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Simple Summary: Liposarcoma is the most widespread soft-tissue sarcoma in adults. This review
summarizes the molecular genetics and epigenetics of the main liposarcoma subtypes and corre-
sponding aberration in signaling forming the basis for targeted therapy selection. In recent years,
specific inhibitors of CDK4/6 and MDM2 and VEGFR/FGFR/PDGFR multi-kinase inhibitors have
been proposed for the treatment of liposarcoma.

Abstract: Liposarcoma (LPS) is one of the most common adult soft-tissue sarcomas (STS), charac-
terized by a high diversity of histopathological features as well as to a lesser extent by a spectrum
of molecular abnormalities. Current targeted therapies for STS do not include a wide range of
drugs and surgical resection is the mainstay of treatment for localized disease in all subtypes, while
many LPS patients initially present with or ultimately progress to advanced disease that is either
unresectable, metastatic or both. The understanding of the molecular characteristics of liposarcoma
subtypes is becoming an important option for the detection of new potential targets and development
novel, biology-driven therapies for this disease. Innovative therapies have been introduced and they
are currently part of preclinical and clinical studies. In this review, we provide an analysis of the
molecular genetics of liposarcoma followed by a discussion of the specific epigenetic changes in
these malignancies. Then, we summarize the peculiarities of the key signaling cascades involved
in the pathogenesis of the disease and possible novel therapeutic approaches based on a better
understanding of subtype-specific disease biology. Although heterogeneity in liposarcoma genetics
and phenotype as well as the associated development of resistance to therapy make difficult the
introduction of novel therapeutic targets into the clinic, recently a number of targeted therapy drugs
were proposed for LPS treatment. The most promising results were shown for CDK4/6 and MDM2
inhibitors as well as for the multi-kinase inhibitors anlotinib and sunitinib.

Keywords: liposarcoma; well-differentiated liposarcoma; dedifferentiated liposarcoma; myxoid/round-
cell liposarcoma; pleomorphic liposarcoma; myxoid pleomorphic liposarcoma; molecular genetic abnor-
malities; epigenetic changes; targeted therapy

1. Introduction

Liposarcoma (LPS) is a subtype of soft-tissue sarcoma (STS) further divided into
five separate groups of malignancies characterized by distinct genetic and molecular
aberrations, unique histologic appearance, therapy strategies and overall clinical out-
come: well-differentiated liposarcoma (WDLPS), dedifferentiated liposarcoma (DDLSP),
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myxoid/round-cell liposarcoma (MLPS), pleomorphic liposarcoma (PLPS) and the recently
isolated, separate sub-type myxoid pleomorphic liposarcoma (MPLPS), each harboring its
own unique features [1]. Although surgical resection and radiotherapy remain the most
frequent choices for treatment, chemotherapeutic options are also applied for the treatment
of patients with advanced/metastatic clinically unresectable LPS. The specific patterns of
disease pathogenesis and progression of each LPS subtype suggest different approaches to
improve chemotherapy. An understanding of the genetic and epigenetic abnormalities and
corresponding transcriptome changes is critical to the management of liposarcoma and
further studies of the mechanisms of liposarcoma pathogenesis.

Well-differentiated (WDLPS) and dedifferentiated (DDLPS) liposarcoma are the most
common subtypes of liposarcoma [2–4]. WDLPSs are slow-growing malignancies character-
ized by the presence of adipocytes [2–4]. DDLPS is characterized by a higher cellularity and
elevated mitosis number [3,4]. DDLPS is a much more aggressive metastatic disease and as-
sociated with poor prognosis [5–7]. Both subtypes do not have specific age risk factors and
usually develop in the retroperitoneum, extremities, paratesticular areas and trunk [3,4,8].
WDLPS and DDLPS are largely resistant to conventional cytotoxic chemotherapy and
radiation therapy, and surgery remains the main option [2–4].

Myxoid/round-cell (MLPS) liposarcoma is a neoplasm with high cellularity and non-
lipogenic, mesenchymal, round- to oval-shaped cells mixed with mature adipocytes [9,10]
characterized by a more aggressive disease biology and worse clinical outcome [11]. MLPS
is more common in younger patients and predominantly arises in the proximal lower
extremities, as opposed to the retroperitoneum [12]. The tumor tends to recur locally and
systemically, with a high risk of metastasis to the retroperitoneum, abdomen, chest and
trunk [9]. Treatment for MLPS includes surgery and radio- and chemotherapy [13].

Pleomorphic liposarcoma (PLPS) is the most aggressive and histologically non-uniform
subtype of liposarcoma. It is a high-grade, aggressive neoplasm consisting of pleomorphic
lipoblasts and occasional multinucleated giant cells [2–4,9]. The median age of the patients
is 55-65 years old and they most commonly present with disease in the lower extremities.
These malignancies are highly resistant to all current treatment modalities [14,15].

Myxoid pleomorphic liposarcoma (MPLPS) is an exceedingly rare adipocytic malig-
nancy developing in the mediastinum, followed by the limbs and the head and neck region.
Morphologically, MPLPS shows features of both myxoid and pleomorphic liposarcoma
with aggressive clinical behavior, including fast tumor growth and early metastasis to the
lungs, bone and soft tissues [1]. Genetic and epigenetic results suggest a possible link with
conventional pleomorphic liposarcoma [16].

In practice, distinguishing one liposarcoma subtype from another is rather challenging.
Molecular studies should follow the histologic examination for more accuracy in diagnostics
and optimal disease therapy course or enrollment into clinical trials.

2. Molecular Genetic Abnormalities and Corresponding Transcriptome Changes
Specific to Liposarcomas and Their Possible Role as Therapeutic Targets

A number of the genetic abnormalities are specific to the whole set of LPSs: TOP2A,
PTK7 and CHEK1 were overexpressed in 140 cases of liposarcoma [17]; point mutations
in CTNNB1, CDH1, FBXW7 and EPHA1, C-MET and EGFR amplification and increased
expression of C-KIT, EGFR, PD-L1 and PD-1 also represent potential oncogenic events in
liposarcoma cells [18]. Loss of estrogen receptor expression may be involved in the patho-
genesis of liposarcoma through an unknown mechanism [19]. The transcription factor TBX3,
a critical developmental regulator, was shown to have a role as an oncogene/motogene in
liposarcoma [20].

