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Simple Summary: The extracellular matrix acts as scaffolding to support the structure and function
of the cells in our body. In cancer, this matrix is altered in a way that helps cancer cells to grow,
spread and avoid the immune system. The altered matrix can also prevent cancer treatments like
chemotherapy and immunotherapy from working. Targeting the matrix with drugs is emerging as an
exciting way to modify the scaffold in a precise way to improve the effectiveness of cancer treatments
in patients. In this review, we will examine strategies to target the matrix with drugs, which can help
the immune system fight cancer and improve the response to existing cancer therapies.

Abstract: The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans,
and macromolecules, generated by stromal, immune, and cancer cells. The components and organi-
sation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid
tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and
immune cell access. Interventions to target individual components of the ECM, collectively termed
the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-
modulatory functions, which have complicated clinical translation. The degree to which distinct
components of the matrisome can dictate tumour phenotypes and response to therapy is the subject
of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which
might support a better response to existing therapies. Many matrix signatures have been developed
which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we
will examine key components of the matrisome which have been associated with advanced tumours
and therapy resistance. We have primarily focussed here on targeting matrisome components, rather
than specific cell types, although several examples are described where cells of origin can dramatically
affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and
intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities
will be identified to modify tumour progression and therapy response.

Keywords: extracellular matrix; tumour matrisome; tumour microenvironment; anti-tumour immunity;
targeted therapy; immunotherapy; stroma; cancer-associated fibroblasts

1. Matrix Signatures Are Prognostic and Predict Immune Content

Deregulation of the tumour matrisome is a characteristic of all solid tumours, where
an aberrant matrix can dictate the hallmarks of cancer [1]. The matrix is composed of a
complex network or fibrillar proteins, proteoglycans, and other macromolecules, which
are intricately crosslinked and subjected to post-translational modification. The term
matrisome is used to describe an inventory of genes or proteins, which form the matrix or
regulate matrix composition, structure, or function. In mammals, there are approximately
~300 core matrisome components (e.g., NABA_CORE_MATRISOME gene set [2]) and a
large number of matrix-associated proteins and enzymatic regulators, which are variously
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included within the broad definition of the matrisome [3]. Approximately 1000 genes
encoding matrix or matrix-associated proteins are commonly included in matrisome gene
ontology lists [4]. The matrix provides the scaffold in which tissues are embedded and
also directs cellular behaviour through direct interaction with numerous cellular receptors,
tissue biomechanics, the regulation of growth factor availability, and physical restriction [5].
Tissue organisation governed by the matrix also critically regulates how and when distinct
cell types interact with each other. In cancer, this is particularly pertinent to stromal
interactions, tumour vascularisation, and immune landscape [6].

Matrix deregulation in solid cancers is perhaps most apparent as tumour desmopla-
sia, where excessive fibrotic deposition of the ECM leads to tissue stiffening. In many
aggressive tumours, including PDAC, breast cancers, and ovarian cancer, desmoplasia is a
defining feature, which often correlates with poor outcome and treatment failure [7–12].
However, unravelling the correlation of desmoplasia with causative roles in aggressive dis-
ease has proven more difficult. Supporting a causative role, tissue stiffness and fibrosis are
well-known risk factors for several cancers. Mammographic density identified through pop-
ulation screening is among the highest risk indicators for developing breast cancer [13,14].
Furthermore, fibrotic conditions, such as liver cirrhosis and pancreatitis, are associated
with significant elevated cancer risk [15–17]. Nonetheless, interventions to modify tumour
fibrosis have had mixed outcomes in pre-clinical models and clinical translation remains
elusive [7,9,18–21]. In this review, we have focussed on the specific targeting of matrisome
components to try to unravel causative and correlative relationships. Examining individual
matrix components often reveals strikingly complex extracellular signalling roles, which
challenges us to reconsider the importance of the ECM in the processing of information.
The most promising strategies for cancer treatment appear to work through modulation
of the immune landscape, and successful targeting of the stroma to improve outcome and
therapy response remains an exciting prospect.

2. Common Matrix Signatures Evolve to Support Invasion and Metastasis

While the matrices in distinct tissues each have their own characteristic composition
and biomechanical properties, commonalities also exist: the primary matrix component
in most tissues is fibrillar type 1 collagen; most parenchymal tissues and early stage
tumours are surrounded by basement membranes, a specialised type of barrier matrix
rich in collagen IV and laminins; and the matrix provides a scaffold for the parenchyma
and vascular trees providing access for nutrients and immune cells and egress for waste.
All solid tumours must subvert these physiological properties to flourish. The rapid
advance of omics technologies has allowed us to catalogue temporal and spatial changes
to the matrisome during tumour progression for diverse cancer types uncovering both
commonalities and tumour-specific mechanisms.

In solid cancers, the matrix co-evolves with the malignant component to support
tumour growth, evade immune surveillance, and promote disease progression [22]. Many
studies have revealed conserved matrisome features and signatures associated with poor
outcome and metastasis (Table 1) [7,8,23–25]. Moffit et al. used an in silico approach to
separate stromal and epithelial signatures from bulk transcriptomic data and used this
to define signatures of the activated vs. normal pancreatic cancer stroma; interestingly,
the prognostic power of the activated stromal signature was dependent on the epithelial
subtype, predicting worse outcome in basal-like tumours [26]. Most identified genes were
matrix-related, including many collagens and FN1. Pearce et al. employed a multi-omics
approach to examine features associated with metastatic progression in ovarian cancer [8].
They defined a transcriptomic Matrix Index (MI) scoring system, based on the 22 genes
most significantly associated with disease severity and tissue stiffness. Importantly, the
MI is highly prognostic, not only for ovarian cancer but also for many epithelial and
mesenchymal solid tumours. The MI correlated robustly with regulatory T-cell content
(FOXP3+), though a relationship with CD8+ T-cells was less clear. Many genes overlap
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between the MI and Moffitt signatures, despite distinct tissue origins, including COL1A1,
FN1, VCAN, and COMP.

