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Simple Summary: Cutaneous squamous cell carcinomas (SCCs) are the most common tumors in
patients suffering from the genetic disorder epidermolysis bullosa (EB). These tumors frequently
show aggressive growth, leading to metastatic disease and fatal outcomes. Therapeutic options in
advanced stages are limited, and new drug targets are needed. The present study evaluated the
immune microenvironment of cutaneous SCCs, which is assumed to favor local immunosuppression
and lead to a more severe disease course in patients. The expression of several immune checkpoint
molecules in tumor cells and cells in the tumor microenvironment was evaluated in EB-SCCs and
compared with those in SCCs from immunocompetent and immunosuppressed patients. Our results
show high expression of the immunosuppressive markers indoleamine 2,3-dioxygenase (IDO), PD-1,
and programmed cell death ligand-1 (PD-L1) in tumor cells from dystrophic EB (DEB) patients.

Abstract: Cutaneous squamous cell carcinomas (SCCs) are a major complication of some subtypes of
epidermolysis bullosa (EB), with high morbidity and mortality rates and unmet therapeutic needs.
The high rate of endogenous mutations and the fibrotic stroma are considered to contribute to the
pathogenesis. Patients with dystrophic EB (DEB) and Kindler EB (KEB) have the highest propensity
for developing SCCs. Another patient group that develops high-risk SCCs is immunosuppressed (IS)
patients, especially after organ transplantation. Herein, we interrogate whether immune checkpoint
proteins and immunosuppressive enzymes are dysregulated in EB-associated SCCs as an immune
resistance mechanism and compare the expression patterns with those in SCCs from IS patients, who
frequently develop high-risk tumors and sporadic SCCs, and immunocompetent (IC) individuals.
The expression of indoleamine 2,3-dioxygenase (IDO), programmed cell death protein-1 (PD-1),
programmed cell death ligand-1 (PD-L1), T cell immunoglobulin and mucin-domain-containing
protein-3 (TIM-3), lymphocyte activation gene-3 (LAG-3), and inflammatory infiltrates (CD4, CD8,
and CD68) was assessed via immunohistochemistry and semi-quantitative analysis in 30 DEB-SCCs,
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22 KEB-SCCs, 106 IS-SCCs, and 100 sporadic IC-SCCs. DEB-SCCs expressed significantly higher levels
of IDO and PD-L1 in tumor cells and PD-1 in the tumor microenvironment (TME) compared with
SCCs from IC and IS individuals. The number of CD4-positive T cells per mm2 was significantly lower
in DEB-SCCs compared with IC-SCCs. KEB-SCCs showed the lowest expression of the exhaustion
markers TIM-3 and LAG-3 compared with all other groups. These findings identify IDO, PD-1,
and PD-L1 to be increased in EB-SCCs and candidate targets for combinatory treatments, especially
in DEB-SCCs.

Keywords: epidermolysis bullosa; collagen VII; kindlin; squamous cell carcinoma; indoleamine
2,3-dioxygenase; programmed cell death protein-1; programmed cell death ligand-1

1. Introduction

Specific subtypes of epidermolysis bullosa (EB) are characterized by an increased risk
of squamous cell carcinomas (SCCs) that arise in cutaneous and mucosal sites of chronic
tissue damage [1–3]. Dystrophic EB (DEB) and Kindler EB (KEB) are associated with multi-
ple SCCs that occur at a young age, metastasize early, and have a severe, lethal course [4–7].
In DEB, SCCs were reported at as early as 13 years of age, with high mortality [8]. In
KEB, SCCs arise in sites with high UV exposure or mechanical stress [4,6,9]. The youngest
patient reported with a KEB-associated SCC (KEB-SCC) was 6 years old [10]. Currently,
wide excision and amputation are the standard treatments [4]. Information about the
effectiveness of immunotherapy for advanced EB-SCC is based on case reports and small
case series [4,11–19]. There is a high unmet therapeutic need for these patients.

In the skin of DEB patients, endogenous mutation processes dominated by apolipopro-
tein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) take place and lead to
a high number of early-acquired mutations [20]. Cellular stress and inflammation resulting
from continuous tissue damage and microbial insult are sources of APOBEC activation [20].
No information on the mutational spectrum of KEB-SCC is available. Nevertheless, kindlin-
1 is involved in regulating cell cycle arrest and DNA damage [21] and different types of
cancer [22–25].