Additionally, the specific genetic alterations found were specific to several subtypes of
liposarcoma.
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2.1. Well-Differentiated Liposarcoma (WDLPS) and Dedifferentiated Liposarcoma (DDLSP):
12q13-15-Associated Chromosomal Aberrations as Major Driver of Pathogenesis

WDLPS and DDLPS usually share the same genetic aberration, represented by the
distinctive ring and/or giant marker chromosomes from the 12q13-15 segment (Table 1
and [21]). This chromosome region bears more than 350 genes, including multiple prolifer-
ative genes [22]. In particular, the most common overamplified genes in WDLPS/DDLPS
are the member of the High-Mobility Group A (HMGA) gene family HMGA2, encoding
the transcriptional factor modulating the chromatin structure in the nucleus [21,23]; CDK4,
gene of cyclin-dependent kinase 4 [24]; pro-proliferative genes from the JUN family [25];
and mouse double minute 2 (MDM2), encoding a well-studied inhibitor of the p53 tumor
suppressor [24,26,27]. These genes are well-studied in the context of WDLPS/DDLSP and
reveal several correlations with the type of malignancy, location, grade, node involvement,
distant metastasis and recurrence-free survival [25]. Other genes frequently amplified
within the 12q13-15 amplicon include tetraspanin 31 (TSPAN31), a gene with possible role
in the proliferation, migration and inhibition of apoptosis [28,29]. YEATS4, a proliferative
gene, and CPM, encoding carboxypeptidase M, a proteolytic enzyme inducing cleavage
activation of growth factors, are genes commonly amplified within 12q13-15 that have
been implicated in dedifferentiation [30]. FRS2, E2F1 and CDKN2A are also among the
most upregulated genes in DDLPS and WDLPS [26,31]. Notable deletions were found in
chromosome 1p (RUNX3, ARID1A), chromosome 11q (ATM, CHEK1) and chromosome
13q14.2 (MIR15A, MIR16-1) [30]. It was also demonstrated for WDLPS/DDLPS without the
CDK4 amplification that an alteration in the CDKN2A/CDKN2B/CDK4/CCND1 pathway
is present in almost all cases without CDK4 amplification and may play a pivotal role in
oncogenesis [32].

Table 1. The most frequent genetic and epigenetic aberrations in LPS.

LPS Subtype Cytogenetic Abnormality and Associated Genetic
Aberration Epigenetic-Related Change

WDLPS

Ring chromosome 12
12q13-15 region amplifications: MDM2, CDK4,

HMGA2, SAS, GL1, JUN family genes
[21–24,26,27]

Not described

DDLPS

Ring chromosome 12
12q13-15 region amplifications: MDM2, CDK4,

HMGA2, SAS, GL1, JUN family genes
[21–24,26,27]

Mutations in genes of epigenetic regulators
(HDAC1)

Aberrant methylation of tumor-promoting genes
KLF4, CEBPA, CDKN2A

Increased expression of miR-155
[33–36]

MLPS t(12;16) (q13;p11), t(12;22) (q13;q12)
FUS-CHOP, EWS-CHOP [18]

Specific methylation profile of 12q13-q14 region
CpG-methylated APC locus and reduced APC

expression
Epigenetic regulation of increased expression of

CDKN2A, MGMT, RASSF1A, MST1, MST2
Increased expression of microRNA-135b

[37–40]

PLPS

13q14.2-5 deletion
Rb/TP53 deletion

Complex karyotype
[21,26,41,42]

Not described

MPLPS No specific changes
Complex karyotype Not described

In WDLPS/DDLPS, the molecular features of malignancies may vary between sub-
types. In particular, insulinoma-associated protein 1 (INSM1) is a specific biomarker for
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neuroendocrine cancers, but its expression is also detected in liposarcomas. Moreover,
INSM1 expression in WDLPS was significantly higher than in adipocytes and DDLPS cells.
Significant differences in the expression of INSM1 in WDLPS and DDLPS may assist in the
diagnosis, enriching the diagnostic index system of mesenchymal cancers [43]. Additional
chromosomal abnormalities, more exclusive for DDLPS than for WDLPS, are recurrent
amplifications of 1p32 and 6q23, in particular, overexpression of ASK1, DDR2, ERBB3,
STAT6, FGFR1, MAP3K5, LGR5, MCL1, CALR, AQP7, ACACB, FZD4, GPD1, LEP and
ROS1 [21,44–46]. Another set of core genes in DDLPS identified as significantly enriched in
microarray profiling generated from DDLPS and normal fat controls include APP, MDM2,
CDK1, PCNA, TKT, CDK4, CDC20, BUB1B, BARD1, ADRB2, LGALS3, CAV1, CCNA2 and
CDKN2A. The pathways identified as enriched in DDLPS are the pyruvate pathway, cell
cycle genes and molecular mechanisms associated with the DDLPS pathway and PPAR
signaling pathway [47]. CTDSP1/2-DNM3OS fusion genes were identified in a subset of
DDLPS tumors by integrating exome and RNA sequencing data [48].

Several genes located at 19p13.1-13.2 were highly expressed in DDLPS, including
genes encoding CRT, the inhibitor of adipocyte differentiation, and CD47, tightly associated
with malignant transformation [18]. The expression of the E3-ubiqutin ligase gene SIAH2
in DDLPS tumor-associated macrophages and other stromal cells indicates that SIAH2
expression may serve as a molecular marker distinguishing between DDLPS and WDLPS,
but more complete evaluation of the role of SIAH2 in the DDLPS phenotype is limited
by the availability of fresh tissues from these rare cancers [49]. In a study of the role of
α-thalassemia/mental retardation syndrome X-linked (ATRX) or death domain-associated
protein 6 (DAXX) gene expression in telomerase activation and alternative lengthening of
telomeres, a 100% correlation was demonstrated between ATRX or DAXX and alternative
telomere lengthening in DDLPS. It was also correlated with poor survival, suggesting the
prognostic role of ATRX and DAXX in DDLPS [50]. Expression of the PD-1 gene, encoding
the differentiation marker of the immune cells, was particularly high in DDLPS [51].
Another study reported a correlation between high expression of the centromere protein
F (CENPF) gene and worse survival of DDLPS patients, therefore suggesting CENPF as
a malignant indicator of tumor immune infiltration-related survival [52]. Rare DDLPS-
specific alterations are mutations in the fibroblast growth factors FGFR1, FGFR2, FGFR3 and
FGFR4, as well as in FGFR substrate 2 (FRS2), characterized by a poor prognosis [18,53–55].

