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Simple Summary: Breast cancer stands as the predominant form of cancer identified in women,
underscoring the urgent demand for innovative targeted therapies. Engineered adoptive cell therapies
represent a groundbreaking approach, empowering the immune cells of patients to precisely target
their tumors through cancer-specific receptors. Encouragingly, preclinical studies have illuminated
the immense promise of this strategy. Nonetheless, the translation of this technique into clinical
practice hinges on the accumulation of additional robust clinical data. Within this review, we offer
a comprehensive examination of the current landscape surrounding engineered cell therapies for
breast cancer, delving into both their limitations and the compelling prospects for enhancement.

Abstract: Breast cancer remains a significant health challenge, and novel treatment approaches are
critically needed. This review presents an in-depth analysis of engineered adoptive T-cell therapies
(E-ACTs), an innovative frontier in cancer immunotherapy, focusing on their application in breast
cancer. We explore the evolving landscape of chimeric antigen receptor (CAR) and T-cell receptor
(TCR) T-cell therapies, highlighting their potential and challenges in targeting breast cancer. The
review addresses key obstacles such as target antigen selection, the complex breast cancer tumor
microenvironment, and the persistence of engineered T-cells. We discuss the advances in overcoming
these barriers, including strategies to enhance T-cell efficacy. Finally, our comprehensive analysis of
the current clinical trials in this area provides insights into the future possibilities and directions of
E-ACTs in breast cancer treatment.
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1. Introduction

Breast cancer is the most common cancer diagnosed in women and the second most
common cause of cancer-related death [1]. Clinically, it is divided into four molecular
subtypes based on expression of estrogen receptor (ER), progesterone receptor (PR), and
human epidermal growth factor receptor 2 (HER2) [2]. Various therapeutic modalities that
target these receptors are utilized in the treatment of breast cancer, including anti-HER2
monoclonal antibodies and selective ER degraders (SERDs) [3,4]. Despite the great success
of these therapies, there is a need for novel targeted treatments that can benefit a wider
variety of breast cancer patients.

Engineered adoptive T-cell therapies (E-ACTs), a subset of immunotherapy, equip a
patient’s T-cells with engineered receptors that specifically recognize their cancer. These
therapies have revolutionized the treatment of hematologic malignancies; however, none
have successfully emerged as a clinically relevant option for breast cancer. A thorough
understanding of the factors that limit the success of engineered adoptive T-cell therapies
in breast cancer is vital to improving their therapeutic outcomes. In this review, we analyze
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the main types of E-ACTs for breast cancer, their limitations and challenges, and the current
landscape of these therapies in clinical trials.

2. Engineered Adoptive T-Cell Therapies for Breast Cancer

E-ACTs are a type of immunotherapy in which the patient’s immune cells are modified
to confer a customized immune response to their cancer [5–7]. These therapies can be
divided into two major categories: chimeric antigen receptor (CAR) T-cell therapy and
T-cell receptor (TCR) T-cell therapy. Both approaches are utilized in breast cancer models
with varying degrees of success. Table 1 compares TCR T and CAR T-cell receptors regard-
ing their MHC restriction, sensitivity, antigens recognized, and co-stimulatory molecules.

Table 1. Comparison of TCR and CAR T-cell constructs.

TCR T CAR T

Constructs Minimally engineered TCR Fully synthetic receptor

MHC Restriction Dependent Independent

Affinity and Sensitivity Lower affinity,
higher sensitivity

Higher affinity,
lower sensitivity

Antigens Recognized Peptides presented within the MHC molecule (proteins) Cell surface proteins/molecules

Origin of Antigens Intra-/Extracellular Cell surface

Co-stimulatory Molecules Endogenous CD28, 4-1BB Linked to scFv (CD28, 4-1BB in combination
with CD3ζ

Probability of CRS Lower Higher

References [8–10]

CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with
the signaling components of a TCR, resulting in a synthetic receptor that is not major
histocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains,
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy and
light chain variable regions of a mAb and is responsible for antigen recognition [13]. The
intracellular signaling domain of first-generation CARs is comprised solely of the CD3ζ
or FcR
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Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
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which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
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dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

signaling domains; clinical efficacy with these first-generation CARs was limited,
however, as it was proven that they do not produce a durable anti-tumor response due to a
lack of expansion and persistence [14,15]. Second- and third-generation CAR constructs
incorporate the signaling domains of known T-cell co-stimulatory molecules. The two
most common co-stimulatory domains used are CD28 and 4-1BB (CD137). Others include
inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 (CD134) [16,17].
Fourth-generation CARs, also known as T-cells redirected for universal cytokine killing
(TRUCKs), are engineered to incorporate cytokines or their receptors, which serve to
support T-cell activity and survival [18,19], resulting in more durable T-cell responses [20].