In breast cancer, matrisome signatures associated with metastasis have been docu-
mented, highlighting FN1, Tenascin C, and lysyl oxidases as poor prognostic indicators [23].
Collagen I again features in this prometastatic signature, alongside COLV and COLVI;
importantly, COLVI has also been associated with a functional role in TNBC metastasis
in a cell-derived matrix model [27], while COL1A1 or FN1 alone can also drive an ag-
gressive breast cancer phenotype in culture models [28]. Indeed, both COL1A1 and FN1
have been identified as individual prognostic biomarkers in a variety of cancers [29–36].
Taking a proteomic approach to map the evolving matrisome in breast cancer, Papanicolaou
et al. identified and characterised a role for collagen XII as a metastasis-related compo-
nent, though, interestingly, this was functionally linked to regulation of collagen I fibril
organisation [37].

A picture emerges where the tumour-associated matrix promotes an immune-evasive,
pro-metastatic environment, often through modulation of common and abundant matrix
components, including collagen I, FN1, and hyaluronic acid (HA). Organisation, alignment,
crosslinking, and degradation all play important roles, which offer numerous therapeutic
opportunities.

3. Matrix Signatures Associated with Immune Evasion and Immune Checkpoint Response

Historically, tumour matrix studies have focussed on invasion and metastasis, whereas
recent emphasis has turned to immune evasion (Table 1). Significant effort is now being
made to understand the role of the tumour microenvironment (TME) in the regulation of
anti-tumour immunity and ICB response. Taking a pan-cancer approach, Chakravarthy
et al. characterised ECM changes between normal and malignant tissue across multiple
solid tumour TCGA datasets and defined a conserved gene expression signature associated
with malignancy [25]; notably, the cancer-associated ECM signature (C-ECM) is not only as-
sociated with disease prognosis but also predicts immune evasion and immune-checkpoint
blockade (ICB) failure. Many of the ECM genes identified are TGFβ-responsive targets in
cancer-associated fibroblasts (CAFs), and these data concur with a broad range of studies
implicating the TGFβ-activated stroma with poor ICB response [38–41]. The intimate link
between the matrisome and immune content implies that the direct targeting of specific ma-
trisome components may provide benefit to augment immunotherapy and chemotherapy
response [6].

In breast cancer, an early stromal gene expression study by Finak et al. also highlighted
the critical contribution of the stroma–immune relationship to breast cancer prognosis [42].
A clinically useful example is provided by the colorectal cancer (CRC) immunoscore, largely
based on CD3 and CD8 T-cell content. The immunoscore is a powerful predictor of both
prognosis and ICB response in MSI-positive CRC tumours [43–45]; immunotherapy is
now the frontline therapy for the management of MSI-positive metastatic CRC, where
biomarkers for response are critical [46]. Similarly in melanoma, where immunotherapy
is offering huge clinical benefit, signatures associated with T-cell exclusion are powerful
predictors of ICB response [47].

While T-cell content is a powerful predictor in some cancer settings such as CRC, the
relationship between CD8+ T-cells and ICB response is clearly complex, as many factors can
govern the ability of T-effector cells to target tumour cells, including neo-antigen load, PD-
L1 expression, T-cell distribution, and the presence of immune-suppressive Tregs, γδ T cells,
and myeloid suppressor cells [48–51]. To integrate these factors, the Tumour Immune
Dysfunction and Exclusion study (TIDE) defined a scoring system which considers many
critical factors governing anti-tumour immune responses, including T-cell exclusion, T-cell
exhaustion, immune cell repertoire, and stromal signatures [52]. Examining melanoma trial
results, the study concludes that high CD8+ T-cell content is an effective indicator of ICB
response only when associated with a low TGFβ signature [52]. The TME risk signatures
developed for lung [53] and HCC [54], as well as the immune checkpoint inhibitor scoring
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system (IMS) for bladder cancer [55], provide additional informative examples, defining
TME features associated with anti-tumour immunity and ICB response. In each of these
signatures or scoring systems, matrisome components are abundant, with commonalities
regarding TGFβ signatures, collagen regulation, and immune content.

Table 1. Stromal signatures associated with prognosis or therapy response.

Name Derived Application Cancer Focus Number of Genes

Dominguez et al. [39] Marker genes for a CAF
subpopulation

Predicts anti-PD-L1
therapy response

Pancreatic ductal
adenocarcinoma 12 upregulated genes

Pearce et al. [8]
Matrix genes associated with

disease score and tissue
modulus

Predicts poor prognosis High-grade serous
ovarian cancer

6 upregulated genes,
16 downregulated

genes

Moffitt et al. [26]
Differential expression of

stromal genes between CAFs
and tumour cell lines

Predicts poor prognosis Pancreatic ductal
adenocarcinoma 48 upregulated genes

Murray et al. [24] Transcriptome associated
with PKN2 knockout Predicts poor prognosis Pancreatic ductal

adenocarcinoma 11 upregulated genes

Öhlund et al. [56]
Transcriptome associated

with iCAF subtype
CAF subtype

discrimination
Pancreatic ductal
adenocarcinoma

200 upregulated
genes,

200 downregulated
genes

Jiang et al. [52]
Transcriptome associated
with T-cell exclusion and

dysfunction

Predicts immune
checkpoint inhibitor

response
Multiple 770 genes

Yan et al. [53,54] TME signatures associated
with anti-tumour immunity

Predicts poor prognosis
and immune

checkpoint inhibitor
response

Hepatocellular
carcinoma

Four downregulated
genes

Lin et al. [55]
Gene expression of

27 survival-related immune
signatures

Predicts good
prognosis and immune

checkpoint inhibitor
response

Gastric cancer 463 upregulated
genes

Brechbuhl et al. [23] Proteome associated with
CD146–CAFs

Associated with
increased risk of

metastasis
Breast cancer 12 upregulated genes

Wang et al. [57] Regression in TCGA
ESTIMATE scores Predicts poor prognosis Gastric cancer