For WDLPS pathogenesis, a second amplicon originating from 10p11-14 is described
containing 62 genes, including oncogenes such as MLLT10, previously described in chimeric
fusion with MLL in leukemias, NEBL and BMI1 [22]. SORBS1, KRT8 and MT1G are among
the top downregulated genes in WDLPS and DDLPS [31]. MT1G was previously reported
to be a tumor suppressor and was silenced in hepatocellular carcinoma [56]. Low SORBS1
expression is associated with promotion of invasion and metastasis as well as an overall
poor prognosis in breast cancer [57]. CCAAT/enhancer binding protein (CEBPA) and PPAR-
γ are reported to be downregulated in DD/WDLPS but more frequently in DDLPS [18].

2.2. Myxoid and Round-Cell Liposarcoma (MLPS): DNA Damage-Associated Gene CHOP and Its
Translocation Partners

MLPS is characterized by unique chromosome rearrangements, namely, t(12;16)
(q13;p11), that result in the FUS-CHOP (FUS-DDIT3) gene fusion in more than 95% of
cases or the rarer translocation t(12;22) (q13;q12), leading to the formation of the EWS-
CHOP oncogene in 5% of malignancies [18]. The gene CHOP encodes a growth arrest and
DNA-damage inducible member of the C/EBP family of transcription factors, regulates
adipogenesis and assists in growth arrest, but loses the function after the rearrangement
and stimulates proliferation [58]. The CHOP translocation partners include a TLS gene
of nuclear RNA-binding protein and an EWS gene with great similarity to TLS, whose
protein product is involved in the development of a wide variety of cancers, including
Ewing’s sarcoma, melanoma and several neuroendocrine cancers [33]. Interestingly, the
breakage in the introns of the CHOP gene with further formation of chimeric genes suggests
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the presence of a characteristic sequence in the breakpoint regions, including the mobile
element Alu and palindromic oligomer sequences [34]. To date, eleven FUS-CHOP and
five EWS-CHOP chimeric genes have been described [35]. The corresponding aberrant
proteins interfere with normal adipocyte differentiation and are involved in the activa-
tion of several tyrosine kinase receptor pathways including MET, RET, IGFR, AXL, EGFR,
PI3K/Akt and VEGFR2 specifically for round-cell liposarcoma [18]. Activating mutations
or amplification of PIK3CA, P110α catalytic subunit mutations of PI3K are seen in approxi-
mately 15% of MLPS and are associated with a poor prognosis, whereas PTEN deletion has
also been described [18,21]. MLPSs are also characterized by a high frequency of hotspot
mutations (C228T or C250T) in the promoter region of telomerase reverse transcriptase
(TERT), which encodes the TERT protein responsible for telomerase reactivation [36,59].
TERT mutation is associated with a poor prognosis in MLPS; however, it could not be
depicted as a prognostic factor. Thus, in a retrospective study on 83 primary MLPS tumor
samples, TERT hotspot mutations were observed in 77% of cases, but aberrant telomere
lengthening was not detected. Furthermore, TERT promoter hotspot mutations did not
correlate with patient survival [60], in contrast with ATRX/DAXX overexpression and
alternative telomere lengthening in DDLPS [50]. Gene expression studies have reported the
specific expression of CTAG1B, CTAG2, MAGEA9 and PRAME in myxoid and round-cell
liposarcoma [61]. High expression of the CHSY1 gene encoding surface glycosaminoglycan
could be an additional marker of malignant pathologic grade and poor clinical prognosis
in soft-tissue sarcomas with myxoid substance [62]. STAT6 can also be overexpressed in
myxoid liposarcoma [46].

2.3. Pleomorphic Liposarcoma (PLPS) and Myxoid Pleomorphic Liposarcoma (MPLPS): Complex
Karyotype and Poor Prognosis

PLPS and MPLPS are usually characterized by complex karyotypic aberrations without
specific genetic alterations. Comparative genomic hybridization analyses showed gains
of 1p, 1q21-q32, 2q, 3p, 3q, 5p12-p15, 5q, 6p21, 7p, 7q22, 8q, 10q, 12q12-q24, 13q, 14q, 15q,
17p, 17q, 18p, 18q12, 19p12, 19q13, 20q, 22q and Xq21-q27 and losses of 1q, 2q, 3p, 4q, 10q,
11q, 12p13, 13q14, 13q21-qter, 14q23-24, 16q22, 17p13, 17q11.2 and 22q13 [41,42]. TP53
mutations are observed in 60% of PLPS patients [26], deletion of 13q14.2-5 (containing the
tumor-suppressor gene RB1) in up to 50% [21] and loss of tumor the suppressor-gene NF1
in 5% of patients [30]. In a study of 155 patients diagnosed with PLPS, increased expression
of PPARγ (adipogenic marker), BCL2 and survivin (survival factors), VEGF (angiogenic
factor), MMP2 metalloprotease and other biomarkers was revealed [15,18]. Amplification of
δ catenin on 5p and deregulation of genes involved in adipogenesis (CEBPA on 19q, EP300
on 22q13) associated with the promotion of metastasis and loss of adipocyte differentiation
are also observed [41].

2.4. Conclusion on Liposarcoma Genetics

To sum up, some genetic alterations with oncogenic potential are described for all
subtypes of liposarcoma. The most frequent WDLPS and DDLPS genetic aberration is
represented by the 12q13-15 segment rearrangements, affecting the expression of more
than 60 genes, including pro-proliferative ones. An additional frequent transcriptome
abnormality for DDLPS is represented by the overexpression of several genes located at
19p13.1-13.2. Telomerase activation and alternative lengthening of telomeres were also
demonstrated for DDLPS. Moreover, high expression of PD-1 was found in DDLPS tumor-
associated macrophages. For WDLPS, a second amplicon originating from 10p11-14 is
described. Several genes, including SORBS1, KRT8 and MT1G, are downregulated in
WDLPS and DDLPS. MLPS is characterized by the translocation (12;16) (q13;p11), resulting
in the FUS-CHOP gene fusion and affecting adipocyte differentiation and the activation
of tyrosine kinases MET, RET, IGFR, AXL, EGFR, PI3K/Akt and VEGFR2. Additionally,
overexpression of CTAG1B, CTAG2, MAGEA9, PRAME and CHSY1 was described in
MLPS. As concerns tumor-suppressor genes, PTEN deletion is also not uncommon in
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this type of liposarcoma. PLPS and MPLPS are characterized by complex karyotype and
simultaneous aberrations simultaneously with P53 mutations and the deletion of 13q14.2-5,
including RB1.