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated from
T-cell clones that recognize the tumor antigen of interest. The α and β chains of the isolated
TCR are expressed in the recipient’s T-cells, which dimerize and associate with endogenous
CD3ε/
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/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engineered TCR
(E-TCR) T-cells can recognize peptides from both intracellular and extracellular tumor
antigens presented on surface MHC molecules, including neoantigens arising from tumor-
specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-dependent
manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a significant
portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 [21,23,24], the
use of E-TCRs specific for these mutations is an attractive therapeutic avenue.

Compared to the success seen in hematologic malignancies, E-ACTs for breast cancer
are limited in their efficacy and feasibility. Six CAR T-cell products have been approved
by the US Food and Drug Administration (FDA) for B-cell malignancies and multiple
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myeloma [25]; currently, there are no FDA-approved CAR T-cell therapies for solid tumors.
In the case of TCR T-cells, there are no FDA-approved TCR T-cell products for hematologic
or solid tumors to date, and there is little clinical data regarding their efficacy in breast
cancer [21]. Many factors limit the clinical success of engineered adoptive cell therapies
in breast cancer, including difficulties identifying suitable tumor targets, the immunosup-
pressive tumor microenvironment, diminishing T-cell persistence, and the costs associated
with treatment.
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3. Identification of Suitable Tumor Targets

The ideal target antigen for engineered cell therapies is overexpressed by the tumor
and absent from normal cells in surrounding tissue and vital organs. A wide variety of
breast cancer targets have been identified; however, many of these targets are also expressed
on normal cells to a certain degree. Therefore, careful antigen selection is a crucial aspect of
E-ACTs to ensure treatment efficacy and patient safety. The three main classes of tumor
antigens are tumor-associated antigens (TAAs), cancer-germline antigens (CGAs), and
tumor-specific antigens (TSAs) [6,26,27].

TAAs are expressed in malignant cells and some healthy tissues. As a result, targeting
these antigens carries the risk of on-target/off-tumor toxicities. This risk, however, can
be managed with proper TAA selection. TAAs can be classified as either differentiation
or overexpressed antigens. Differentiation antigens are expressed in the tumor and the
corresponding healthy tissue and are thus associated with the most significant risk of
on-target/off-tumor toxicities [21,28]. Most breast cancer TAAs are overexpressed antigens.
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Overexpressed antigens are enriched in tumor cells, with minimal expression in healthy
cells; however, there is still a risk of on-target/off-tumor toxicity. To overcome this risk,
engineered cell therapies can be optimized to necessitate a high antigen density for re-
ceptor activation, therefore minimizing the destruction of normal cells with low antigen
density [29].

CGAs, also referred to as cancer/testis antigens (CTAs), are a unique group of TAAs
that are expressed exclusively in germ cells and absent from normal somatic tissues [30,31].
Their expression in malignant cells results from aberrant gene expression due to DNA
hypomethylation [30,32]. CGAs are desirable targets for E-ACT due to their restricted
expression pattern. Potential CGA targets for breast cancer have been evaluated for CAR T
and TCR T-cell therapies.

Finally, TSAs, as the name suggests, are exclusively expressed in malignant cells. These
antigens may arise from mutations (neoantigens) or the expression of viral elements [28,33].
Neoantigens are ideal targets for TCR T-cell therapy as TCRs can detect mutant peptides
harboring a single-point mutation without reactivity to the wildtype peptide [34]. While
many mutations are patient-specific or “private” neoantigens, driver mutations in cer-
tain genes can result in “public” neoantigens that are shared among many breast cancer
patients [35].

Table 2 summarizes the most common breast cancer TAA, CGA, and TSA targets
under investigation.

Table 2. Common breast cancer TAA, CGA, and TSA targets.

Type of Antigen Target Prognostic/Clinical Association Expression in Breast Cancer Translational Status Ref.