Three upregulated
genes, one

downregulated gene

Jia et al. [58] Regression in TCGA
ESTIMATE scores Predicts poor prognosis Colon

adenocarcinoma
Three upregulated

genes

Yue et al. [59]
Transcriptome associated

with TCGA lymphovascular
space invasion

Predicts poor prognosis Serous ovarian cancer Eight upregulated
genes

Isella et al. [60]

CAF-expressing genes
associated with stem/

serrated/mesenchymal
(SSM) transcriptional

subtype

Predicts poor prognosis Colorectal
adenocarcinoma

130 upregulated
genes

Farmer et al. [61] Genes co-expressed with
decorin

Predicts poor
neoadjuvant

chemotherapy response

ER-negative breast
cancer 50 upregulated genes
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Table 1. Cont.

Name Derived Application Cancer Focus Number of Genes

Boersma et al. [62]

Stromal genes differentially
expressed between
inflammatory and
non-inflammatory

breast cancer

High inflammation Inflammatory breast
cancer

2 upregulated genes,
20 downregulated

genes

Strell et al. [63]

Differential expression on
platelet-derived growth
factor (PDGF)–activated

human fibroblasts

Predicts poor prognosis Early breast cancer
55 upregulated genes,

58 downregulated
genes

Casey et al. [64]
Differential expression

between invasive cancer
stroma and normal stroma

Associated with
invasion

Breast-invasive
carcinoma

Nine upregulated
genes, five

downregulated genes

Winslow et al. [65]

Differential expression
between LCM stromal TN

breast cancer tumours.
Correlating gene changes

with TCGA

Predicts poor prognosis Breast-invasive
carcinoma

53 upregulated genes,
26 downregulated

genes

Taking several matrix signatures together, we also examined the overlap between
genes to identify commonalities; 16 genes appeared in at least three independent signatures,
including COLA1, COL11A1, VCAN, POSTN, and FN1 (Figure 1). In the next sections,
we will first consider how distinct CAF subtypes are associated with both matrisome
signatures and tumour immunophenotype. Then, we will address the degree to which the
matrisome can dictate, rather than correlate with, immunophenotypes by considering both
CAF-directed and individual-matrisome-component-directed interventions; we will focus
on matrisome genes common to multiple predictive signatures (Figure 1).
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4. Cancer-Associated Fibroblasts Are Principal Contributors to the Matrisome

CAFs are considered the dominant source of the TGFβ-stimulated pro-tumourigenic
matrisome and many recent spatial and single-cell transcriptomic studies have character-
ized distinct CAF sub-populations, which evolve with advancing malignancy. A seminal
study by the Tuveson lab identified a major dichotomisation of CAFs in PDAC into myofi-
broblast CAFs (myCAFs) and inflammatory CAFs (iCAFs), since confirmed in numerous
scRNA-seq studies across many solid cancers [39,56–65]. Typically, myCAFs are driven
through activation of TGFβ signalling, while iCAFs are reported to be driven by inflamma-
tory cytokines [58]. Differential spatial locations within tumours and reciprocal interaction
between the TGFβ and IL1 signalling pathways appear to drive distinct lineage trajecto-
ries [7,62]. Numerous additional CAF subtypes have since been described, including those
defined by high matrix deposition (ecm-CAFs [64] and matrix-CAFs [57]). The cataloguing
of fibroblast heterogeneity in solid tumours has supported the idea of tumour-promoting
and tumour-supressing CAF populations, but it has also revealed the complexity of target-
ing these cells due to overlapping function and a lack of discriminatory biomarkers and
drug targets [7,62].

4.1. Targeting CAF Subsets to Modify Tumour Biology

Approaches to selectively target CAF subtypes have yielded mixed results. In 2014,
a group of important studies, which variously suppressed myofibroblast populations in
PDAC, suggested that CAFs may play a tumour-suppressive role [19–21]. Recent studies
have revealed a more nuanced picture with distinct CAF subsets playing opposing roles
in tumours. Exciting recent work from the Turley lab elegantly mapped the evolution
of CAF subsets as PDAC progresses in mouse models to define a TGFβ-programmed
LRRC15+ CAF population associated with advanced disease [39,40]. Importantly, this
CAF signature was identified in many solid tumour types and associated with poor ICB
response in trial data. Ablation of LRRC15+ CAFs in mouse models was also able to enhance
anti-tumour immunity and ICB response [40]. Interestingly, this study also revealed that
both myCAF and iCAF lineages can express abundant collagen I and II, suggesting a
more complex relationship between myCAF subtype and fibrosis. Hutton et al. also
identified distinct CAF lineages in PDAC with distinct CD105-positive CAF-promoting
tumour growth, while CD105-negative CAFs support robust anti-tumour immunity [41].
Interestingly, in the 2014 Ozdemir et al. study in which α-SMA CAF ablation drives
more aggressive PDAC growth, tumours were also rendered more sensitive to anti-CTLA4
immunotherapy, perhaps indicating distinct tumour-restraining and immune-suppressive
roles for overlapping CAF populations. TGFβ-driven CAF subsets supporting immune
evasion have also been defined in mouse models of breast and other cancers [7,38,59,66].
In TNBC, distinct CAF lineages have also been associated with CD8+ T-cell exclusion
or functional suppression [60]. The causal, prognostic, predictive association between
TGFβ-induced stromal signatures and the suppression of anti-tumour immunity and ICB
response has now been robustly established [7,38].