3. Epigenetic Markers of Liposarcoma

Epigenetic regulation of gene expression occurs on multiple levels, including DNA
methylation, histone mutations and modification, chromatin structure alterations and re-
modeling, the formation of alternative DNA structures as well as transcription regulation
by specific subsets of long non-coding RNA (lncRNA) and miRNA [45,63]. Novel manners
of cell communication and genetic exchange such as exosomes, macrovesicle, and apop-
totic bodies containing miRNAs with LPS-relevant functions involve adjacent and distant
recipient cells and add complexity to this situation [45]. It has to be noted that studies of
LPS epigenetics have not been reported all LPS subtypes, and the use of epigenetic mod-
ulators in therapy for liposarcoma should develop a stronger basis. WDLPS and DDLPS
are already characterized by a multi-component landscape of histone modifications and
histone-modifying enzymes as well as by a specific miRNA profile. In contrast, there are no
data describing the epigenetic changes in PLPS and MPLPS. Nevertheless, specific miRNAs,
in particular, miR-215-5p, was shown to promote MDM2 expression in liposarcoma without
specificity to a certain subtype. In addition, it was found to promote cell proliferation,
inhibit apoptosis, promote cell cycle progression and promote cell invasion and migration.
Therefore, miR-215-5p could be considered a novel therapeutic target in liposarcoma [64].
Hypermethylation of H3K4me3 and H3K9me3 was found in a study of patient-derived
xenografts from upper-abdominal soft-tissue liposarcoma. This epigenetic feature may be
related to methionine addiction, a fundamental hallmark of cancer, termed the Hoffman
effect [65]. The over-methylation of these histone marks requires excess methionine in the
form of S-adenosylmethionine and may, at least in part, account for the excess methionine
required by cancer cells [66]. Liposarcoma subtypes have their unique genetic and clinical
characteristics, undoubtedly cross-talking with the epigenetic features of specific malig-
nancies. Below, we review the current and potential future epigenetic prognostic markers
and/or therapy targets.

3.1. Mutations in the Genes of Epigenetic Regulators and the Whole Set of Differentially Expressed
miRNAs in WDLPS and DDLSP

In DDLPS, specific methylation profiles correlate with clinical outcomes [67,68]. In
many cases, promoter elements are hypomethylated, while enhancers and coding sequences
are hypermethylated, although the net consequences on transcription in vivo are not
entirely predictable [67].

Mutations in genes of epigenetic regulators, specifically in histone deacetylase 1
HDAC1, were demonstrated for DDLPS, but the significance of HDAC1 mutations in DLPS
remains to be fully defined at the biochemical level [69]. A comparative analysis of epige-
netic modifications and the DNA methylation level in DDLPS identified 833 differentially
methylated regions affecting the promoters of 677 genes [70]. Significant tumor-specific
promoter methylation associated with downregulation was found in KLF4 and CEBPA, en-
coding two transcription factors associated with adipocyte differentiation. KLF4 regulates
CEBPA, and loss of expression of these factors is considered to be tumorigenic [70]. A study
of DNA methylation status and gene expression levels in a large and representative cohort
of 80 untreated, primary high-grade sarcomas composed of eight subtypes revealed the
prognostic value of DNA hypermethylation of CpG sites in the CDKN2A gene in PLPS and
DDLPS [71]. p16INK4a gene promoter hypermethylation is considered to be a potential
marker for DDLPS but not for WDLPS [72].

More than 40 miRNAs were found to be differentially expressed in DDLPS and WDLPS
among themselves as well as in comparison to normal fat [18]. One of the most frequently
upregulated miRNAs in DDLPS is miR-155, involved in malignization via the regulation
of casein kinase 1α (CK1α), which results in the activation of the β-catenin pathway [73].
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β-catenin and its downstream effector cyclin D1 were found to be overexpressed in all
human DDLPS cell lines compared with preadipocytes and adipocytes and were also
shown to induce DDLPS cell proliferation and cell cycle progression [73,74]. Knockdown
of miR-155 inhibited DDLPS cell proliferation, decreased colony formation, induced cell
cycle arrest in vitro and blocked tumor growth in xenografts [75]. MiR-193 family members
were found to be downregulated in DDLPS compared with normal fat, and miR-193
expression is considered a favorable prognostic factor in WDLPS/DDLPS [76], as well
as a therapeutic approach, as miR-193 targets PDGFRβ, SMAD4 and YAP1, belonging
to strongly interacting pathways (focal adhesion, TGFβ and Hippo, respectively) [77].
Interestingly, the expression of miR-193b in liposarcoma cells was downregulated by
promoter methylation, resulting at least in part from increased expression of the DNA
methyltransferase DNMT1 in WDLS/DDLS, which leads researchers to also consider
the immediate implication of demethylation agents for therapeutic exploration [76,78].
MiR-143, which is abundant in normal adipose tissue, was found to be underexpressed
in WDLPS, and its expression decreased further as the tumor progressed to DDLPS. The
signaling targets of miRNA-143 include BCL2, TOP2A and PLK1 [79]. The role of miR-145
and miR-451 in the suppression of tumor growth was demonstrated for DDLPS, as well as
the tumor-promoting role of miR-26a in DDLPS/WDLPS [80]. Loss of miR-133a expression
induces a metabolic shift due to a reduction in oxidative metabolism favoring a Warburg
effect in DDLPS [81].

In a study of the expression of 1888 miRNAs in 25 human liposarcoma samples, a
DDLPS-specific downregulated subset of miRNAs was described, including miR-144, miR-
451, miR-29b-2, miR-365, miR29b miR-499-5b, miR-486-5p and miR-551 [82]. Further, the
role of the miRNAs miR-133a, miR-199a-3p, miR25-3p and miR-92a-3p was investigated
in DDLPS progression, but a correlation between the expression of miRNAs and tumor
viability was shown only for miR-199a-3p [18]. MiR-133, miR-1 and miR-206 were signifi-
cantly underexpressed in WDLPS and may function as tumor suppressors, as described
in muscle-relevant rhabdomyosarcomas [83]. Tan et al. described other specific subsets
of miRNAs in DDLPS and WDLPS: they confirmed the upregulation of miR-214-3p, miR-
199a, miR-21-3p and miR-21-5p and downregulation of miR-10b, miR-126-3p, miR-126-5p,
miR-143-3p, miR-143-5p, miR-145-5p and miR-193b-3p in WDLPS/DDLPS compared to
benign lipoma [84]. MiR-3613-3p is upregulated in DDLPS patients and may serve as a
potential specific biomarker for dedifferentiated liposarcoma [85]. The analysis of tissue
and serum miRNA expression in DDLPS identified miR-1246, -4532, -4454, -619-5p and
-6126 as biomarkers for DDLPS [86].