Fibroblast activation, transforming growth factor beta-1, and other pathways involved
in tissue repair are common features of DEB and KEB [26–32]. The fibrotic stroma is con-
sidered to have a determinant role in the aggressive course of DEB-SCC. The mechanisms
of inflammation in EB are multi-layered, involving tissue repair and bacterial coloniza-
tion, both contributing to carcinogenesis [33]. Recent in vitro data suggest that adaptive
T-cell-mediated immunity might be inhibited by PD-1/Treg-mediated immunosuppression
in DEB [34]. Nevertheless, little is known about the immunological microenvironment
of EB-SCC.

The upregulation of immune checkpoint markers on cells of the tumor and tumor
microenvironment (TME) can profoundly shape the antitumor response of the organism.
Immune checkpoint molecules, such as programmed cell death protein-1 (PD-1) on T cells
and programmed cell death ligand-1 (PD-L1) on antigen-presenting or cancer cells, play an
important role in tumor surveillance, and targeting these molecules with monoclonal anti-
bodies leads to increased T cell activation [35,36]. The enzyme indoleamine 2,3-dioxygenase
(IDO), which degrades L-tryptophan to kynurenine, supports an immunosuppressive tu-
mor environment by promoting Treg differentiation [37,38]. T cell exhaustion markers, such
as T cell immunoglobulin and mucin-domain-containing protein-3 (TIM-3) and lymphocyte
activation gene-3 (LAG-3), can also be targeted with antibodies to reduce T cell dysfunction
and increase the number of activated tumor-killing T cells [39,40].

This study aimed to investigate whether EB-SCCs express immune checkpoint markers
that may contribute to the severe course of the disease and be therapeutically targeted.
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2. Materials and Methods
2.1. Patients and Samples

A total of 258 cutaneous SCCs were studied; 30 SCCs were from recessive DEB
patients (n = 9), 22 SCCs were from KEB patients (n = 7), 100 were sporadic SCCs on the
sun-exposed skin of immunocompetent patients (IC-SCCs) (n = 96), and 106 were SCCs
excised from immunosuppressed patients (IS-SCCs) (n = 41) (Table 1). The EB patients did
not receive anti-proliferative drugs, immunotherapy, or radiotherapy before the excision of
the tumors, except for DEB-P1, who received anti-PD-1 therapy before the tumor in the right
hand was removed [15] (Table S1). Immunosuppressed patients had one of the following
conditions: organ transplantation, stem cell therapy, inflammatory autoimmune disease,
congenital immune deficiency, solid tumors, or hematological malignancy (Table S2). The
immunosuppressive medication is included in Table S3. All tumors were excised for
therapeutic purposes. The histopathological characteristics of the tumors were retrieved
from the pathology reports, and the original hematoxylin and eosin (H&E)-stained slides
were reviewed. This study was approved by the Ethical Committee of the University
of Freiburg (EK-Freiburg 45/18 and 5/20) and conducted according to the Principles
of Helsinki.

Table 1. Clinical and pathological characteristics of the patients and SCCs.

DEB 1-SCC 2 KEB 3-SCC IC 4-SCC IS 5-SCC

Number of patients/SCC samples 9/30 7/22 96/100 41/106

Mean age at SCC
diagnosis (range) in years 32 (18–50) 47 (30–65) 80 (45–99) 68 (41–87)

Gender (male:female) 4:5 5:2 58:38 27:14

Localization—number (%)
Head and neck 0 (0) 7 (32) 79 (79) 54 (51)
Trunk 0 (0) 0 (0) 0 (0) 17 (16)
Upper extremities 16 (53) 5 (23) 19 (19) 24 (23)
Lower extremities 14 (47) 10 (45) 2 (2) 11 (10)

Histologic grading—number (%)
G1 22 (73) 8 (36) 48 (48) 38 (36)
G2 5 (17) 3 (14) 51 (51) 60 (57)
G3 3 (10) 11 (50) 1 (1) 8 (7)

Vertical tumor thickness in mm
(%)
≤2 7 (23) 6 (27) 42 (42) 35 (33)
2.01–6 14 (47) 16 (73) 40 (40) 58 (55)
>6 5 (17) 0 (0) 18 (18) 9 (8)

NA 6 4 (13) 0 (0) 0 (0) 4 (4)
1 Recessive dystrophic EB; 2 squamous cell carcinoma; 3 Kindler EB; 4 immunocompetent; 5 immunosuppressed;
6 not available.