Powerful spatial transcriptomic studies have also demonstrated that individual glands
within tumours can harbour highly localised relationships between cancer cells, CAFs, and
immune cells [67,68]; advanced tumours can contain many distinct cancer-subtypes and
localised TME interactions, which must be taken into account when considering therapy
response and resistance [69]. In the next section, rather than focussing on targeting the
complex and localised interaction between CAFs and tumour cells, we wish to explore
interventions which specifically target matrisome components.

4.2. Targeting TGFβ and CAF Activation

Many TGFβ- and CAF-targeting strategies have been shown to suppress stromal
activation and tumour fibrosis, but interpretation is often complex due to multimodal mech-
anisms of action. This is exemplified by studies targeting the Hedgehog pathway where
both positive and negative impacts on tumour progression and therapy response have
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been reported [9,20,61]. Co-administration of TGFβ-blocking antibodies or inhibitors with
anti-PD-L1/PD1 has proven successful in mouse models [38,66]. Indeed, inhibitors of TGFβ
signalling, including Galunisertib, NIS793, and LY364947, have all reached clinical testing
for a variety of solid tumours, though concerns remain regarding tumour-suppressor roles
in cancer cells for this signalling axis [7,70–73]. The angiotensin antagonist Losartan can
suppress TGFβ release and fibrosis in a variety of pathological settings, including pancre-
atic and other solid tumours. In fibrotic breast and pancreatic cancer models, Losartan has
been shown to reduce CAF-derived collagen and HA to enhance perfusion and potentiate
chemo- and immunotherapy responses [74–76], and this has translated to promising clinical
trial results [77,78]. The anti-fibrotic drug Pirfenidone also limits fibrosis by targeting TGFβ
signalling and CAFs in both breast and pancreatic cancer models [79–82]. Numerous acti-
vating signalling axes in CAFs have also been the subject of significant studies, including
Hedgehog signalling, Vitamin A and D pathways, FAK, and PKN2 [7,9,24,83–85]. Clinical
trials targeting CAFs and TGFβ, while largely disappointing, have shown some promise
in subsets of patients (reviewed [7,86]). The multimodal mechanisms of action of these
important interventions lies beyond the scope of this review.

5. Direct Matrix—Interventions

While it has long been established that ECM signatures correlate with tumour pro-
gression and therapy responses, therapeutic targeting of specific matrisome components
has proved difficult to enact [87]. Is this because ECM signatures are correlative but not
causative with advancing malignancy, or can the matrix be used to dictate tumour phe-
notypes? Here, we will focus primarily on the direct targeting of matrisome components,
rather than the targeting of TME cells to remodel the stroma. We will address efforts to
both degrade the matrisome to support therapy and efforts to protect the matrix from
degradation to prevent invasion and metastasis. The opposing need to prevent cancer
cell egress while promoting the ingress of anti-tumour immune populations presents a
unique dilemma when targeting the matrisome, which may underlie poor clinical success.
The onus is on identifying how altering the matrisome composition can dictate beneficial
tumour phenotypes, while maintaining tumour-suppressive functions.

5.1. Is Tumour Fibrosis Good or Bad?

Among the predominant fibrous proteins in the ECM are collagens, elastin, fibronectin,
and laminins. Laminins are largely associated with basement membranes, playing key roles
in tissue organisation, tumour invasion, and metastasis, as reviewed elsewhere [88–90].
The interstitial matrix is largely composed of collagen fibres, crosslinked with elastin fibres,
and interspersed with varying levels of HA and proteoglycans (Figure 2). The general
impact of high levels of desmoplasia on tumour prognosis is complex, but it is most often
associated with poor outcomes in advanced cancer [91–94] (Figure 2); whether fibrosis is
correlative with aggressive disease or causative remains an area of significant debate. Here,
we will examine evidence for pro- and anti-tumour roles for central ECM components.

Collagen. The most abundant protein component of the TME, and indeed the human
body, is type 1 collagen, and collagen-rich tumour fibrosis has long been considered as
a barrier to therapy, particularly in fibrotic tumours such as PDAC [18,75,95,96]. Fur-
thermore, aligned collagen has been identified as a functional promoter of invasion and
poor-prognosis biomarker in breast cancer [97–100]. Perhaps surprisingly, conditional
deletion of Col1a1 from α-SMA-positive CAFs (α-SMA-Cre/Col1a1fl/fl) crossed with a
KrasG12D/+; Trp53frt/frt; Pdx1-Flp (KPPF) mouse model of pancreatic cancer resulted in re-
duced fibrosis but more aggressive tumours, lower survival, and myeloid suppression
of CD8+ T-cells (Figure 2B) [101]. In various additional mouse models of PDAC, other
myofibroblast CAF-targeting approaches have also led to reduced tumour fibrosis, often
resulting in more aggressive and immune-suppressive tumours [19–21,24,102]. A tumour-
restraining role for CAF-derived type 1 collagen has also been reported for growth of
PDAC and CRC liver metastases; collagen 1 was shown to physically restrain tumours
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using a hepatic stellate cell (HSC)-specific Col1a1fl/fl conditional knockout model [102].
The emerging consensus thus suggests a tumour-restraining role for CAF-derived type 1
collagen in multiple mouse models [101,102].
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matrisome components. (B) Targeting stromal-cell-derived collagen 1 fibrosis through conditional
deletion of Col1a1 in CAFs or through CAF ablation can result in more invasive tumours and
reduced anti-tumour immunity. (C) Targeting hyaluronic acid can enhance drug perfusion and
therapy response in many pre-clinical models, with numerous trials underway to assess clinical
utility. Created with BioRender.com.