3.2. MLPS: FUS-CHOP-Associated Chromatin Remodeling and Changes in Specific
miRNA Expression

The specific methylation profile of the 12q13-q14 region in MLPS with t(12;16) (q13;p11)
translocation has been described [38]. Epigenetic analyses showed that 45% of myxoid/round-
cell liposarcomas were CpG-methylated at the APC locus and had reduced APC expres-
sion [39]. Increases in expression of CDKN2A, MGMT, RASSF1A, MST1 and MST2 were also
found to be epigenetically regulated by the DNA methylation level [40].

Chromatin remodeling plays a role in MLPS through interactions between FUS-DDIT3
and components of the subfamily of ATP-dependent chromatin remodeling complexes
SWI/SNF and polycomb repressive complex 2 PRC2 [87–89]. The histone code reader
Spindlin1 (SPIN1) was shown to impair proliferation and increase apoptosis of liposarcoma
cells in vitro and in xenograft mouse models. Using signaling pathway, genome-wide chro-
matin binding and transcriptome analyses, Franz et al. found that SPIN1 directly enhances
the expression of GDNF, an activator of the RET signaling pathway, in cooperation with
the transcription factor MAZ. Importantly, a mutation of SPIN1 within the reader domain
interfering with chromatin binding reduces liposarcoma cell proliferation and survival.
These data suggest SPIN1 as a novel target for chromatin-associated small-molecule in-
hibitors [90]. In a study of integral DNA methylation patterns in liposarcoma samples,
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it was demonstrated that ALDH1A3 was the most hypermethylated and downregulated
gene for MLPS compared to normal fat [71]. ALDH1A3 is a member of the aldehyde
dehydrogenase family with 19 isoenzymes that potentially plays a role in the detoxification
of aldehydes in alcohol metabolism and lipid peroxidation [91]. High ALDH1 activity in
sarcoma cell lines is associated with an increase in proliferation [92]. The EFEMP1 gene
encoding fibulin-3, a member of the extracellular matrix glycoprotein family associated
with lymph node metastasis, vascular invasion and poor prognosis, was also found to be
hypermethylated and downregulated in MLPS compared to normal fat [71,93–95].

A lesser extent of specific miRNAs is described for MLPS. Thus, microRNA-135b (miR-
135b) is described as a key regulator of the malignancy, promoting MLPS metastasis in vivo
through the direct suppression of thrombospondin 2 (THBS2) and following an increase in
the total amount of MMP2 [37]. Another study demonstrated the role of high expression
of miR-9, miR-9* and miR-31 in the progression and metastasis of MLPS [96]. It was
demonstrated that miR-486 expression was repressed in TLS-CHOP-expressing MLS tissues,
so downregulation of miR-486 may be an important process for MLPS development [97].

3.3. Conclusions of Liposarcoma Epigenetics

In conclusion to the epigenetic section, it should be noted that almost all liposarcoma
subtypes accumulate a number of epigenetic alterations, which could be considered possi-
ble therapy targets. In particular, the whole pool of target miRNAs in DDLPS, WDLPS and
MLPS is described as drivers/markers of pathogenesis and are under extensive investiga-
tion. Hypermetylation of H3K4me3 and H3K9me3 in the abovementioned LPS subtypes
may lead to the hyperexpression of cell cycle regulators and a decrease in the expression of
tumor-suppressor genes such as APC. No data on epigenetic-specific features of PLPS and
MPLPS have been described in the literature.

4. Changes in Signaling and Therapeutic Approaches

Treatment of liposarcoma typically involves surgery and radiation therapy, while the
use of classic cytostatic treatment and targeted therapy frequently lead to the development
of resistance at the advanced disease stage. However, multiple translational studies of novel
therapies target various genetic and molecular aberrations in different subtypes of liposar-
coma. In particular, WDLPS/DDLPS-specific aberrations in the 12q13-15 amplicon leading
to the amplification of MDM2 and CDK4 and MLPS-specific FUS-DDIT3/EWSR1-DDIT3
fusion represent potential therapeutic candidates. Moreover, several low-molecular-weight
multi-kinase inhibitors targeting MET, AXL, IGF1R, EGFR, VEGFR2 and PDGFR-β could
be effective in the types of liposarcoma characterized by abnormalities in PI3K/Akt/mTOR
signaling and the associated deregulation of other cascades [98–102].

4.1. MDM2/p53 and CDK4 Signaling Aberrations as Well as Activation Mutations in Multiple
Growth Factors in WDLPS and DDLPS

As described in the section “Molecular genetic abnormalities”, MDM2 and CDK4 are
frequently co-amplified in WDLPS and DDLPS [103]. Amplification of MDM2 results in
the inactivation of p53, and CDK4 amplification leads to cell cycle progression [53,104].
Both alterations can be targeted by specific inhibitors (MDM2 antagonists RG7388 and
Nutlin 3A (RG7112); CDK4/6 inhibitors palbociclib, ribociclib, abemaciclib and TQB3616)
in experimental and clinical trials either used individually or in combination, especially in
the therapy of DDLPS [98,100,103,105–112]. However, it has to be noted that combinations
of MDM2 and CDK4 inhibition in DDLPS should be thoroughly investigated in clinical
studies due to the possible combined toxicities of these drugs [106].

The orally bioavailable selective inhibitor of nuclear export selinexor has been demon-
strated to have preclinical activity in various cancer types and is currently in phase I and II
clinical trials for advanced cancers. It was shown in vitro that selinexor induces G1-arrest in
liposarcoma cell lines with MDM2 and CDK4 amplification by increasing the protein level
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of p53 and p21, indicating a post-transcriptional effect. These results justify the exploration
of selinexor in clinical trials targeting various sarcoma subtypes [113].

MDM2 inactivates p53 in a phosphorylated form. Dephosphorylation and depletion of
MDM2 by the inhibitor of HDAC resulted in increased apoptosis, anti-proliferative effects
and cell cycle arrest in liposarcoma cell lines, warranting further evaluation of HDACi
as a therapeutic option in MDM2-amplified LPS [114]. Another epigenetic approach to
the treatment of DDLPS/WDLPS is the inhibition of specific miRNAs. Thus, promotion
of MDM2 expression, cell proliferation and invasion of the liposarcoma SW-872 cell line
as well as inhibition of apoptosis by miR-215-5p is described in the literature. Targeting
miR-215-5p may be a novel therapeutic strategy for the treatment of liposarcoma [64].

