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Simple Summary: This study proposes an innovative approach to automatically identify invasive
carcinoma regions in breast cancer immunohistochemistry whole-slide images, which is crucial for
fully automated immunohistochemistry quantification. The proposed method leverages a neural
network that combines multi-scale morphological features with boundary features, enabling precise
segmentation of invasive carcinoma regions without the need for additional staining slides. The model
demonstrated an impressive intersection over union score on the test set, and a fully automated Ki-67
scoring system based on the model’s predictions exhibited high consistency with the scores given by
experienced pathologists. The proposed method brings the breast cancer fully immunohistochemistry
quantitative scoring system one step closer to clinical application.

Abstract: Aims: The automation of quantitative evaluation for breast immunohistochemistry (IHC)
plays a crucial role in reducing the workload of pathologists and enhancing the objectivity of di-
agnoses. However, current methods face challenges in achieving fully automated immunohisto-
chemistry quantification due to the complexity of segmenting the tumor area into distinct ductal
carcinoma in situ (DCIS) and invasive carcinoma (IC) regions. Moreover, the quantitative analysis of
immunohistochemistry requires a specific focus on invasive carcinoma regions. Methods and Results:
In this study, we propose an innovative approach to automatically identify invasive carcinoma
regions in breast cancer immunohistochemistry whole-slide images (WSIs). Our method leverages a
neural network that combines multi-scale morphological features with boundary features, enabling
precise segmentation of invasive carcinoma regions without the need for additional H&E and P63
staining slides. In addition, we introduced an advanced semi-supervised learning algorithm, allowing
efficient training of the model using unlabeled data. To evaluate the effectiveness of our approach,
we constructed a dataset consisting of 618 IHC-stained WSIs from 170 cases, including four types
of staining (ER, PR, HER2, and Ki-67). Notably, the model demonstrated an impressive intersection
over union (IoU) score exceeding 80% on the test set. Furthermore, to ascertain the practical utility of
our model in IHC quantitative evaluation, we constructed a fully automated Ki-67 scoring system
based on the model’s predictions. Comparative experiments convincingly demonstrated that our
system exhibited high consistency with the scores given by experienced pathologists. Conclusions:
Our developed model excels in accurately distinguishing between DCIS and invasive carcinoma
regions in breast cancer immunohistochemistry WSIs. This method paves the way for a clinically
available, fully automated immunohistochemistry quantitative scoring system.
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1. Introduction

Breast cancer is the most prevalent cancer worldwide, with a high mortality rate [1].
Invasive breast carcinoma of no special type (IBC-NST) is the common histological subtype
of breast cancer [2]. Subdividing breast cancer into different molecular subtypes is crucial
for guiding treatment decisions. The main molecular subtypes of breast cancer include
luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) enriched, and
basal-like [3].

Immunohistochemistry (IHC) analysis is a cost-effective and widely used method
for molecular subtyping [4,5]. It involves analyzing the status of estrogen receptor (ER),
progesterone receptor (PR), HER2, and Ki-67. This analysis is performed by applying
specific antibodies to tumor tissue samples and observing their reactions under a micro-
scope. Pathologists evaluate the antibody reactions to determine the molecular subtype
of the tumor [6]. Quantification of ER, PR, and Ki-67 requires assessing the number of
immune-negative and immune-positive tumor cells in a given area [7]. The evaluation
of HER2 status is based on cell membrane immunostaining intensity, integrity, and the
percentage of membrane-positive cells [8].

Traditionally, immunohistochemical diagnosis relies on manual examination by trained
pathologists. IHC slides for the four biomolecules are prepared separately and analyzed
using microscopes to estimate biomolecule expression. This process involves visually
evaluating hundreds of cells in all invasive carcinoma areas, making it tedious, error-prone,
and observer-dependent [9–11]. Such factors reduce the significance of histopathological
patterns in guiding treatment decisions. Additionally, in low- and middle-income coun-
tries, pathology and laboratory services, as well as experienced pathologists, are scarce.
This labor-intensive procedure becomes even more expensive and time-consuming in
these regions.