TAA

HER2 Overexpression promotes tumor
proliferation, migration, and survival

HER2+ (overexpression):
~20%|HER2-low: ~45–55%

Preclinical studies
Clinical trials [3,29,36–44]

c-Met (HGFR)
Chemotherapy resistance|Poor

survival|Increased tumor migration,
invasion, and proliferation

~50% of breast cancer Preclinical studies
Clinical trials [45–48]

MUC1
Hypo-glycosylated in tumor

cells|Associated with tumor invasion,
metastasis, and angiogenesis

>90% of breast cancer Preclinical studies
Clinical trials [49–53]

Mesothelin Metastasis|Decreased survival 67% of TNBC Preclinical studies
Clinical trials [54–59]

EpCAM

Worse overall survival (all
cases)|Unfavorable prognosis

(basal-like/luminal B
HER2+)|Favorable prognosis (HER2+)

65% ER−|43% ER+|54%
HER2+|47% HER2-

Preclinical studies
Clinical trials [60–62]

ROR1 Aggressive disease|Tumor cell growth
and survival

~40% of breast cancer
22–57% of TNBC

Preclinical studies
Clinical trials [63–69]

CEA Higher tumor burden|Poor overall
survival

Elevated serum levels in
10.9–16.7% of patients Clinical trials [70,71]

NKG2DL Induced by malignant transformation of
cells|May result in favorable outcomes

MIC-AB: 50%|ULBP-1:
90%|ULBP-2: 99%|ULBP-3:

100%|ULBP-4:
26%|ULBP-5: 90%

Preclinical studies
Clinical trials [72,73]

CSPG4
Disease recurrence|Poor overall

survival|Tumor migration, invasion,
angiogenesis, and metastasis

77% of breast cancer Preclinical studies [74–76]

FRα Poor outcomes (early recurrence) 30% of breast cancer|70–80%
of stage IV metastatic TNBC Preclinical studies [77–80]

Ganglioside GD2 Stem cell marker|Tumorigenesis and
migration 35% of breast cancer Preclinical studies

Clinical trials [81–84]

EGFR Poor prognosis|Poor disease-free
survival (high EGFR copy number) 61.2–64% of TNBC Preclinical studies

Clinical trials [85–88]

ICAM-1 Promotes bone metastasis|Aggressive
phenotype|Metastasis|Poor prognosis

Overexpressed in TNBC (%
not specified) Preclinical studies [62,89–91]

CD24 Advanced stage|Shorter
survival|Resistance to chemotherapy

Highest expression seen in
HER2+ and TNBC samples

(% not specified)
Preclinical studies [92]

AXL
Tolerance of chromosomal

instability|Therapy resistance|Reduced
survival|Supports EMT and metastasis

Overexpressed (% not
specified) Preclinical studies [93–98]
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Table 2. Cont.

Type of Antigen Target Prognostic/Clinical Association Expression in Breast Cancer Translational Status Ref.

CGA

NY-ESO-1
High humoral immune response|No
association with overall survival or

progression-free survival

17–28.6% TNBC|12.5%
HER2+

Preclinical studies
Clinical trials [99–102]

MAGE-A3 Worse prognosis|Reduced overall
survival ~10–15% of breast cancer Preclinical studies

Clinical trials [103,104]

MAGE-A1 Lower overall survival ~6% of breast cancer Clinical trials [105]

KK-LC-1 TNBC cell stemness|Poor
survival|Malignant cell behavior 75% of TNBC Clinical trials [106–108]

TSA

PIK3CA H1047L

Cell transformation|Tumor
proliferation|Resistance to

apoptosis|Detected in tumors with
favorable characteristics

PIK3CA mutations: 30–40%
of breast cancer|~4% of
PIK3CA mutations are

H1047L

Preclinical studies [34,109–112]

TP53 R175H
Cell migration/invasion through

enhanced EGFR activation|Supports
tumor microenvironment|Poor survival

TP53 mutations: ~30% of
breast cancer, 50% of
inflammatory breast

cancer|TP53 R175H: 7% of
breast cancer

Preclinical studies
Clinical trials [113–117]

Remaining Challenges: Antigen Heterogeneity and On-Target/Off-Tumor Toxicity

In solid tumors, including breast cancer, many target antigens are not uniformly
expressed among all cells within the tumor. As a result, patients may initially respond
to therapy but later progress due to the outgrowth of antigen-negative tumor cells [118].
HER2 intratumoral heterogeneity, for example, is reported in up to 40% of breast cancers
and is a potential mechanism for resistance [119]. Strategies to overcome intratumoral
heterogeneity in solid and hematologic malignancies include using epigenetic modulators
to increase surface expression of target antigens [120–122] and targeting multiple antigens
expressed throughout the tumor simultaneously [120,123–125]. Few preclinical studies
using these approaches to address tumor heterogeneity in breast cancer models exist, and
they will be necessary for the success of these therapies in breast cancer. An early study in a
murine breast cancer model found that expression of a murine CGA could be increased by
treating the cells with an epigenetic drug that inhibits DNA methylation [126]. More studies
are needed to test if these treatments may be combined with E-ACTs in in vivo models.

