrossRef] [PubMed]

14. Huang, G.; Wallace, D.F.; Powell, E.E.; Rahman, T.; Clark, P.J.; Subramaniam, V.N. Gene Variants Implicated in Steatotic Liver
Disease: Opportunities for Diagnostics and Therapeutics. Biomedicines 2023, 11, 2809. [CrossRef] [PubMed]

15. Powell, E.E.; Wong, V.W.-S.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [CrossRef] [PubMed]
16. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN

estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

17. European Association for the Study of the Liver. EASL clinical practice guidelines: Management of hepatocellular carcinoma. J.
Hepatol. 2018, 69, 182–236. [CrossRef] [PubMed]

18. Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD
guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [CrossRef]

19. Reig, M.; Forner, A.; Ávila, M.A.; Ayuso, C.; Mínguez, B.; Varela, M.; Bilbao, I.; Bilbao, J.I.; Burrel, M.; Bustamante, J. Diagnosis
and treatment of hepatocellular carcinoma. Update of the consensus document of the AEEH, AEC, SEOM, SERAM, SERVEI, and
SETH. Med. Clín. Engl. Ed. 2021, 156, 463.e1–463.e31. [CrossRef]

20. Beam, A.L.; Kohane, I.S. Big data and machine learning in health care. JAMA 2018, 319, 1317–1318. [CrossRef]
21. Deo, R.C. Machine learning in medicine. Circulation 2015, 132, 1920–1930. [CrossRef]
22. Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [CrossRef] [PubMed]
23. Zhang, D.; Gong, Y. The comparison of LightGBM and XGBoost coupling factor analysis and prediagnosis of acute liver failure.

IEEE Access 2020, 8, 220990–221003. [CrossRef]
24. Suárez, M.; Martínez, R.; Torres, A.M.; Torres, B.; Mateo, J. A Machine Learning Method to Identify the Risk Factors for Liver

Fibrosis Progression in Nonalcoholic Steatohepatitis. Dig. Dis. Sci. 2023, 68, 3801–3809. [CrossRef] [PubMed]
25. Singal, A.G.; Llovet, J.M.; Yarchoan, M.; Mehta, N.; Heimbach, J.K.; Dawson, L.A.; Jou, J.H.; Kulik, L.M.; Agopian, V.G.;

Marrero, J.A. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023, 78,
1922–1965. [CrossRef] [PubMed]

26. Blonde, L.; Umpierrez, G.E.; Reddy, S.S.; McGill, J.B.; Berga, S.L.; Bush, M.; Chandrasekaran, S.; DeFronzo, R.A.; Einhorn,
D.; Galindo, R.J. American Association of Clinical Endocrinology clinical practice guideline: Developing a diabetes mellitus
comprehensive care plan—2022 update. Endocr. Pract. 2022, 28, 923–1049. [CrossRef] [PubMed]

27. Jellinger, P.S.; Handelsman, Y.; Rosenblit, P.D.; Bloomgarden, Z.T.; Fonseca, V.A.; Garber, A.J.; Grunberger, G.; Guerin, C.K.; Bell,
D.S.; Mechanick, J.I. American Association of Clinical Endocrinologists and American College of Endocrinology guidelines for
management of dyslipidemia and prevention of cardiovascular disease. Endocr. Pract. 2017, 23, 1–87. [CrossRef] [PubMed]

28. Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22, S176–S185.
29. Ginès, P.; Krag, A.; Abraldes, J.G.; Solà, E.; Fabrellas, N.; Kamath, P.S. Liver cirrhosis. Lancet 2021, 398, 1359–1376. [CrossRef]
30. Kok, B.; Abraldes, J.G. Child–Pugh Classification: Time to Abandon? In Seminars in Liver Disease; Thieme Medical Publishers:

Leipzig, Germany, 2019; pp. 096–103.
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