2.2. Immunohistochemistry

Serial sections of 5 µm were prepared from formalin-fixed, paraffin-embedded skin
biopsies. Standard hematoxylin and eosin staining was performed for diagnostic purposes.
For immunohistochemical (IHC) staining, sections were deparaffinized and subjected to
heat-induced antigen retrieval using EDTA (pH 9) or citrate (pH 6) retrieval buffer. For some
stainings, sections underwent a block of non-specific staining via incubation with a blocking
buffer (2% BSA + 0.05% Tween 20 in TBS) for 30 min at room temperature. The primary
antibodies used for incubation on deparaffinized tissue sections and the staining conditions
are included in Table S4. Primary antibodies were diluted in antibody diluent (Zytomed;
catalog number: ZUC025). Incubation was performed at room temperature for 60 min.
Sections incubated with secondary antibodies only served as staining controls. Visualization
was performed using the Dako REAL™ detection system, alkaline phosphatase/RED, and
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rabbit/mouse (Dako, catalog number: K5005). Photographs were taken using a Zeiss
microscope (Axioscope) (Carl Zeiss, Jena, Germany) and were visualized with the program
AxioVision (Carl Zeiss, Jena, Germany, SE64 release 4.9).

Histology scores (H-scores) were calculated for the IHC markers IDO, PD-1, PD-L1,
TIM-3, and LAG-3 as a semiquantitative approach using the following formula:
H-score = [1 × (% cells 1+) + 2 × (% cells 2+) + 3 × (% cells 3+)]. Membrane stain-
ing intensity was assessed as 0 = no staining, 1+ = weak staining, 2+ = moderate staining,
or 3+ = strong staining [8]. Three observers who were blinded to the clinical parameters
scored the IHC-stained sections independently.

Absolute cell numbers per mm2 of CD4+, CD8+, and CD68+ cells were measured using
the imaging software QuPath (Version 9.4.1) [41]. The average cell numbers of at least three
different tumor sites (magnification ×10) were calculated using the positive cell detection
and counting tool.

2.3. Statistical Analysis

The expression patterns were assessed in the SCC groups and compared with IC-
SCCs. Vector graphics and statistical analysis were generated using GraphPad Prism
version 9.4.1 for Windows (GraphPad Software, La Jolla, CA, USA, www.graphpad.com,
accessed on 13 January 2024). Kruskal–Wallis tests and Dunn’s multiple comparison tests
were used to compare the SCC groups. Simple linear regression was calculated to test
for a correlation between vertical tumor thickness and H-scores. p < 0.05 was considered
statistically significant.

3. Results
3.1. Clinicopathological Characteristics of SCCs

The clinicopathological characteristics of the studied patients and SCCs are included
in Table 1, and the clinical and genetic findings for the EB patients are in Table S1. Rep-
resentative clinical pictures of SCCs from each subgroup are depicted in Figure 1. The
mean age at SCC diagnosis was 32 years for DEB (range: 18–50), 47 years (range: 30–65)
for KEB, 80 years (range: 45–99) for IC, and 68 years (range: 41–87) for IS patients. DEB-
and KEB-SCCs were mainly localized in the upper and lower extremities (100% and 68%,
respectively), while IC- and IS-SCCs were mainly distributed in the head and neck (79% and
51%, respectively) (Table 1). Half (50%) of the evaluated tumors showed a vertical tumor
thickness of 2.01 to 6 mm. High-risk tumors with a vertical tumor thickness of >6 mm
represented 17% of DEB-SCCs, 0% of KEB-SCCs, 18% of IC-SCCs, and 8% of IS-SCCs. In
four DEB-SCCs and four IS-SCCs, the vertical tumor thickness could not be assessed due
to partially fragmented specimens. The IS-SCC group included tumors from 34 organ
transplant patients (22 kidney, 1 liver, 2 lung, 1 heart, and 8 stem cell transplants), 4 patients
with inflammatory or autoimmune disease receiving immunosuppressive medication (two
for rheumatoid arthritis, one for psoriasis, one for bullous pemphigoid), 1 patient with a
congenital immune deficiency (CD4+ T cell defect), and 1 patient with B-CLL requiring
treatment (Table S3). The immunosuppressive medications comprised mTOR inhibitors
(n = 5), calcineurin inhibitors (n = 24), purine synthesis inhibitors (n = 25), antimetabolites
(n = 3), alkylating or alkylating-like agents (n = 2), and proteasome inhibitors (n = 1). Com-
bination therapy of different immunosuppressive drugs was given in 23 cases (Table S4).