Following MDM2/P53 signaling, these molecules are linked to PTEN and the
PI3K/Akt/mTOR pathway, regulating the pro-apoptotic and anti-apoptotic signals. Specif-
ically, MDM2 could be stabilized by Akt-mediated phosphorylation, and, in turn, inhibit
PI3K/Akt activity via prevention of the nuclear localization of the tumor suppressor
REST [104]. PTEN expression in patient samples correlates with poor survival [115]. The
PTEN-controlled PI3K/Akt/mTOR pathway could be a therapeutic target for DDLPS, as
PTEN protects p53 from MDM2-mediated degradation. Together with the inhibition of
PI3K/Akt/mTOR signaling, it can augment P53-mediated apoptosis, as was demonstrated
in multiple studies in vitro and in vivo [104]. PI3K/Akt/mTOR inhibitors, for example,
BEZ235, could be an option for combined treatment of WDLPS/DDLPS [104,116]. Further,
downstream Akt targets c-Jun N-terminal kinase (JNK) from the mitogen-activated protein
kinase (MAPK) family and this cross-talk may be useful in the development of therapy ap-
proaches [117]. However, in phase II trials, the multi-kinase, dual-action inhibitor sorafenib
demonstrated a lack of significant clinical efficacy in liposarcoma treatment [118].

Mutational events in the fibroblast growth factor receptors FGFR1, FGFR2, FGFR3
and FGFR4 and the FGFR substrate FRS2 suggest that FGFR signaling plays a role in the
pathogenesis of liposarcoma, especially in the development of high-grade DDLPS [18,53].
Moreover, a combination of the FGFR inhibitors erdafitinib and NVP-BGJ398 together with
the MDM2 antagonist RG7388 was shown to be a promising strategy for the treatment of
DDLPS and needs further investigation in clinical trials [55,119].

In addition to the TP53 and RB signaling pathways, other pathways may be involved in
the dedifferentiation process from WDLPS to DDLPS, including mitogenic and motogenic
Wnt and Hedgehog signaling cascades, as well as Notch signaling regulation the differenti-
ation. Besides their overall tumorigenic properties, a specific association of Wnt, Hedgehog
and Notch activation with malignant transformation was demonstrated in DDLPS and
WDLPS. However, there is no clear evidence for a role of this pathway in regulating tumor
progression and the dedifferentiation process [18]. Another Akt downstream target is
insulin-like growth factor 1 receptor (IGF1R). IGF1R inhibitors are early-stage therapeutics,
and their potential synergistic effect in combination with CDK4/6 inhibitors were predicted
in silico and proved in vitro [120]. Several receptors, including MET, PDGFR, AXL, VEGFR
and EGFR as well as Aurora kinase family proteins are overexpressed in WDLPS/DDLPS.
All these receptors may act as targets and have already available small-molecule inhibitors,
and some of them have already demonstrated anti-proliferative and proapoptotic effects
in liposarcoma cells [18,45]. Noteworthily, the multi-kinase angiogenesis inhibitor anlo-
tinib demonstrated in preclinical and clinical studies a higher efficacy compared to the
multi-kinase inhibitors sorafenib, sunitinib and nintedatinib [102]. A phase II trial showed
the promising efficacy and acceptable toxicity of anlotinib as maintenance treatment after
first-line anthracycline-based chemotherapy [121,122].

Peroxisome proliferator-activated receptors (PPAR) regulate normal adipocyte differ-
entiation. PPAR-gamma is regulated by c-JUN and induces the differentiation of normal
preadipocytes. Hyperactivation of c-JUN blocks differentiation and may contribute to
malignant transformation. PPAR-gamma agonists revealed antitumor activity in vitro in
liposarcoma cell lines. In this sense, PPAR-gamma represents an attractive target, particu-
larly for DDLPS, MLPS, and in some cases, PLS as a mechanism to revert these subtypes to
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a well-differentiated phenotype. However, clinical trials with the PPAR-gamma ligands
demonstrated mixed results. The PPAR-gamma agonist troglitazone was used for the
treatment of patients with advanced liposarcoma and demonstrated expression of several
mRNA transcripts characteristic of adipocytic differentiation and a marked reduction in
cancer cell proliferation [123]. Two other clinical trials with rosiglitazone and efatutazone
demonstrated mixed results [124,125].

4.2. FUS-CHOP-Associated Abnormalities of PI3K/Akt/mTOR and Other Proliferative Signaling
in MLPS

Fusion proteins from the chimeric oncogenes FUS-DDIT3 and EWS1R-DDIT3 act
as aberrant transcription factors and may affect many signaling molecules. Thus, gene
expression studies in MLPS have identified the recurrent upregulation of MET, RET, IGF-IR
and PIK3CA, suggesting that these genes to be downstream targets of MLPS-specific fusion
proteins [104]. Mutations in the PI3K catalytic subunit, IGF1R expression, amplification
and mutations in PIK3Ca and loss of PTEN are reported in 12–18% of cases, therefore
affecting multiple PTEN and PI3K/Akt/mTOR downstream genes [18,104]. The use of
IGF-IR/PI3K/Akt/mTOR inhibitors in therapy for MLPS has a therapeutic potential and is
currently under investigation. More specifically, treatment of myxoid liposarcoma cell lines
in vitro and xenograft-bearing mice in vivo with several IGF-IR and PI3K/Akt/mTOR
inhibitors resulted in significant growth inhibition [126,127]. One of the mechanisms
of tumor heterogeneity and oncogenic potential maintenance is the phosphorylation of
Interacts With SUPT6H (IWS1), a regulator of histone activity, by AKT. These findings
support the use of the AKT/IWS1 axis as a novel prognostic factor and potential therapeutic
target in liposarcoma therapy [128].

Another microarray analysis revealed overexpression of FGFR2 and other members of
the FGF/FGFR family and the efficacy of the FGFR inhibitors PD173074, TKI258 (dovitinib)
and BGJ398 in experiments in vitro [129]. In addition, the FUS-DDIT3 protein induces
increased expression of the CAAT/enhancer-binding protein (C/EBP) and nuclear factor
NFKBIZ, a member of the NF-kB family, colocalizing with FUS-DDIT3 [130]. A study of
the kinome of cell lines and primary cell cultures from patients with metastatic myxoid
liposarcoma revealed the activation of the kinase set associated with activation of the
atypical nuclear factor-kappaB and the Src pathways. Moreover, in vitro NF-kB suppression
by Casein kinase II inhibitor TBB and Src inhibition using dasatinib decreased cancer cell
viability and offered potential therapeutic strategies for myxoid liposarcoma patients with
advanced disease [131].