Multi-antigen targeting also reduces the risk of on-target/off-tumor toxicities. While
few preclinical studies utilize breast cancer models, a recent study presented an elegant
method for restricting CAR T-cells to dual antigen encounters using targets commonly
expressed in breast cancer. These logic-gated intracellular network (LINK) CARs only
mount an anti-tumor response when both target antigens are present, thus significantly
limiting the potential for on-target/off-tumor toxicity [127]. Future studies are needed,
however, to test the efficacy of this approach in solid tumor models.

4. Overcoming the Tumor Microenvironment

The breast cancer tumor microenvironment (TME) consists of various suppressive
immune cells, stromal cells, and soluble components that together play a vital role in the
growth, survival, and spread of malignant cells (Figure 2) [128,129]. The TME is one of the
most significant barriers for E-ACTs to overcome, as T-cells must not only perform their
anti-tumor functions but also navigate the hostile TME milieu. Efforts to further dissect the
complexity of the TME via single-cell RNA sequencing (scRNAseq) analysis have identified
various subclusters of immune and stromal cells that perform a variety of pro-tumoral
functions [130–133]. These studies also identify a wealth of potential prognostic markers
and therapeutic targets [132–136]. As the full complexity of the TME is beyond the scope
of this review, we will summarize the primary TME components that contribute to the
inhibition of E-ACTs.
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E-ACTs must traffic and extravasate to the tumor site, infiltrate the ECM, and persist in the immuno-
suppressive tumor microenvironment before finally encountering their target. Each level presents
its own set of unique challenges. All the illustrated cellular components of the TME (Stromal cells,
endothelial cells, M2 macrophages, monocytic and granulocytic myeloid-derived suppressor cells,
regulatory T-cells, and tumor cells) each play their role in the inhibition of T-cell effector functions.

4.1. Immune Microenvironment of Breast Cancer

The breast cancer TME is divided into different compartments based on their cell
composition and proximity to the tumor cells [128,129]. The local, or intratumoral, compart-
ment primarily includes several types of immune cells, including regulatory T-cells (Tregs),
myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs).
These cell types perform specific functions that promote tumor growth and suppress
anti-tumor immunity.

4.1.1. Regulatory T-Cells (Tregs)

Tregs represent one of the primary immune populations that favor immunotolerance in
the breast TME. Tregs are characterized by their expression of the transcription factor Foxp3
and are recruited to the TME via chemokines secreted by the breast tumor cells [128,137,138].
Tregs suppress the functions of effector cells through several mechanisms, including the
secretion of IL-10, TGFβ, and adenosine, competitive consumption of IL-2, and expression
of CTLA-4/PD-L1 [139–141]. While the prognostic significance of Tregs in breast cancer
reportedly varies among molecular subtypes [139], studies have identified relationships
between Treg infiltration and certain prognostic variables. An analysis of tumor samples
from various molecular breast cancer subtypes found that elevated numbers of Tregs are
associated with aggressive tumor phenotypes, larger tumor size, and estrogen receptor
negativity [142,143]. Similarly, a study of breast tumor resident Tregs found that their
frequency increases in TNBC. These Tregs also express high levels of chemokine receptor 8
(CCR8), which is associated with higher-grade tumors and poor survival [144].

Due to their prevalence and immunosuppressive capabilities, Tregs are a desirable
target for improving the efficacy of E-ACTs. Broadly, methods to inhibit the effects of Tregs
include immune checkpoint inhibitors against various co-inhibitory molecules (CTLA-4,
PD-1, LAG-3, TIM-3, and TIGIT), depletion via targeting of Treg-specific surface molecules,
agonistic antibodies against tumor necrosis factor receptor superfamily molecules (GITR,
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4-1BB, OX40, and others), and small molecule drugs targeting characteristic features of
Tregs [145,146]. In breast cancer, genetic depletion of Tregs significantly enhanced the efficacy
of checkpoint inhibition in a claudin-low TNBC model; however, the use of pharmaco-
logic methods to deplete Tregs also reduced the numbers of infiltrating CD4+ and CD8+