In the same liver metastasis study, Bhattacharjee et al. additionally showed that
CAF-derived HA and HGF were pro-tumourigenic and that depletion of α-SMA-positive
HS-derived CAFs resulted in slower growth and enhanced survival [102]. This reveals
tumour-promoting and -suppressing roles for the same CAF population to highlight the
challenges associated with CAF ablation strategies [102]. Adding further nuance, targeted
deletion of Col1a1 specifically from the pancreatic cancer cell compartment in KPPC;
Col1pdxKO mice (LSL-KrasG12D/+; Trp53loxP/loxP; Pdx1-CreCol1a1loxP/loxP) increased mouse
survival by suppressing the formation of oncogenic Col1a1 homotrimers [103]; moreover,
Col1 targeting in this context enhances T-cell infiltration and checkpoint response while
also impacting the tumour microbiome. Tumour-cell-derived Col1a1 has also been reported
as a metastatic driver in breast and liver cancer models [32,97,104]. Cell-type-specific
conditional targeting of Col1a1 in mouse models of breast and other solid cancers are yet
to be reported. Thus, while collagen 1 genes feature in a broad number of poor-prognosis
signatures, they currently do not readily represent a tractable therapeutic target.

While type-1 collagen is the most abundant collagen, at least 28 collagen types have
been described with diverse functions in cancer [105]. Some consensus emerges for some
collagen types, including type 6 and 11. Col11A1 is a key upregulated component of the
Matrix Index, which predicts metastasis across many tumour types, including ovarian,
pancreatic, and breast cancers [8]. Col11a1+ CAFs, which co-express LRRC15, are also
associated with tumour progression in scRNA-seq and tissue-staining studies [106,107].
Other studies have identified COL11A1 as a functional driver of cancer progression and
prognostic biomarker [108–110]. A similar body of the literature is emerging supporting
pro-tumourigenic functions for COLVI in breast, ovarian [111], pancreatic [112], lung [113],
and brain [114] cancers. Clinical intervention here is yet to be explored.

In summary, while fibrosis is a common feature of many aggressive treatment-resistant
tumour, and a known activator of oncogenic mechanotransduction signalling axes, relief of
collagen-rich fibrosis alone may promote rather than improve outcome.

Fibronectin. PhysiologicallyC, fibronectin is produced by myofibroblasts at sites of
injury; as cancers can be considered as “wounds that never heal”, FN is generally upregulated
in the tumour ECM, where high expression is often associated with invasive disease and
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poor prognosis. As FN is upregulated in many cancers, it has been exploited primarily
in cancer imaging and for the targeted delivery of therapies; numerous antibodies, pep-
tides, and modified ligands have been used to deliver isotopes, chemotherapeutics, and
immunomodulators to tumours in pre-clinical models (reviewed [115,116]). Fibronectin
has also emerged as an attractive target for guiding CAR-T therapy, particularly focused
on cancer-specific splice variants [117–121]. Mechanistically, fibronectin can promote both
growth and invasion through engagement of α5β1 and αv-class integrins, and this provides
therapeutic opportunities [122–125]. Several monoclonal antibodies (mAbs) preventing
integrin interaction with FN, including those against αvβ6 and α5β1, have shown excellent
pre-clinical promise in breast and glioma models, respectively [126,127], highlighting the
value of this axis. Surprisingly, few studies have been published examining the conditional
deletion of FN in pre-clinical tumour models, particularly given the well-documented roles
in promoting invasive disease. Interestingly, conditional deletion of circulating plasma fi-
bronectin, through targeted deletion in hepatocytes, reduces MDA-MB-231 bone metastatic
colonisation in nude mice [128]. Suppression of FN expression in MDA-MB-231 has also
been shown to reduce bone metastases [129]. Suppression of FN expression by microRNAs
also limits glioma progression in a mouse model, adding further evidence of therapeutic
potential [89]. Conditional deletion from CAFs—the predominant source of fibronectin
in many tumours—remains to be reported. The importance of matrix proteases in the
degradation of FN will be addressed later in this review.

5.2. Degrading Hyaluronic Acid

A direct ECM depletion approach which has gained more traction has been the
targeting of hyaluronic acid (HA, Hyaluronan), an abundant glycosaminoglycan ECM
component in solid tumours, which can be a dominant contributor to tumour stiffness,
hydration, and interstitial pressure [18,130,131]. HA and its two main receptors, CD44
and RHAMM, have been implicated in inflammation in both physiological settings and
cancer [132,133]. Dysregulation of HA synthase enzymes (HAS1-3) has also been reported
for many cancers including pancreatic, breast, and prostate cancer [134–137]. Numer-
ous studies have implicated high levels of HA as a prognostic indicator and functional
driver of poor outcome in solid tumours (Figure 2C) [138–142]. Importantly, HA can be
degraded by hyaluronidases, and the use of exogenous hyaluronidases as drugs to augment
cancer therapy has a long history, although early translation was limited by poor drug
characteristics [143,144]. PEGylated human hyaluronidase (PEGPH20) was developed
to improve pharmacokinetics, showing activity in high-HA preclinical prostate tumour
xenografts [145]. PEGPH20 also sensitised pre-clinical PDAC models to chemo-, radio-, and
immunotherapy approaches [10,18,145–147]. Increased chemotherapy uptake and response
in preclinical ovarian cancer mouse models have also been reported [148]. Phase II and
phase III trials combining PEGPH20 with chemotherapy to treat advanced PDAC have
followed; although failing to meet primary endpoints, some response improvement was
observed in HA-rich tumours [149–152]. Additional combinatorial trials are underway for
PDAC and other solid cancers [153]; stratifying for tumours with high-HA content is likely
to be critical to improve trial success [145,149,150].