www.graphpad.com
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Figure 1. Clinical features of cutaneous SCCs in the studied groups. (a) SCC on the back in an organ 
transplant patient under double immunosuppressive therapy. Typical poikilodermic alterations of 
the skin because of severe actinic damage are present on the back. (b) Multiple SCCs on the muti-
lated hand of a patient suffering from dystrophic EB. (c) SCC in the upper lip in a patient with 
Kindler EB. (d) A hyperkeratotic SCC on the scalp in an immunocompetent patient. EB, epidermol-
ysis bullosa; SCC, squamous cell carcinoma. 
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significant differences were found between IC- and IS-SCCs (mean H-scores: IC—15.34 
vs. IS—6.585) (Figure 2). PD-L1 expression in DEB-SCCs was significantly higher com-
pared with IC- and IS-SCCs (mean H-scores: DEB—96.59 vs. IC—26.36 vs. IS—33.26; p < 
0.0001 and p = 0.0021, respectively). Similar results were obtained for KEB tumor cells 
(mean H-scores: KEB—62.39 vs. IC—26.36 vs. IS—33.26; p = 0.0015 and p = 0.0304, respec-
tively). Notably, both IC-SCC and IS-SCC tumor cells demonstrated similar, extremely 
low IDO and PD-L1 expression (Figure 2). 

Next, we analyzed the expression of IDO and PD-L1 in TME cells. IDO expression in 
the TME was generally high and comparable between most of the subgroups (DEB-SCC 
mean H-score: 108.1; IS-SCC mean H-score: 112.0; and IC-SCC mean H-score: 114.4). An 
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(KEB mean H-score: 46.14) (Figure 2). PD-L1 expression in the TME was comparable in all 
four groups (mean H-scores: DEB-SCC—75.73, IS-SCC—76.86, IC-SCC—73.57, and KEB—
81.11) (Figure 2). Taken together, DEB-SCC tumor cells dramatically upregulate IDO and 
PD-L1 as markers of immune resistance that seem to play an important role in tumor de-
velopment. 

Figure 1. Clinical features of cutaneous SCCs in the studied groups. (a) SCC on the back in an organ
transplant patient under double immunosuppressive therapy. Typical poikilodermic alterations of
the skin because of severe actinic damage are present on the back. (b) Multiple SCCs on the mutilated
hand of a patient suffering from dystrophic EB. (c) SCC in the upper lip in a patient with Kindler EB.
(d) A hyperkeratotic SCC on the scalp in an immunocompetent patient. EB, epidermolysis bullosa;
SCC, squamous cell carcinoma.

3.2. DEB-SCC Tumor Cells Express Significantly Higher Levels of IDO and PD-L1 Compared with
IC- and IS-SCC Tumor Cells

The expression of IDO in tumor cells was significantly higher in DEB-SCCs (mean
H-score: 48.32) compared with KEB-SCCs (mean H-score: 10.8; p = 0.0038), IC-SCCs (mean
H-score: 15.34; p < 0.0001), and IS-SCCs (mean H-score: 6.585; p < 0.0001) (Figure 2). No
significant differences were found between IC- and IS-SCCs (mean H-scores: IC—15.34 vs.
IS—6.585) (Figure 2). PD-L1 expression in DEB-SCCs was significantly higher compared
with IC- and IS-SCCs (mean H-scores: DEB—96.59 vs. IC—26.36 vs. IS—33.26; p < 0.0001
and p = 0.0021, respectively). Similar results were obtained for KEB tumor cells (mean
H-scores: KEB—62.39 vs. IC—26.36 vs. IS—33.26; p = 0.0015 and p = 0.0304, respectively).
Notably, both IC-SCC and IS-SCC tumor cells demonstrated similar, extremely low IDO
and PD-L1 expression (Figure 2).