The Hippo pathway effector and transcriptional co-regulator YAP1 was shown to be a
downstream target of FUS-DDIT3. In vitro studies demonstrated that FUS-DDIT3-driven
IGF-IR/PI3K/AKT signaling promotes stability and nuclear accumulation of YAP1 via
deregulation of the Hippo pathway. Gene expression profiling revealed gene signatures
related to proliferation, cell cycle progression, apoptosis and adipogenesis. Therefore,
FUS-DDIT3 involves IGF-IR/PI3K/AKT signals via Hippo/YAP1, and YAP1 may be an
immunohistochemical marker for MLPS diagnostics. Moreover, these findings provide a
rationale for the development of low-molecular-weight inhibitors of key components in
Hippo/YAP1 signaling [132–134].

FUS-DDIT3-associated malignant transformation of adipocytes resulted in elevated
levels of STAT3 and phosphorylated STAT3, suggesting the involvement of JAK/STAT
signaling in the pathogenesis of MLPS [135]. Several inhibitors targeting JAK and GSK-3
caused downregulation of FUS-DDIT3 in vitro and reduced cell proliferation [136].

The components of the VEGF signaling pathway FLT1, PGF, VEGFA and VEGFB
were shown to be indirect targets of FUS-DDIT3 in vitro. This could be a consequence of
the ability of FUS-DDIT3 to reprogram primary adipocytes to a liposarcoma-like pheno-
type [137]. One case is reported in the literature of a 68-year-old Chinese woman initially
diagnosed with advanced multiple intra-abdominal and pelvic round-cell liposarcomas
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who responded to therapy with the VEGFR2 inhibitor apatinib [138]. Further clinical trials
are needed to confirm the efficacy and safety of VEFGR inhibitors in the treatment of MLPS.

MLPSs, like some other malignancies associated with chromosomal translocations result-
ing in expression of a fusion protein, are more responsive to trabectedin than other sarcoma
types. Trabectedin does not act as an inhibitor of specific hyperactivated/overexpressed pro-
teins; it binds covalently to the exocyclic amino group of guanines in the DNA minor groove,
competing with the fusion protein and preventing its transcriptional activity. Several clinical
studies have demonstrated the efficacy and favorable safety profile of trabectedin [18,112].

4.3. PLPS and MPLPS: No Specific Targets

No data on specific features in signaling and targeted treatments of pleomorphic
liposarcoma are described in the literature. It is the rarest type of liposarcoma with poor
prognosis, and its therapy involves mainly surgical management and the application of
radiation. In addition, PLPS and MPLPS may respond to a doxorubicin and ifosfamide
combination; trabectedin and eribulin are also options for advanced disease. A reduction
in the primary tumor and the eradication of lung metastasis were reported in a clinical
case of combined PLPS treatment with the multi-kinase inhibitor pazopanib, eribulin and
dacarbazine [139]. Significant work remains to be done to develop novel therapies for this
disease. To date, most studies have failed to identify targetable aberrations and have noted
only consistent losses in p53 and Rb pathway proteins [18,140–142]

4.4. Perspectives of Targeted Therapy for Liposarcomas

Currently, CDK 4/6 and MDM2 amplifications present the prospective targets for
LPS therapy, and the efficacy of CDK4/6 and MDM2 inhibitors was proved in clinical
trials on WDLPS and DDLPS (Table 2). Multi-kinase inhibitors including the well-studied
sunitinib and the most recent, anlopanib, demonstrated mixed results, suggesting the
necessity of further studies. To date, their combination with standard radiotherapy and
conventional cytostatic approaches is still required until chemoresistance to the standard
therapy appears. As nowadays chemoresistance prediction based on molecular genetics
analysis seems insufficient, the development of experimental approaches for testing it ex
vivo and in vitro may be useful for the exclusion of potentially ineffective targeted therapy
courses and the choice of more promising treatment strategies.

Table 2. Targeted molecules proposed for LPS treatment.

Drug Target/Mechanism of Action LPS Subtype References

Palbociclib CDK 4/6 inhibitor
WDLPS, DDLPS [100,112]

Abemaciclib CDK 4/6 inhibitor

Milademetan MDM2 inhibitor
WDLPS, DDLPS [143–146]

BI 907828 (brigimadlin) MDM2 inhibitor

Sunitinib PDGFR/VEGFR inhibitor Metastatic LPS [98]

Lenvatinib VEGFR/c-Kit/PDGFR/FGFR/RET inhibitor LPS [147]

Pazopanib PDGFR/VEGFR/FGFR inhibitor Metastatic LPS [99]

Efatutazone PPAR-α inhibitor MLPS [125]

Anlotinib VEGFR/c-Kit/PDGFR/FGFR1 inhibitor WDLPS/DDLPS [102,121,122]

Selinexor Inhibitor of nuclear transportation (inhibitor of
exportin 1) DDLPS [148]

5. Conclusions/Future Direction in Therapy

Although multiple key genetic and epigenetic aberrations in liposarcoma have been
explored, only a few of them have given rise to novel targeted therapy courses. The
heterogeneity and very variable percentage of genetic and epigenetic abnormalities lead to
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an insufficient understanding of the complex signaling changes enabling tumor progression
and high chance of development of tumor resistance. Notably, the reviewed data on
specific genetic abnormalities taken together present a cluster of genetically characterized
liposarcomas that may be considered for targeted therapies. The results of clinical trials
of CDK4 and MDM2 inhibitors in the case of WDLPS/DDLPS and multi-kinase inhibitors
targeting the FUS-CHOP downstream proteins seem promising. In many other cases,
the complexity of sarcoma genetics could impede the diagnostics and may lead to tumor
resistance and a poor prognosis. However, the combination with standard radiotherapy and
conventional cytostatic approaches is still required until chemoresistance to the standard
therapy appears. As nowadays chemoresistance prediction based on molecular genetics
analysis seems insufficient, the development of experimental approaches for testing it
ex vivo and in vitro may be useful for the exclusion of potentially ineffective targeted
therapy courses and the choice of more promising treatment strategies. Overall, further
data accumulation is required in the field of LPS molecular pathogenesis as well as in
clinical trials of specific inhibitors, as the first target therapy applications gave rather
promising results. A better understanding of the distinct genetic and molecular aberrations
of liposarcoma subtypes may allow the development of several novel biology-driven
therapies based on the specific molecular genetic profile of the disease.
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Abbreviations