Whole-slide imaging (WSI) technology offers a solution to these challenges. Digi-
tal pathology allows high-resolution digital imaging of IHC slides, enabling pathologists to
examine them on computers, reducing the burden of using microscopes [12–14]. Deep learn-
ing, a branch of artificial intelligence, has shown significant progress in pathological image
analysis [15–18]. It automatically extracts representative features and underlying informa-
tion from raw data. Applying deep learning models to the automated analysis of digital
pathological sections can further reduce the workload of pathologists and improve con-
sistency in clinical diagnostic practice [19]. An AI-assisted pathological diagnosis system
can significantly enhance the speed, accuracy, and objectivity of immunohistochemical
quantitative diagnostics.

Several studies have focused on immunohistochemical quantification [20–27], demon-
strating high consistency with reference scores and the feasibility of computer-assisted
immunohistochemical scoring. However, existing algorithms have limitations that hinder
their clinical application. Notably, most methods have not adequately addressed the ex-
clusion of DCIS regions in WSIs. Although some studies have considered this [24], the
selection process is still manual, requiring pathologists to manually identify the invasive
carcinoma regions in the clinical application stage. Therefore, full automation has yet to
be achieved.

For WSI-level invasive carcinoma region segmentation models, some progress has been
made in segmenting invasive carcinoma regions in H&E-stained WSIs and distinguishing
DCIS from invasive carcinoma [28–30]. However, direct segmentation of invasive carcinoma
regions in IHC-stained WSIs remains a challenging task. The differential features of invasive
and in situ carcinoma in immunohistochemistry images are less apparent, making judgment
more difficult. Even experienced pathologists sometimes rely on H&E and special-stained
slides to distinguish invasive and in situ carcinoma in IHC-stained slides.

In this study, we have developed a novel approach to segment invasive carcinoma
regions in breast cancer IHC-stained WSIs. To achieve this, we first created an epithelial tis-
sue segmentation dataset and trained the initial segmentation model using semi-supervised
learning techniques. Subsequently, we enhanced the model by incorporating a multi-scale
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fusion mechanism and fine-tuning the fusion modules, enabling it to effectively utilize
contextual information and deliver more precise segmentation outcomes. The model’s seg-
mentation performance was thoroughly evaluated on a test dataset, and the best-performing
model was selected for the application of new WSI inference. The research overview is
depicted in Figure 1. Additionally, we assessed the feasibility of the model for clinical-level
immunohistochemical quantitative scoring, as outlined in Section 3.3.

𝑁𝑠,𝐸𝑅 = 155 𝑁𝑠,𝑃𝑅 = 156
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Figure 1. Overview of the proposed approach for invasive carcinoma segmentation in breast cancer
IHC-stained WSIs. The methodology includes the following steps: (1) Creation of an epithelial
tissue segmentation dataset; (2) Training the segmentation model; (3) Thorough evaluation of the
model’s segmentation performance on the test set; (4) Selection of the best-performing model for the
application of new WSI inference.

2. Method
2.1. Dataset Construction

We retrospectively selected 170 patients with IBC-NST who underwent IHC examina-
tion from January 2022 to January 2023 at Sun Yat-sen University Affiliated First Hospital.
The immunohistochemical slides of patients, including ER, PR, HER2, and Ki-67, were
obtained. The slides were scanned using an SQS-600P scanner (0.09 µm/pixel). After ex-
cluding missing and poor-quality slides, there were various numbers of ER, PR, HER2,
and Ki-67-stained slides left. These slides will be used for model training, validation,
and testing. We also scanned H&E-stained slides from all patients, and P63 -tained and
Calponin-stained slides from some patients for validation. This study was approved by the
institutional review board of Sun Yat-sen University Affiliated First Hospital. Due to the
retrospective nature of this study, patient-informed consent was not required.

We selected 100 cases from the 170 cases for training of the segmentation model,
and the remaining 70 cases for model testing. Subsequently, we selected 980 ROIs from
399 WSI from cases used for training, and selected 374 out of these regions of interest (ROIs)
for labeling. Then, we randomly divided these labeled ROIs into a 9:1 ratio for model
training and validation. We selected 219 ROIs from 219 WSIs from cases used for testing.
The sizes of the ROIs ranged from 2000 to 20,000, and they could be classified into four
categories according to the type of epithelial tissue in the image: normal (all epithelial
tissue belonged to normal ducts and lobules), in situ carcinoma, invasive carcinoma, and
mixed type (epithelial tissue from at least two different types of tissue).