Next, we analyzed the expression of IDO and PD-L1 in TME cells. IDO expression in
the TME was generally high and comparable between most of the subgroups (DEB-SCC
mean H-score: 108.1; IS-SCC mean H-score: 112.0; and IC-SCC mean H-score: 114.4). An
exception was KEB-SCCs, which showed significantly lower IDO expression in the TME
(KEB mean H-score: 46.14) (Figure 2). PD-L1 expression in the TME was comparable in
all four groups (mean H-scores: DEB-SCC—75.73, IS-SCC—76.86, IC-SCC—73.57, and
KEB—81.11) (Figure 2). Taken together, DEB-SCC tumor cells dramatically upregulate
IDO and PD-L1 as markers of immune resistance that seem to play an important role in
tumor development.
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Figure 2. IDO and PD-L1 expression in cutaneous SCCs and their TMEs. (a) Representative pictures 
of immunohistochemical (IHC) stainings from each SCC subgroup showing IDO and PD-L1 expres-
sion in cells of the tumors and of their microenvironments. # marks tumor cells. Magnification = 
200×. (b) Statistical analysis comparing mean expression levels of IDO and PD-L1 in the SCC groups. 
Staining intensities were quantified using the H-scores. IC = immunocompetent, IS = immunosup-
pressed, DEB = dystrophic EB, and KEB = Kindler EB. Statistical significance was considered as * p 
< 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

3.3. The TME Inflammatory Cell Infiltrate in EB-SCCs 
Next, we quantified the inflammatory cells, CD4+ and CD8+ T cells, and CD68+ mac-

rophages in the TME of 25–30% of the SCCs of each group (Figure 3). Not all samples 
could be assessed due to a shortage of tumor material, especially from EB patients. DEB-
SCCs demonstrated significantly lower numbers of CD4+ T cells (mean: 649 cells/mm2) 

Figure 2. IDO and PD-L1 expression in cutaneous SCCs and their TMEs. (a) Representative pictures
of immunohistochemical (IHC) stainings from each SCC subgroup showing IDO and PD-L1 expres-
sion in cells of the tumors and of their microenvironments. # marks tumor cells. Magnification = 200×.
(b) Statistical analysis comparing mean expression levels of IDO and PD-L1 in the SCC groups. Stain-
ing intensities were quantified using the H-scores. IC = immunocompetent, IS = immunosuppressed,
DEB = dystrophic EB, and KEB = Kindler EB. Statistical significance was considered as * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001.

3.3. The TME Inflammatory Cell Infiltrate in EB-SCCs

Next, we quantified the inflammatory cells, CD4+ and CD8+ T cells, and CD68+

macrophages in the TME of 25–30% of the SCCs of each group (Figure 3). Not all samples
could be assessed due to a shortage of tumor material, especially from EB patients. DEB-
SCCs demonstrated significantly lower numbers of CD4+ T cells (mean: 649 cells/mm2)
compared with IC-SCCs (mean: 1211 cells/mm2; p = 0.0039), and a similar trend was
observed for IS-SCCs (mean: 1067 cells/mm2; p = 0.2084) (Figure 3). IS-SCCs showed



Cancers 2024, 16, 471 7 of 15

the lowest number of CD8+ T cells (mean: 692/mm2) in the TME, which was significant
compared with IC-SSCs (p = 0.0163). A similar trend was observed in DEB-SCCs (DEB
mean—794/mm2 vs. IC—1228/mm2; p = 0.1501) (Figure 3). KEB-SCCs showed significantly
lower numbers of CD68+ macrophages compared with IC-SCCs (KEB mean—338 cells/mm2

vs. IC mean—703 cells/mm2; p = 0.0113), but no other significant differences were observed.
DEB-, IC-, and IS-SCCs showed similar CD68+ cell numbers (Figure 3). Altogether, the TMEs
of DEB- and IS-SCCs demonstrated a reduced number of inflammatory infiltrates, especially
tumor-infiltrating lymphocytes (TILs).
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Figure 3. Inflammatory infiltrates in the TMEs of cutaneous SCCs. (a) Representative pictures of im-
munohistochemical stainings from each SCC group showing CD4+ and CD8+ T cell infiltrates as well
as CD68+ macrophages in the tumor microenvironment. # marks tumor cells. Magnification = 200×.
(b) Statistical analysis comparing mean absolute cell numbers per mm2 of CD4+, CD8+, and CD68+

cells in all SCC groups. IC = immunocompetent, IS = immunosuppressed, DEB = dystrophic EB, and
KEB = Kindler EB. Statistical significance was considered as * p < 0.05 and ** p < 0.01.