In breast cancer, PEGPH20 has been shown to improve HER2-targeting antibody ther-
apy response [154] and anti-PDL1antibody uptake and therapy responses [155] in mouse
xenograft models. In addition to facilitating therapy uptake, depletion of HA may also limit
inflammatory HA-CD44 signalling. In breast cancer xenograft models, depletion of HA or
loss of CD44 were both shown to reduce CCL2 production in vitro and loss of CD44 im-
paired macrophage recruitment and tumour induction in vivo [156]. A phase II metastatic
breast cancer trial combining Eribulin with PEGPH20 was terminated (NCT02753595) and
to date PEGPH20 trial results in breast cancer are yet to be reported. Although transla-
tion has been challenging, the positive impact of PEGPH20 on immune infiltration, drug
perfusion, and pre-clinical tumour model drug responses provides encouragement that
modifying the biophysical properties of the stroma can enhance clinical impact.
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6. Matrix Crosslinking

In addition to changes in composition, the stiffness of the ECM is critically regulated
by crosslinking, with the lysyl-oxidase (LOX) family of collagen crosslinkers playing a
dominant role. LOX and LOX-like (LOXL) enzymes catalyse the crosslinking of collagen
and elastin, and this promotes matrix stiffening in pathological and malignant settings.
The targeting of LOX enzymes, using function-blocking mAbs, has long shown promise in
normalising a pathologically stiff ECM in mouse xenografts and fibrosis models [157,158];
the targeting of LOX can reduce stiffness, desmoplasia, invasion, and metastasis. High
levels of LOX family members have also been functionally implicated in disease progression
and correlated with poor outcome in many fibrotic tumour types, including pancreatic,
breast, and lung cancer [159–165].

In a pre-clinical MDA-MB-231 xenograft model of TNBC, mAb targeting of LOX
was shown to limit chemotherapy resistance by improving drug penetration and through
regulation of FN1 and ITGAV expression. Upregulation of LOX, FN1, and ITGAV is also
seen in relapsed TNBC patients, providing data to support translation [166]. Rossow et al.
further demonstrated that LOX enzymes limit drug access in a range of solid tumour
xenograft models, using over-expression studies and the pan-LOX small-molecule inhibitor
bAPN [167]. Nanovesicle delivery of anti-LOX mAbs has also been validated in MDA-MB-
231 xenografts [168]. Small-molecule inhibitors of LOXL2 have also been developed, with
the potential to reduce MDA-MB-231 xenograft metastasis and tissue fibrosis [169–171].

As with other interventions to supress stromal fibrosis, conflicting results have emerged
in pancreatic cancer models. LOX targeting with mAbs in KPC mice potentiated gem-
citabine responses, reduced metastasis, and extended survival; mechanistically, these
enhanced responses were associated with enhanced myeloid cell infiltration, reduced fib-
rillar collagen, and improved vasculature, rather than enhanced levels of gemcitabine
delivery [172]. Genetic deletion or cancer cell overexpression of LOXL2 in KPC and KC
autochthonous models also support a tumour- and metastasis-promoting role [173]. In
contrast, LOX targeting in a syngeneic orthotopic PDAC model resulted in more aggressive
disease [174], in line with distinct CAF depletion and collagen-targeting strategies [19,20].
bAPN has, however, been shown to facilitate drug perfusion in PDAC orthotopic xenografts
in nude mice [175]. A clinical trial combining the LOXL2-targeting mAb Simtuzumab with
gemcitabine did not, however, improve outcome, though this may reflect advanced disease
stage and a lack of patient stratification (NCT01472198 [176]). Simtuzumab has also been
explored clinically for treatment of pulmonary and liver fibrosis, though results remain
disappointing [177–180].

7. Matrix Proteases

Metalloproteinases, including MMPs, ADAMs, and ADAMTSs, constitute large fami-
lies of proteases which can degrade various components of the ECM (ECM). They have
been broadly implicated as facilitators of invasion and metastasis, by degrading the base-
ment membrane and stromal desmoplastic matrix, and as such have been the subject
of extensive drug discovery programs. To date, clinical translation has been largely un-
successful, which has largely been attributed to a lack of inhibitor specificity, combined
with tumour-suppressive functions and the normal physiological roles of related family
members. Despite the disappointing results from numerous clinical trials, hope remains
that protease-targeting drugs can be of use in cancer (clinical trials reviewed by Coussens
et al. [181] and Cathcart et al. [182]). Roles for specific MMPs are nuanced and show both
disease- and context-dependent functions. Here, we will cover some recent examples
where antagonistic behaviours of close protease family members are likely to confound
therapeutic targeting with non-selective small molecules. Alternative strategies, such as
mAb or gene-suppression approaches, may present alternative isoform-specific strategies.

Regarding matrix degradation and remodelling, distinct matrix proteases can either
support or impede tumour invasion. While proteases may facilitate invasion, distinct
family members which degrade or remodel a pathogenic pro-invasive matrisome can also
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act as tumour suppressors. DCIS provides some excellent illustrative examples. In DCIS,
luminal tumour cells proliferate within breast ducts but are restrained from invading the
surrounding stroma by myoepithelial cells and basement membrane surrounding the ducts.
In progressive disease, disruption of the basement membrane has been associated with
upregulation of pro-invasive MMPs (e.g., MMP9 and MMP13) by stromal cells, including
myoepithelial cells and CAFs (Figure 3A) [183–187]. In many DCIS cases, however, pro-
gression to invasive carcinoma does not occur. Discriminating between indolent disease
and those cases likely to progress to invasive carcinoma remains an unmet clinical demand.
Accumulation of fibronectin has been associated with disease progression and poor out-
come, potentially by promoting myoepithelial-led invasion [122,188–190]. A recent study
demonstrated that ADAMTS3, produced by myoepithelial cells, can restrict invasion by
degrading fibronectin in a DCIS model [191]. Loss of ADAMTS3 supports the accumulation
of fibronectin to promote an integrin-α5β1-directed myoepithelial-led invasion (Figure 3A).
Similarly, MMP8, which is lost in invasive disease, has been shown to act as a tumour
suppressor through promotion of adhesion and suppression of MMP-9 function [192].
Sparing proteases responsible for fibronectin degradation (e.g., ADAMTS3) may thus be
desirable in a therapeutic setting. The challenge of developing inhibitors to discriminate
between closely related proteases with antagonistic functions can help explain the poor
performance of broad MMP inhibitors in clinical trials.
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substrates. (B) Closely related ADAMTS isoforms can elicit opposing effects on TGFβ and CAF
activation in PDAC. (C) Proteases can alter the immune microenvironment by degrading key cy-
tokines and chemokines. (D) Degradation of matrix components can generate tumour and immune
modulating matrikines such as versican-derived versikine. Created with BioRender.com.