We annotated the contours of the epithelial tissue regions for all ROIs of the first
three types and some ROIs of the last type. The annotation was performed using the
open-source software QuPath v0.4.3 [31]. For the unlabeled data in the remaining ROIs of
the last type (all from training cases), we employed a semi-supervised learning algorithm
(see Section 2.2.2 for details) to enable the model to learn from this unlabeled data. This
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approach alleviates some of the annotation workload and enhances the robustness of
the model.

In addition, to rapidly annotate the contour masks of the tumor regions, we adopted a
semi-automatic annotation method similar to that used in [14]. First, we annotated some
ROIs (100) in the dataset and used them to train a segmentation model. The model only
segmented the epithelial tissue without distinguishing its specific type. For the remaining
ROIs in the dataset, we first used this pre-trained semantic segmentation model to perform
pre-segmentation of the epithelial tissue region, and then modified it based on the pre-
segmented contour to greatly accelerate the annotation speed.

All immunohistochemical scores from the test set were obtained from the pathological
reports and reviewed by a senior pathology expert.

2.2. Training Framework

This section presents our novel two-stage multi-scale segmentation model training
framework designed for segmenting invasive carcinoma regions in breast cancer immuno-
histochemistry images, as depicted in Figure 2. Firstly, we introduce our initial segmen-
tation model, followed by a detailed description of Training Stage 1, which utilizes semi-
supervised learning to train the initial segmentation model. Finally, we delve into Training
Stage 2, which primarily focuses on the training of the multi-scale fusion modules.

Training Stage 1

PIDNet

Training Stage 2

Figure 2. Two-stage multi-scale segmentation model training framework. During Training Stage 1,
we utilize semi-supervised learning to train the initial segmentation model. In Training Stage 2, the
main focus is on training the multi-scale fusion modules.

2.2.1. Initial Segmentation Model

We use PIDNet [32] as our initial segmentation model. We use this model for two
main reasons. First, the PIDNet family achieves the best trade-off between inference speed
and accuracy, with testing accuracy superior to all existing models. Second, the model
introduces an auxiliary derivative branch (ADB) and incorporates boundary attention
to guide the fusion of detailed and context branches with ADB’s boundary detection
capabilities. This design is well suited for distinguishing in situ carcinoma from invasive
carcinoma because the two are almost identical in internal features, and boundary features
are key to distinguishing them.
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PIDNet uses cascaded residuals as the backbone to achieve a hardware-friendly archi-
tecture, which is shown in Figure 2. It has three branches with complementary responsibil-
ities, which are (i) Proportion (P) branch: parse and preserve detailed information in its
high-resolution feature map; (ii) Integration (I) branch: locally and globally aggregate con-
textual information to parse long-range dependencies; and (iii) Differentiation (D) branch:
extract high-frequency features to predict boundary regions.

The three branches of PIDNet are inherently complementary, and they use boundary
attention in the final stage to guide the fusion of the detailed and context branches. Further-
more, for an efficient implementation, we have set the depths of the P, I, and D branches to
medium, deep, and shallow, respectively. Consequently, by varying the depth and width of
the model, we have created a family of PIDNet models, namely PIDNet-S, M, and L. In this
study, we use the medium-sized PIDNet model. A detailed introduction to the PIDNet can
be found in the original paper [32].

During the training stage, the images in the training set are randomly scaled be-
tween 0.5 and 1.5 magnification. These scaled images are then randomly cropped into
1024 × 1024-sized images. Subsequently, data augmentation techniques such as random
flips, color jittering, and color normalization are applied to augment the training data
before feeding it into the network. The model generates three outputs: plS, pl , and plB,
which are utilized for calculating the loss function in the subsequent steps.

The loss functions for the P branch and D branch are denoted as l0 and l1, respectively.
l0 uses weighted cross-entropy loss to encourage plS to approach the semantic segmentation
ground truth gs, while l1 utilizes weighted binary cross-entropy loss to improve the fitting
of plB to the boundary ground truth gB. To regulate the output pl of the I branch, we
employ two loss functions: l2, a weighted cross-entropy loss, and l3, the boundary-aware
CE loss (BAS-Loss [33]). The computations for BAS-Loss are as follows:

l3 = −∑
i,c
{1 : bi > t}(si,c log ˆsi,c), (1)

where t is a predefined threshold, and bi, si,c, and ˆsi,c represent the output of the boundary
head for class c, the ground-truth segmentation output, and the predicted result of the i-th
pixel, respectively. Thus, the supervised loss Ls can be represented as:

Ls = λ0l0 + λ1l1 + λ2l2 + λ3l3, (2)

where λ0, λ1, λ2, and λ3 are weight coefficients, and their values are determined based on
empirical observations from experiments.