3.4. PD-1 Expression Was Significantly Upregulated in the TMEs of DEB-, KEB-, and IS-SCCs,
While LAG-3 Was Increased in the TME of IS-SCCs

Next, we analyzed the T cell infiltrate in the TME in more detail and evaluated the
immune checkpoint markers PD-1, TIM-3, and LAG-3 (Figure 4). PD-1 expression in the
TME was significantly higher in DEB-SCCs (mean H-score: 151.8), KEB-SCCs (mean H-
score: 132.1), and IS-SCCs (mean H-score: 118.6) compared with IC-SCCs (mean H-score:
85.34; p < 0.0001, p = 0.0439, and p = 0.0057, respectively). PD-1 expression was even higher
in DEB-SCCs compared with IS-SCCs (mean H-score: 151.8 vs. 118.6; p = 0.1513), but this
did not reach statistical significance (Figure 4a,b). TIM-3 expression was comparably high
in IC-SCCs (mean H-score: 69.13), IS-SCCs (mean H-score: 75.01), and DEB-SCCs (mean
H-score: 86.57) but significantly lower in the TME of KEB-SCCs (mean H-score: 25.93)
(Figure 4a,b). LAG-3 expression was significantly higher in the TME of IS-SCCs (mean
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H-score: 53.07) compared with IC-SCCs (mean H-score: 31.68; p < 0.0001) and KEB-SCCs
(mean H-score: 1.875; p < 0.0001) (Figure 4a,b). A trend, but no significant difference, was
detected compared with DEB-SCCs (mean H-score 38.09; p = 0.1366). LAG-3 expression
was significantly lower in KEB-SCCs compared with DEB-SCCs (mean H-scores 1.875 vs.
38.09; p = 0.0138). While PD-1 expression was increased in the TME of EB-SCCs, LAG-3
was upregulated in IS-SCCs.
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Figure 4. TIM-3, LAG-3, and PD-1 expression in the TME of cutaneous SCCs. (a) Representative
pictures of immunohistochemical stainings from each SCC group showing TIM-3, LAG-3, and
PD-1 expression in TME stromal cells. # marks tumor cells. Magnification = 200×. (b) Statistical
analysis comparing mean expression levels of TIM-3, LAG-3, and PD-1 in all SCC groups. Staining
intensities were quantified using the H-scores. IC = immunocompetent, IS = immunosuppressed,
DEB = dystrophic EB, and KEB = Kindler EB. Statistical significance was considered as * p < 0.05,
** p < 0.01, and **** p < 0.0001.