T-cells [147]. The histone deacetylase (HDAC) inhibitor vorinostat was found to decrease
the number of Foxp3+ cells in syngeneic 4T1 TNBC tumors and potentiate the effect of
checkpoint inhibition [148]. Studies utilizing cyclophosphamide and letrozole found that
both drugs can reduce Treg populations in peripheral blood and in the tumor [149,150].
Additionally, a phase I study of daclizumab, an anti-CD25 mAb, in combination with pep-
tide vaccination reported significant depletion of CD25+Foxp3+ Tregs and CD8 responses
to the tumor peptides, despite CD25 expression on effector T-cells [151]. Currently, no
preclinical studies focus on targeting Tregs in the context of E-ACTs, likely due to difficulties
specifically targeting the Tregs while sparing the engineered T-cells.

4.1.2. Myeloid-Derived Suppressor Cells (MDSCs)

MDSCs are a heterogeneous group of immature myeloid cells that arise due to al-
tered myelopoiesis driven by chronic inflammation in cancer and primarily function to
suppress T-cell-mediated immune responses [152,153]. They are divided into two main phe-
notypic subtypes: monocytic MDSCs (M-MDSCs) and granulocytic/polymorphonuclear
(G-/PMN-MDSCs). While phenotypic characterizations can vary, M-MDSCs are typically
defined as CD11b+CD14+HLA-DR−/lowCD15− cells, and PMN-MDSCs can be defined as
CD11b+CD14−CD15+ or CD66b+CD15+CD14−/dimCD33dimHLA-DR− cells [152,154,155].
Both subtypes of MDSCs maintain an immunosuppressive environment through a variety
of mechanisms, including deprivation of metabolic fuels required by T-cells, induction of
oxidative stress, recruitment of Tregs, and expression of high levels of PD-L1, to name a
few [153,156]. M-MDSCs predominantly mediate their immunosuppressive effects through
elevated ARG1, iNOS, and TGFβ expression. On the other hand, PMN-MDSCs dysregulate
T-cell function through cell-to-cell contact and ROS production [153].

In metastatic breast cancer, high levels of M-MDSCs are associated with aggressive
disease and shorter survival [157,158]. M-MDSCs have been shown to suppress CAR T-cell
efficacy in vitro and orthotopic mouse models [52,159]. Preclinical studies describe various
methods to target MDSCs in breast cancer models. Drugs that favor the differentiation
of MDSCs into mature, less suppressive cell types, such as all-trans retinoic acid, can
diminish the immunosuppressive microenvironment [160]. In addition, the HDAC inhibitor
entinostat attenuates the immunosuppressive function of G-/PMN-MDSCs in combination
with immune checkpoint inhibitors in transgenic breast cancer models [161]. In the context
of CAR T-cell therapy, polyinosinic-polycytidylic acid (poly I:C), a ligand of TLR3, not
only enhances CAR T-cell function but also decreases MDSC levels in peripheral blood
and attenuates their immunosuppressive activity [159]. Furthermore, olaparib suppresses
MDSC recruitment through the SDF1α/CXCR4 axis and enhances CAR T-cell efficacy in
syngeneic breast cancer models [162].

Methods to arm engineered T-cells with other chimeric receptors that provide co-
stimulation while targeting immunosuppressive cell types have also been explored. MDSCs
express a receptor called tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL) receptor 2 (TR2). This receptor induces apoptosis upon TRAIL engagement and has
previously been targeted using an agonist mAb [163,164]. A novel co-stimulatory receptor
composed of the scFv of the TR2 mAb combined with a 4-1BB endodomain successfully
protected anti-MUC1 CAR T-cells from MDSC immunosuppression and promoted superior
anti-tumor activity in breast cancer models [52].

4.1.3. Tumor-Associated Macrophages (TAMs)

TAMs are another immunosuppressive tumor-associated myeloid cell type. TAMs are
classified into two primary phenotypes that depend on cytokine exposure. M1 macrophages,
which possess anti-tumor functions, are stimulated by IFN
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CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with 
the signaling components of a TCR, resulting in a synthetic receptor that is not major his-
tocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed 
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains, 
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy 
and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
endogenous CD3ε/ɣ/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engi-
neered TCR (E-TCR) T-cells can recognize peptides from both intracellular and extracel-
lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

and TNF. M2 macrophages, on
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the other hand, activated by IL-4, IL-10, and IL-13, promote tumor growth and suppress
anti-tumor immune responses [129]. TAMs suppress T-cells by secreting factors such as
IL-10, ARG1, iNOS, PGE2, and TGFβ and recruiting Tregs [165–167]. TAMs can also express
PD-L1, CD80/86, or death receptor ligands that engage with inhibitory receptors on effector
cells [166].