2.2.2. Training Stage 1: Semi-Supervised Learning

To better utilize the unlabeled data in the training set and train the model effectively,
we adopt the semi-supervised semantic segmentation algorithm Unimatch [34]. This al-
gorithm is grounded on the principle of consistency learning, wherein the objective is to
maintain output consistency for unlabeled images under different small perturbations.
These perturbations can be introduced either directly to the input images or to the interme-
diate features extracted from the model. These two approaches are commonly referred to
as image perturbation and feature perturbation, respectively.

As shown in Figure 2, for each labeled batch, the detailed training process is described
in Section 2.2.1. On the other hand, for each unlabeled batch, we perform three independent
data augmentations on the data, resulting in three augmented versions: xw, xs1 , and xs2 ,
where xw is obtained through weak augmentation such as cropping, and xs2 is obtained
through strong augmentation such as color jitter. The subsequent forward propagation
process includes three forward flows, which are (1) The simplest flow: xw → f → pw,
(2) Image-level strong perturbation flow: xs1 , xs2 → f → ps1 , ps2 , and (3) Feature perturba-
tion flow: xw → g → P → h → p f p. The outputs of (1) and (2) are collectively referred to
as unified perturbations, and must remain consistent. Similarly, the outputs of (1) and (3)
are referred to as dual-stream perturbations, and must also remain consistent. Thus, the
total loss function Lu can be expressed as:
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Lu =
1

Bu
∑ I(max(pw) ≥ τ)·(

λH
(

pw, p f p
)
+

µ

2
(H(pw, ps1) + H(pw, ps2))

)
,

(3)

where Bu represents the batch size for unlabeled data, and τ is a predefined confidence
threshold used to filter out noisy labels. H minimizes the entropy between two input
probability distributions.

2.2.3. Training Stage 2: Training of Multi-Scale Fusion Modules

Because our trained model requires inputs of size 1024 × 1024, when applying it to
WSI inference, the WSI needs to be divided into patches of size 1024 × 1024 for processing.
Considering the high resolution of the WSI, our model cannot send the entire WSI into the
network at once during inference, so it needs to be divided into smaller patches and inferred
individually, and then the results are combined to form the overall inference result of the
WSI. However, this method causes the model to lose the context between patches during
inference, resulting in discontinuity in the inference results, especially at the boundaries
between blocks. In order to solve this problem, we propose a multi-scale input model based
on the initial segmentation network, which fully considers the surrounding information of
the patches to ensure more accurate segmentation in WSIs.

Compared to the initial segmentation model, the multi-scale model incorporates two
attentional feature fusion (AFF) modules [35]. The model takes an image of size 4096× 4096
as input and generates the corresponding segmentation result for the region cropped from the
central 2048× 2048 portion of the input, with a size of 256× 256. The process of the multi-scale
model is illustrated in Figure 2. The input data is processed in three distinct ways:

1. Cropped in the four corners according to the size of 2048 × 2048;
2. Cropped in the center according to the size of 2048 × 2048;
3. Scaled to the size of 2048 × 2048.

After processing, they are individually passed through the PIDNet with frozen weights,
resulting in three different outputs. The top branch output is remapped as the large image,
with the cropped center referred to as p1. The middle branch output remains unprocessed
and is denoted as p2. The bottom branch output is cropped in the center and labeled as p3.
These three outputs are fused using two AFF modules to obtain final output p:

p = AFF(AFF(p1, p2), p3), (4)

where the specific order of operations, from p1 to p3, was chosen based on the hierarchical
nature of the data and the desired behavior of the model. This sequential approach allows
the model to capture and integrate information at different levels of detail, starting from
the finer details and gradually incorporating the broader context. The fusion of the output
p is then compared with the ground truth to calculate the cross-entropy loss, which is used
to train the two AFF modules. It is important to note that PIDNet does not participate in
this training stage.