3.5. Correlations between Immune Markers and Clinicopathological Parameters

We questioned whether the expression of IDO and PD-L1 in tumor cells correlated with
the vertical tumor thickness of the EB-SCCs and thus might have prognostic significance
since a high vertical tumor thickness increases the likelihood of metastatic disease [42]
(Figure 5). IDO expression in tumor cells correlated well with the vertical tumor thickness
in IC-SCCs (p < 0.004) (Figure 5). This was not seen in DEB-SCCs (p = 0.4047) or KEB-SCCs
(p = 0.1194) (Figure S1). According to the PD-L1 abundance in tumor cells, we found
a correlation with the tumor thickness in IC-SCCs (p < 0.0038) and IS-SCCs (p = 0.0278)
(Figure 5). In EB tumors, a PD-L1 correlation was only seen in KEB-SCCs (p = 0.0013) and
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not in DEB-SCCs (p = 0.2125) (Figure S1). Of note, some very thin DEB-SCCs expressed high
levels of IDO and PD-L1, explaining the missing correlation with vertical tumor thickness.
Thus, IDO and PD-L1 expression may serve as an indirect prognostic marker, especially in
IC- and IS-SCCs.
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Figure 5. Correlation of immune marker expression with vertical tumor thickness. Statistical analysis
showed how the expression of the markers (y-axis) in tumor cells and stromal cells is affected by
vertical tumor thickness (x-axis) using a simple linear regression model. IC = immunocompetent,
IS = immunosuppressed. Statistical significance is noted as * p < 0.05, ** p < 0.01, *** p < 0.001.
r = Pearson correlation coefficient. Measured values of x- and y-axis were logarithmized before
statistical analysis.
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A similar result was obtained for IDO expression in TME cells, whereby a significant
correlation between IDO expression and vertical tumor thickness was found in IC-SCCs
(p = 0.0014) and IS-SCCs (p = 0.0229) (Figure 5). Again, no correlation was seen in DEB-
SCCs (p = 0.6683) and KEB-SCCs (p = 0.6377) (Figure S1). PD-L1 expression in TME cells
strongly correlated with vertical tumor thickness in IC-SCCs (p = 0.0022) (Figure 5). A
similar trend, but no statistical significance, was obtained for PD-L1 expression in IS-SCCs
(p = 0.1549), DEB-SCCs (p = 0.0637), and KEB tumor cells (p = 0.1475) (Figures 5 and S1).
Thus, the expression of IDO and PD-L1 in TME cells is not as clear as that in tumor cells.
However, in IC-SCCs, the correlation with vertical tumor thickness was strong and may
have prognostic value. We also analyzed the correlation with the tumor grading. The
limitation was the low number of grade II and III/IV EB-SCCs and the lack of grade III/IV
IC-SCCs. There was a significant correlation between the IC-SCC tumor grading and
LAG-3 (p < 0.0163), TIM3 (p = 0.014), PD-L1 in the tumor (p < 0.0001), and PD1 (p = 0.029)
in IC-SCCs, but none for EB-SCCs and IS-SCCs.

Next, we analyzed the expression of further immune checkpoints in the TME. LAG-3
and PD-1 expression in IC-SCCs showed a significant correlation with the Breslow thickness
(p = 0.0163 and p = 0.0004, respectively) (Figure 5). No correlation of these markers with
tumor thickness was found in IS-SCCs, DEB-SCCs, or KEB-SCCs (Figures 5 and S1). Taken
together, a high expression of checkpoint markers in T cells correlates with a high tumor
thickness, especially in the TME of IC-SCCs, and may thus predict a bad prognosis.

We also analyzed whether patients in the IS-SCC group receiving combination therapy
of immunosuppressive drugs showed more tumors with a high vertical tumor thickness
and, thus, more aggressive behavior. We did not detect any correlation between the
type of immunosuppression or the number of immunosuppressive drugs and the vertical
tumor thickness.

4. Discussion

Understanding the underlying mechanism via which cancer cells can ‘molecularly
cloak’ themselves and remain hidden from immune surveillance is of great interest to
cancer biology and provides the rationale for the design of therapeutic interventions. Our
study revealed the expression patterns of several immune checkpoint proteins in SCCs
occurring in EB compared with immunocompetent and immunosuppressed patients. In
these three groups, SCCs arose in different circumstances: (i) at a young age in dam-
aged skin in EB; (ii) at an older age in those with an immunosuppressed background; or
(iii) UV-induced in aged immunocompetent individuals. Although the number of EB-SCCs
might seem low, it is significant in the context of ultra-rare disorders and compared with
other studies.