In pancreatic cancer, the desmoplastic stroma is considered a barrier to therapy, but
numerous recent studies also suggest a robust tumour-suppressive function, where suppres-
sion of fibrosis has been associated with invasive and metastatic disease. A recent report by
Carter et al. highlights antagonistic roles or the closely related collagenases, ADAMTS2
and ADAMTS14 in the promotion of pancreatic cancer invasion (Figure 3B) [193]. Sup-
pression of ADAMTS2 was found to limit pancreatic stellate cell (PSC) activation, while
suppression of ADAMTS14 promoted PSC myofibroblast differentiation and cancer cell
invasion in heterotypic 3D models. Mechanistically, these two proteases differentially target
the distinct matrisome substrates, serpinE2 and fibulin 2, to regulate TGFβ availability.
Of note, antagonistic regulation of Fibulin 2 cleavage by ADAMTS5 and ADAMTS12 has
been previously reported to promote invasive behaviour in breast cancer cells, potentially
through production of bioactive Fibulin 2 proteolytic products [194]. These examples
illustrate nuanced, substrate-specific signalling capability for this family of enzymes, akin
to behaviours observed in intracellular signalling cascades.

8. Matrix Protease Regulation of the Immune Landscape

While protease modulation of the TME may be pro-invasive in many scenarios, it
is also clear that MMPs and other matrix degrading proteases can also play tumour-
suppressive roles, not least through their importance in enabling immune cell access [195].
While the matrix can act as a protective barrier preventing tumour cell escape, impeding
immune cell access also provides a safe haven for cancer cells. Ager et al. demonstrated that
anti-MMP14 mAb DX-2400 alone was able to enhance anti-tumour immunity to impede
tumour growth and enhance radiotherapy response in 4T1 nude mouse xenografts and
syngeneic E0771 immune-competent models [196]. Increased M1 macrophage infiltration,
with downregulation of TGFβ and SMAD pathways, suggests remodelling of the immune-
suppressive stroma. Similar results were reported for a second MMP-14-targeting antibody
using MDA-MB-231 xenografts and the syngeneic 4T1/BALB-c metastasis model [197].
Targeting MMP-9 has also showed promise for enhancing immunity. Anti-MMP9 was found
to slow growth of HER2+ mouse orthotopic breast tumours, while combination with anti-
PDL1 enhanced effector T-cell infiltration [198]. Intriguingly, the authors demonstrated that
MMP9 was capable of directly cleaving and inactivating T-cell chemokines CXCL9/10/11,
and that inhibition with anti-MMP9 could enhance CXCL10 in vivo through this mechanism
(Figure 3C) [198]. This again highlights substrate-specific roles for matrix proteases, beyond
remodelling the ECM. Owyonng et al. separately confirmed that anti-MMP-9 can enhance
CD8+ T-cell content in the MMTV-PyMT breast cancer model [199]. Excitingly, in mouse
lung and melanoma models, SB-3CT, a small-molecule MMP2/9 inhibitor, has been shown
to enhance PD-1 or CTLA-4 blockade responses by promoting anti-tumour immunity [200].

The ADAMTS proteases have also been associated with immune modulation and
in particular with inflammation, although cancer studies remain somewhat limited [201].
ADAMTS1 acts as a tumour promoter in the genetic MMTV-PyMT model, with ADAMTS1
knockout mice having reduced tumour burden, metastasis, and prolonged survival [202],
associated with enhanced leukocyte infiltration and cytotoxic immune signatures. Tumour-
promoting roles for ADAMTS1 have also been reported in melanoma, and ADAMTS1
deficiency can promote a pro-inflammatory landscape in melanoma [203,204]. Similarly,
ADAMTS4 has been associated with high-macrophage and tumour-promotion content
in a subcutaneous CRC xenograft model [205]. In contrast, a tumour-suppressor role has
also been reported for ADAMTS1 in breast cancer, related primarily in this study to the
regulation of tumour vasculature [206].
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Among the substrates of ADAMTS proteases, the proteoglycan versican has shown
most promise as an immune modulator [207,208]. Interestingly, ADAMTS-derived cleavage
fragments of versican (e.g., versikine [209]) have been shown to modulate key aspects of the
tumour immune landscape, including modulation of DCs and CD8+ T-cell recruitment in
myeloma, lung cancer, and CRC (Figure 3D) [210–213]. Recent work shows that versikine
enhances DC abundance and activity in a Lewis Lung Carcinoma (LLC) model [214]. In
CRC, VCAN proteolysis and versikine levels are associated with robust CD8+ T-cell infil-
tration, also likely driven through modulation of DC numbers and activation status [210].
Furthermore, versikine levels have been correlated with ICB (pembrolizumab) response
in a Phase 1 clinical trial for metastatic CRC (NCT02837263). The action of versikine, and
other ‘matrikine’ cleavage products, once again reveals complex regulator roles for specific
protease–ECM interactions. Matrikine cleavage products with biological function in cancer
have been reported for many matrix components including elastin [215–218]. Matrikine
production during remodelling of the ECM is an area of matrix biology which is sure to
gather pace with the application of novel degradomics technologies [219,220]. Examples
provided in this review suggest complex signalling networks will emerge in the extracellu-
lar space, perhaps under-appreciated due to our historic reliance on limited tissue culture
models. Therapeutically, the presence of such extra-cellular signalling networks opens
numerous opportunities for the development of biological therapies (e.g., mAbs).