3. Results
3.1. Quantitatively Experiments for Segmentation Task

We conducted a thorough comparison of our proposed method with various seg-
mentation models on the test set. For all experiments, we utilized the stochastic gradient
descent (SGD) optimizer with the following parameters: learning rate of 0.001, momentum
of 0.9, and weight decay of 0.0005. Each model was trained for 300 epochs. To ensure the
statistical stability of the results, we employed a five-fold cross-validation approach. The re-
sults are presented in Table 1. Notably, our proposed method achieved impressive scores of
84.16% and 76.33% for IoUdcis and IoUic, respectively, surpassing the performance of other
segmentation models. This demonstrates its robust capability in accurately segmenting
tumor regions.
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Table 1. Comparison of proposed method with various segmentation models on the test set.

Method IoU (DCIS, %) IoU (IC, %) Average

ResNet50 [36] + Unet [37] 73.83 ± 0.70 67.95 ± 1.11 70.89 ± 0.62
Mit-b5 [38] + Unet 80.98 ± 2.90 65.72 ± 3.86 73.35 ± 2.59

MagNet [39] 78.44 ± 0.54 70.72 ± 0.14 74.58 ± 0.22
FCtL [40] 80.66 ± 2.45 66.97 ± 1.07 73.81 ± 0.23
PIDNet 81.33 ± 3.47 76.37 ± 1.42 78.85 ± 1.57

Proposed 84.16 ± 2.72 76.33 ± 3.46 80.25 ± 1.26

Furthermore, we investigated the impact of incorporating semi-supervised learning
and multi-scale fusion modules on model performance. The IoU scores on the test set
for different method strategies are shown in Table 2. Obviously, when compared to other
ablated variants, our proposed method achieved the highest mean IoU on the test set, with
an improvement of 1.40% over the baseline model. Additionally, the proposed method
outperformed using only semi-supervised learning and only multi-scale strategies by
0.61% and 0.89%, respectively. These comprehensive research findings provide compelling
evidence for the effectiveness of both the semi-supervised learning strategy and the multi-
scale strategy in improving model segmentation performance.

Table 2. Ablation study of semi-supervised learning and multi-scale fusion modules.

Method IoU (DCIS, %) IoU (IC, %) Average

PIDNet 81.33 ± 3.47 76.37 ± 1.42 78.85 ± 1.57
PIDNet + Unimatch 81.58 ± 2.87 77.70 ± 2.58 79.64 ± 0.81

PIDNet + AFF 81.62 ± 1.07 77.10 ± 3.12 79.36 ± 0.75
Proposed 84.16 ± 2.72 76.33 ± 3.46 80.25 ± 1.26

The performance of the proposed method was examined on the test set, considering
tumor type and staining type. Figure 3 illustrates that the IoU score was highest for HER2
staining images, potentially due to the membrane staining, which aids in improved recog-
nition of tumor borders. With the exception of a slightly lower segmentation performance
in PR staining images for invasive carcinoma compared to other immunohistochemical
staining types, the segmentation performance was generally comparable across different
staining types.

HER2 ER PR Ki-67
Staining type

0.65

0.70

0.75

0.80

0.85

0.90

Io
U

 (%
)

DCIS
IC

Figure 3. Performance of the proposed method on the test set based on tumor type (DCIS or IC) and
staining type (HER2, ER, PR, Ki-67).

3.2. Visual Analysis

In the visual analysis section, we present a comparison between the segmentation
results of the pure invasive carcinoma region and the ground truth provided by patholo-
gists, as illustrated in Figure 4. In Figure 4, we observe the segmentation results of pure
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invasive carcinoma areas with various staining types, revealing a high heterogeneity in
terms of nuclear morphology, tissue structure, and staining intensity of the epithelial tis-
sue areas. Nonetheless, the model exhibits overall good stability and accuracy and can
accurately segment invasive carcinoma in these areas. However, in cases where the nests
of invasive carcinoma are very small, as shown in Figure 4e,f, the segmentation perfor-
mance of the model is somewhat reduced due to the small area of the cancer nests and
reduced discriminability.

Figure 4. Segmentation results of pure invasive carcinoma areas under various staining types. (a) Ki-
67, 15%; (b) ER, negative; (c) HER2, 2+; (d) ER, positive; (e) HER2, 1+; (f) PR, positive. Rows 1–3
represent images, model predictions, and ground truth, respectively.