Notably, we found that, in EB-SCCs, tumor cells expressed immune checkpoints that
are involved in the suppression of the immune response. Chronic tissue inflammation and
damage, extracellular matrix remodeling, and bacterial challenge [43,44] may contribute
to checkpoint inhibitor expression to subvert the immune system early in favor of cancer
development and progression. DEB-SCCs demonstrated high levels of PD-L1 and IDO
expression in tumor cells and PD-1 in the TME, which was independent of tumor thickness.
Similarly, KEB-SCCs showed high PD-L1 expression in tumor cells and PD-1 expression in
the TME. The regulation of PD-L1 may result from transcription factors (e.g., STAT3) or
cytokines (e.g., IFN, TNF, and IL-17) that are increased in DEB [45–47]. IDO is upregulated
by tumor cells to support an immunosuppressive environment. For example, the expression
levels of IDO in cutaneous melanoma cells correlate with reduced progression-free survival
in these patients. Phase II trials combining PD-1 with IDO inhibitors showed promising
results with objective response rates (ORR) of 51%, a complete response rate of 20%, and a
disease control rate of 70% [48]. A phase I/II trial of an immune-modulatory vaccine against
IDO/PD-L1 in combination with nivolumab showed an ORR of 80%, with 43% complete
responses in metastatic melanoma patients [49].
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In DEB-SCCs, the number of CD4+ cells in the TME was lower than in IC-SCCs. Our
results are in line with previous reports showing a significant reduction in CD4+ immune
cell peritumoral infiltration in DEB-SCCs compared with UV-induced SCCs, while there
was no difference with IS-SCCs [50,51]. A high baseline density of TILs was associated with
improved outcomes in several solid tumors treated with immune checkpoint inhibitors [52].
CD8+TILs are associated with prognostic benefits, whereas the role of CD4+TILs is con-
troversial. In the latter, a Th1 phenotype seems to predict improved overall survival [52].
TIL activation markers and/or effector molecules allow a more accurate prediction of
their prognostic value. For example, pre-existing PD-1+ CD8+TILs are associated with
good treatment responses to PD-1 inhibitors in melanoma patients [53]. The prognostic
role of further T cell exhaustion markers such as TIM-3 and LAG-3 is being intensively
studied [52]. PD-1 and TIM-3 are frequently co-expressed during the differentiation of T
cell exhaustion [54], and, in line with this, we found TIM-3 expression in TME cells. TIM-3
was similarly expressed in the SCC groups, except for in KEB-SCCs, which demonstrated
significantly lower levels. This contrasts with another study showing increased TIM-3
expression in DEB-SCCs compared with primary SCCs [50]. TIM-3 is a member of the TIM
family of immunoregulatory proteins and can be expressed in IFNγ-producing CD4+ and
CD8+ T cells [55]. It is a marker for the most dysfunctional subset among tumor-infiltrating
CD8+PD-1+ T cells in cancer [55]. A phase I/Ib trial of the anti-TIM-3 antibody alone
or in combination with an anti-PD-1 antibody showed evidence for antitumor activity
in advanced solid tumors [56]. We detected considerable LAG-3 expression in the TME
of almost all SCCs, most prominently in IS-SCCs. Elevated LAG-3 expression has been
found in advanced cutaneous SCCs, along with PD-L [57]. LAG-3 is a member of the im-
munoglobulin superfamily and exerts various biological impacts on T cell function [40,58].
LAG-3 binds to major histocompatibility complex-II (MHC-II) on antigen-presenting cells
and is expressed on the cell membranes of TILs, leading to an exhausted phenotype [40].
Antibodies against LAG-3 have been successfully used in melanoma patients, especially in
combination with anti-PD-1 antibodies [59,60].

Our results show that EB-SCCs differ in the expression of immune markers compared
to IC- and IS-SCCs. DEB- and KEB-SCCs also showed differences, probably because chronic
wounds do not occur in KEB and because of the complex roles of kindlin-1.

While low TIL numbers, poor differentiation, and lower TMB most likely contribute
to the more aggressive behavior of EB-SCCs, the high expression of PD-L1, IDO, and PD-1
in tumor cells and their TMEs represents therapeutic targets. IDO inhibitors or IDO vacci-
nation in combination with PD-1 inhibition may help achieve better treatment responses.
TIM-3 and LAG-3 inhibitors are further combination candidates for PD-1 inhibition, and bis-
pecific antibodies are already being tested, showing promising antitumor efficacy [61–63].
These results and our recent case reports [64] further the immunological characterization of
advanced cutaneous SCCs in EB patients to tailor a biologically meaningful treatment.

5. Conclusions

The results of our study show that EB-SCCs differ in the expression profiles of immune
markers and the number of TILs compared with IC- and IS-SCCs. Moreover, these results
further the immunological characterization of advanced cutaneous SCCs in EB patients to
tailor biologically stratified treatment decisions when therapies are needed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers16020471/s1, Figure S1: Correlation of immune marker
expression with vertical tumor thickness; Table S1: Disease-causing mutations and clinical char-
acteristics of EB patients; Table S2: Underlying diseases of the immunosuppressed patients in
this study; Table S3: Immunosuppressive drugs used in the IS1-SCC patients in this study;
Table S4: Immunohistochemical staining reagents and methods.
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