Together, these findings suggest isoform-specific protease inhibition may be of value
in combination with ICB in a variety of solid tumour settings. Proteases can act through
novel immunomodulatory mechanisms beyond depletion of matrix components, including
the generation and degradation of immunostimulatory chemokines and matrikines.

9. Matrisome Interventions to Sculpt the Immune Landscape

A recurrent theme in the majority of promising therapeutic interventions targeting the
tumour matrisome is promotion of anti-tumour immunity or sensitisation to ICB inhibitors.
Attempts to degrade or suppress the collagen-rich matrix have largely failed, due to induc-
tion of an immune-suppressive, myeloid-rich TME, although in some cases this does not
tell the whole story. Multiple mouse model studies on PDAC suggest that more aggressive
inflammatory tumours, promoted by stromal suppression, may be sensitised to ICB in-
hibitors. As an example, ablation of α-SMA CAFs in a genetic PDAC model (PKT: Ptf1acre/+;
LSL-KrasG12D/+; Tgfbr2flox/flox) suppressed fibrosis and accelerated tumour growth, but
it also was sensitised to anti-CTLA-4 therapy, associated with increased inflammation.
Similarly, targeting the Hedgehog pathway to limit stromal activation has been shown to
promote aggressive inflammatory pancreatic tumour growth [20]; Hedgehog inhibitors,
nonetheless, also show promise in combination with chemotherapy or immunotherapy
regimens in pancreatic [6], ovarian [9,221], and other solid cancers. These approaches are
yet to make an impact clinically (reviewed [7,86,222]). Likewise, preclinical successes with
hyaluronidase PEGPH20 have been associated with promotion of anti-tumour immunity
and ICB responses in pancreatic and breast models [147,155].

While numerous matrisome signatures have been shown to correlate with prognosis
and ICB response, increasingly, the evidence supports direct causative functions. The ability
of the matrisome to dictate immune cell phenotypes has elegantly been demonstrated using
decellularised-tumour-derived matrices. Puttock [223] et al. adopted an ex vivo approach
using a decellularised ECM from mouse ovarian cancer metastases to examine immune
modulation. Monocytes cultured on a decellularised ECM were found to differentiate
into immunoregulatory M0 phenotype macrophages. Furthermore, these matrisome-
educated macrophages could promote T-cell proliferation and expression of T-cell activation
markers [223].

Versican appears in several poor outcome matrix signatures, including the Matrix
Index and C-ECM [8,25]. Versican interacts with many of the ECM components addressed
in this review, including HA, FN1, and MMPs, and several studies have delineated roles
in the modulation of myeloid cells and inflammation [207,224]. The versikine studies de-
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scribed above indicate a positive functional impact on the ability of DCs to prime adaptive
immunity and promote ICB response. Versican can also directly activate macrophages
to stimulate TNF-α secretion and lung tumour growth in the LCC model [225]. Versican
modulates TAM phenotype in mesothelioma, where high levels correlate with poor out-
come [226]. Mechanistically, versican-deficient tumours in mice are less aggressive and
have fewer macrophages and neutrophils. Importantly, versican-deficient mesothelioma
cells polarised co-cultured macrophages to an M1 phenotype, suggesting VCAN targeting
may promote a more favourable immune landscape. Versican may also act as a direct
regulator of T-cell trafficking, likely in complex with HA [227]. Indeed, versican predomi-
nantly binds to HA in tumours and degradation of the HA matrix with PEGPH20 will act
in part by altering versican and versikine distribution, with repercussions on myeloid and
lymphocyte recruitment [132,227,228].

10. Summary

The concept that tissue composition, and not just cancer cell properties, is critical in
deciding cancer outcome was first proposed in 1889 when Paget described his seed and
soil theory of metastasis [229–231]. The matrix is now understood to regulate all stages
and hallmarks of cancer, from initiation, growth, and metastasis to disease recurrence and
therapy resistance. With the emergence of diverse omics technologies, our ability to map
the evolution of the matrisome in time and space, as cancers progress, is uncovering a
multitude of mechanisms and therapeutic opportunities. Most matrix-directed therapeutic
approaches have focussed on attempting to limit cancer spread or improve therapeutic
responses; in many cases, these two aims are at odds with one another. The same matrix
which limits drug or immune cell access can also suppress tumourigenesis by restraining
cancer growth and spread. Most successes in pre-clinical models from diverse cancer types
have been associated with improving anti-tumour immunity, although mechanisms are
unsurprisingly diverse. Regulating the matrisome to sculpt the immune landscape has
enormous promise in combination therapies. Significant challenges remain with clinical
translation, not least with spatial heterogeneity within tumours and between patients.
Better stratification, examining both tumour and stroma, will help unlock the promise of
matrisome interventions, particularly to reawaken anti-tumour immunity.
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iCAF—Inflammatory cancer-associated fibroblasts
ICB—Immune checkpoint blockade
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KC—KrasG12D/+; Pdx-Cre mouse model
LOX—Lysyl oxidase
LOXL2—Lysyl oxidase-like 2
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MMP—Matrix metalloproteinase
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MSI—Microsatellite instability
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