Furthermore, we present the segmentation results in both the pure DCIS region and
the region with a mixture of DCIS and invasive carcinoma, as shown in Figure 5. The
segmentation results for pure DCIS areas (Figure 5a,b) closely follow the ground truth
provided by pathologists. Comparing the segmentation results of the invasive carcinoma
region in Figure 4, we find that the IoU index of the pure DCIS region is relatively higher
than that of the pure invasive carcinoma region, mainly due to the larger size of the
cancer nests in DCIS. However, for areas with a mixture of DCIS and invasive carcinoma
(Figure 5c–f), the model’s segmentation performance is notably worse than when only a
single component exists in the field of view. In some cases, the model struggles to recognize
DCIS (Figure 5e). Generally, negative-staining samples show slightly better segmentation
performance than positive-staining samples, possibly because high staining intensity in
positive-staining samples overwhelms the texture feature, making it challenging for the
model to distinguish between DCIS and invasive carcinoma in such areas.

Figure 5. Segmentation results of pure DCIS areas (a,b) and areas with a mixture of DCIS and invasive
carcinoma (c–f) under various staining types. Rows 1–3 represent images, model predictions, and
ground truth, respectively.
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In addition, Figure 6 displays some other situations, including the presence of nor-
mal lobules (Figure 6a,c) and lymphocyte areas (Figure 6b,d). The model can effectively
distinguish between normal lobules and tumor regions, but its performance is less stable
when dealing with lymphocyte aggregation. One reason might be that the model tends
to classify the lymphocyte-enriched region as the background class. Segmenting it as a
separate category could potentially improve the performance. Overall, the model exhibits
a certain level of discriminability for distinguishing invasive and non-invasive carcinoma
regions, thereby avoiding the inclusion of normal epithelial cells and lymphocytes during
the process of quantitative biomarker analysis.

Figure 6. Segmentation results from some special cases. (a) Pure lobular area; (b) area with a
mixture of DCIS and invasive carcinoma with lymphocytic infiltration; (c) area with a mixture of
DCIS and invasive carcinoma with lobular; (d) invasive carcinoma area with lymphocytic infiltration.
Rows 1–3 represent images, model predictions, and ground truth, respectively.

3.3. Role of Invasive Carcinoma Mask in Ki-67 Quantification

To better illustrate the role of the proposed invasive carcinoma segmentation model
in immunohistochemical quantification, we selected 29 cases of Ki-67-stained WSIs with
IBC-NST, where the DCIS constituted more than 10% of the total tumor area. Using our
segmentation model, we accurately obtained the masks of DCIS and invasive carcinoma
areas in these cases using our trained model. Subsequently, we employed the QuPath soft-
ware to quantitatively calculate the Ki-67 indices of the WSIs based on the obtained masks.
An example of the processing steps for a single case is presented in Figure 7.

Figure 7. Processing steps for WSI-level Ki-67 quantification.
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For comparative analysis, we calculated the Ki-67 indices under three conditions:
without any mask, with a tumor area mask, and with an invasive carcinoma area mask.
We then compared these indices with the Ki-67 indices provided by pathologists. The cor-
responding scatter plots are illustrated in Figure 8. It is evident that the Ki-67 indices
calculated based on the invasive carcinoma area mask exhibit the highest correlation coeffi-
cient with the pathologists’ Ki-67 indices, with a value of 0.9884. To evaluate the accuracy
of the calculated Ki-67 indices, we generated a box plot (Figure 9) presenting the Ki-67
index errors. The mean Ki-67 index errors for no mask, tumor area mask, and invasive
carcinoma area mask were -10.19, 1.78, and 2.46, respectively, while their corresponding
standard deviations were 10.17, 6.03, and 3.69. We observed that the lower Ki-67 index
calculated without a mask is mainly attributed to areas with a significant presence of
immune lymphocytes, which often yield negative results, leading to considerable errors.
However, upon incorporating either the tumor area mask or the invasive carcinoma area
mask, the accuracy of the Ki-67 quantification improved significantly. Although the calcu-
lation with the invasive carcinoma mask resulted in slightly higher error than the tumor
area mask, its standard deviation was smaller, indicating more stable quantitative scores.
Consequently, in practical applications, the utilization of the invasive carcinoma area mask
can lead to more reliable and consistent results.
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Figure 8. Correlation plots of Ki-67 indices under different conditions.
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Figure 9. Box plot of Ki-67 index errors for different tumor area masks.

4. Discussion

In this study, we developed a deep learning algorithm for segmenting invasive car-
cinoma regions in IHC-stained WSI. The algorithm achieves an average IoU of 80.16%
for DCIS and invasive carcinoma segmentation. The correlation coefficient between the
Ki-67 scores calculated based on the invasive carcinoma masks obtained by our model and
the scores provided by pathologists is as high as 0.9884. Detailed visual results enhance
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interpretability and practical application. As a powerful assistant for pathologists, our
algorithm lays the foundation for accurate IHC scoring.