ACACB Acetyl-Coa Carboxylase
ADRB2 Adrenoceptor Beta 2
Akt AKT Serine/Threonine Kinase
ALDH1A3 Aldehyde Dehydrogenase 1 Family Member A3
APC Adenomatous Polyposis Coli
APP Amyloid Beta (A4) Precursor Protein
AQP7 Aquaporin-7
ARID1A At-Rich Interaction Domain 1a
ASK1 Apoptosis Signal-Regulating Kinase 1
ATM Ataxia Telangiectasia Mutated
ATRX ATP-Dependent Helicase
AXL Axl Receptor Tyrosine Kinase
BARD1 BRCA1 Associated RING Domain 1
BCL2 B-Cell Lymphoma 2
BMI1 BMI1 Proto-Oncogene, Polycomb Ring Finger
BUB1B Mitotic Checkpoint Serine/Threonine-Protein Kinase BUB1 Beta
CALR Calreticulin
CAV1 Caveolin 1
CCNA Cyclin A
CCND1 Cyclin D1
CDC20 Cell Division Cycle Protein 20
CDH1 E-Cadherin
CDK Cyclin-Dependent Kinase
CDKN Cyclin Dependent Kinase Inhibitor 2a
CEBPA CCAAT/Enhancer Binding Protein Alpha
CENPF Centromere Protein F
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CHEK1 Checkpoint Kinase 1
CHOP C/EBP Homologous Protein Alpha
CpG CG-Dinucleotides
CPM Carboxypeptidase M
CTAG Cancer/Testis Antigen
CTNNB1 Catenin Beta 1
DAXX Death-Associated Protein 6
DDIT3 DNA Damage-Inducible Transcript 3,
DDLPS Dedifferentiated Liposarcoma,
DDR2 Discoidin Domain Receptor Tyrosine Kinase 2
E2F1 E2f Transcription Factor 1
EGF Epidermal Growth Factor
EGFR Epidermal Growth Factor Receptor
EPHA1 Ephrin Type-A Receptor 1
ERBB3 Human Epidermal Growth Factor Receptor 3
EWS Ewing Sarcoma Protein
FBXW7 F-Box and WD Repeat Domain Containing 7
FGF Fibroblast Growth Factor
FGFR Fibroblast Growth Factor Receptor
FLT1 FMS-Like Tyrosine Kinase 1
FRS2 Fibroblast Growth Factor Receptor Substrate 2
FUS Fused In Sarcoma
FZD4 Frizzled Class Receptor 4
GPD1 Glycerol-3-Phosphate Dehydrogenase 1 (Soluble)
HDAC Histone Deacetylase
HMGA High-Mobility Group A
IGF Insulin-Like Growth Factor
IGFR Insulin-Like Growth Factor
INSM1 Insm Transcriptional Repressor 1
KLF4 Kruppel Like Factor 4
KRT8 Keratin 8
LEP Leptin
LGALS3 Galectin-3
LGR5 Leucine-Rich Repeat Containing G Protein-Coupled Receptor 5
lncRNA Long Non-Coding RNA
LPS Liposarcoma
MDM2 Murin Double Minute 2
miRNA Microrna
MAGEA9 Melanoma-Associated Antigen 9
MAP3K5 Mitogen-Activated Protein Kinase Kinase Kinase 5
MAPK Mitogen-Activated Protein Kinase
MAZ MYC-Associated Zinc Finger Protein
MCL1 Myeloid Leukemia and Chlamydia 1
MET MET Proto-Oncogene, Receptor Tyrosine Kinase
MGMT O6-Methylguanine DNA Methyltransferase

MLLT10
Myeloid/Lymphoid or Mixed-Lineage Leukemia (Trithorax Homolog, Drosophila);
Translocated To 10

MLPS Myxoid/Round-Cell Liposarcoma,
MMP2 Matrix Metalloproteinase 2
MPLPS Myxoid Pleomorphic Liposarcoma
MST1 Mammalian Sterile 20-Like 1 Kinase
MT1G Metallothionein 1G
mTOR Mammalian Target of Rapamycin
NEBL Nebulette
PCNA Proliferating Cell Nuclear Antigen
PD-1 Programmed Cell Death Protein 1
PD-L1 Programmed Death Ligand 1
PDGF Platelet-Derived Growth Factor
PDGFR Platelet-Derived Growth Factor Receptor
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PGF Placental Growth Factor
PGFR Placental Growth Factor Receptor
PI3K Phosphatidylinositol 3-Kinase
PLPS Pleomorphic Liposarcoma
PPAR Peroxisome Proliferator-Activated Receptor
PRAME Preferentially Expressed Antigen in Melanoma
PRC2 Polycomb Repressive Complex 2
PTEN Phosphatase and Tensin Homolog
PTK7 Protein Tyrosine Kinase 7
RASSF1A Ras-Association Domain Family 1 Isoform A
REST Re1 Silencing Transcription Factor
RET Rearranged During Transfection
ROS1 ROS Proto-Oncogene 1, Receptor Tyrosine Kinase
RUNX3 Runt-Related Transcription Factor 3
SAS Stranded At Second
SIAH2 Seven In Absentia Homolog (SIAH) 2

SMAD4
Similar To The Gene Products Of The Drosophila Gene Mothers Against
Decapentaplegic 4

SORBS1 Sorbin and SH3 Domain-Containing Protein 1
SPIN1 Spindlin 1
STAT6 Signal Transducer and Activator Of Transcription 6
STS Soft-Tissue Sarcoma
SWI/SNF Switch/Sucrose Non-Fermentable
TBX3 T-Box Transcription Factor 3
TERT Telomerase Reverse Transcriptase
TGF Transforming Growth Factor
THBS2 Thrombospondin 2
TKT Transketolase
TOP2A DNA Topoisomerase II Alpha
TSPAN31 Tetraspanin 31
VEGF Vascular Endothelial Growth Factor
VEGFR Vascular Endothelial Growth Factor Receptor
WDLPS Well-Differentiated Liposarcoma
YAP1 Yes-Associated Protein 1
YEATS4 YEATS Domain Containing 4
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