In recent years, there has been a significant body of work concerning the quantitative
analysis of IHC-stained slides. Some studies [20,22,23,27] have focused on the detection
or segmentation of tumor-positive and tumor-negative cells, yet they have not taken
into account the automatic segmentation of IC regions. Yao et al. [26] have approached
IHC quantification by calculating grayscale features for each tile and generating WSI-level
feature maps based on these characteristics, subsequently using these maps for HER2
grading. However, by not separately computing for IC regions, this method may be
influenced by non-tumor areas or DCIS regions, potentially leading to biased results.
Qaiser at el. [25] have introduced a deep reinforcement learning approach for the automatic
HER2 scoring. Unlike fully supervised models that process all areas of a given input image,
the proposed model treats IHC scoring as a sequential selection task, effectively locating
diagnostically relevant areas by deciding on viewing positions. Although the proposed
model has the potential to address other histological image analysis challenges where
precise pixel-level annotations are hard to obtain, it risks missing crucial tiles with decisive
features, as it does not globally consider the expression of immunohistochemical markers
in tumor regions as a pathologist would. Valkonen et al. [24] developed a deep-learning-
based digital mask for automatic epithelial cell detection using dual-stained fluorescent
cytokeratin-Ki-67 and consecutive H&E-IHC staining as training material. While this
method enables the model to effectively segment tumor regions in IHC, it similarly fails
to exclude in situ carcinoma regions. Feng et al. [21] have achieved fully automatic Ki-
67 quantification using H&E-stained images. They first identified DCIS regions in H&E,
and then mapped these identified regions onto IHC images through rigid registration.
However, this method demands high accuracy from the registration algorithm. In practical
scenarios, H&E and IHC slides may not be adjacent, and small tumor regions can be
challenging to match one-to-one, leading to potential inaccuracies due to rigid registration.

To sum up, existing methods have their limitations, notably the failure to consider
DCIS regions, hindering fully automated IHC quantification. To overcome this, we have
proposed, for the first time, a method that directly identifies DCIS and IC within IHC images,
bringing fully automated IHC quantification one step closer to clinical application.

However, this study still had some limitations. Firstly, the model’s segmentation
consistency across WSIs is currently suboptimal. The algorithm’s accuracy and reliability
are compromised by its limited ability to integrate and analyze data from an entire WSI
or multiple stained WSIs from the same case. Secondly, the model’s training has been
conducted on a relatively homogenous set of samples, and it is restricted to a narrow range
of classes it can segment. Lastly, the absence of a deep-learning-based nuclei detection algo-
rithm means that the current model lacks the capacity for end-to-end automatic evaluation
of IHC quantification scores for entire WSIs.

Regarding future improvements, our research aims to enhance the overall segmen-
tation consistency of the model on WSIs by incorporating results from an entire WSI or
multiple stained WSIs from each case. This integration will lead to improved accuracy
and reliability of the algorithm. Additionally, we intend to train the model with more
diverse samples and expand the number of classes it can effectively segment. This ex-
pansion will enable the model to handle more complex scenarios, including identifying
micro-invasive regions, accurately segmenting regions of multiple categories from the same
field of view., considering additional tissue types such as atypical ductal hyperplasia (ADH)
and usual ductal hyperplasia (UDH), and addressing atypical cases, such as samples from
patients undergoing neoadjuvant chemotherapy. These advancements are expected to
widen the applicability and effectiveness of our model in practical clinical settings. Further-
more, we plan to employ a deep-learning-based nuclei detection algorithm. This addition
will enable the model to achieve end-to-end automatic evaluation of immunohistochemistry
quantification scores for an entire WSI.
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5. Conclusions

This study proposes a deep-learning algorithm for segmenting invasive carcinoma
regions in breast cancer IHC-stained WSIs. The algorithm achieves promising results in the
segmentation task. Ki-67 quantification results based on segmented invasive carcinoma
masks demonstrates high consistency with pathologists’ assessments. It provides valuable
assistance in clinical settings, improving breast cancer diagnosis and treatment efficiency.
Future developments will strengthen its practical application in pathological diagnosis,
enhancing usability across various clinical scenarios.
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