In breast cancer, high levels of TAMs are associated with metastasis, lower rates of
survival, and overall poor prognosis [168,169]. Preclinical studies suggest that TAMs may
be depleted from the breast TME via CARs targeting proteins expressed by both the tumor
and TAMs. One potential target, AXL, is a receptor tyrosine kinase expressed in both
breast cancer cells and TAMs. Anti-AXL CAR T-cells demonstrate significant anti-tumor
activity in TNBC models and have the potential to overcome the immunosuppressive
microenvironment by inhibiting TAM cytokine secretion [26,97,98,170]. Another receptor
tyrosine kinase, ephrin receptor A10 (EphA10), is detected in TNBC cells, TAMs, and
MDSCs. EphA10-specific CAR T-cells have been shown to inhibit in vivo tumor growth in
an orthotopic MDA-MB-231 tumor model. Although the effects of these CAR T-cells remain
to be tested in immunocompetent models, anti-EphA10 antibodies increased the infiltration
and activity of cytotoxic T-cells in a syngeneic 4T1 tumor model, suggesting that blocking
EphA10 on TAMs/MDSCs restores T-cell activity [171]. In addition, pharmacologic inhibi-
tion of sphingosine 1-phosphate receptor 3 (S1PR3), a bioactive lipid molecule expressed
in breast cancer, resulted in TME remodeling via the recruitment of pro-inflammatory
macrophages and improved the efficacy of anti-EpCAM CAR T-cell therapy in a murine
breast cancer model [61]. Other potential therapeutic avenues to target TAMs in the breast
TME include depletion via CSF-1/CSF1R inhibition [172–175], modulation via class IIa
HDAC inhibition [176], and reprogramming via antibodies targeting the pattern recog-
nition scavenger receptor MARCO [177]. Further studies, however, are needed to assess
whether these methods can bolster the efficacy of breast cancer E-ACTs.

4.2. Non-Immune Microenvironment of Breast Cancer

In addition to immune cells that suppress effector functions and support tumor growth,
the regional, or breast, compartment of the TME is home to other physical and structural
components that influence tumor and T-cell behavior. Acellular components such as the
extracellular matrix and hostile metabolic conditions, and cellular components such as
cancer-associated fibroblasts (CAFs) and endothelial cells, provide structural support for
tumor cells, serve as a barrier for anti-tumor immunity, and provide nutrients, proliferative
stimuli, and tumor niche protection.

4.2.1. Extracellular Matrix (ECM)

Breast tumors are encapsulated by a complex and dynamic ECM composed of colla-
gens, fibronectin, laminins, glycosaminoglycans and proteoglycans, matricellular proteins,
and ECM remodeling enzymes [178]. Collagen within the breast ECM plays a significant
role in cancer progression and metastasis [179–182] and presents a physical barrier that
adoptively transferred T-cells must traverse to infiltrate the tumor tissue [183]. Discoidin
domain receptor 1 (DDR1) provides further ECM fortification by promoting collagen fiber
alignment. This, in turn, suppresses anti-tumor immunity and promotes breast cancer
growth by preventing T-cell infiltration [183,184]. Antibodies to neutralize DDR1 effec-
tively disrupt collagen alignment and support anti-tumor immunity [183]. Furthermore,
macrophages are an essential source of matrix metalloproteinases (MPPs) that degrade
ECM components. In a preclinical study, macrophages engineered to express an anti-HER2
CAR significantly inhibited HER2-4T1 tumor growth in an immunocompetent model [185].

4.2.2. Cancer-Associated Fibroblasts (CAFs)

CAFs are derived from normal fibroblasts activated by tumor-derived inflammation
and are the most prominent cell type in the breast TME. CAFs perform various functions, in-
cluding remodeling the TME, promoting tumor malignancy and angiogenesis, suppressing
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immune cells, and acting as a physical barrier to infiltrating T-cells [186–188]. Breast cancer
CAFs express high levels of stromal cell-derived factor-1 (SDF-1), which is responsible
for promoting angiogenesis via recruitment of endothelial progenitor cells (EPCs) and
stimulating tumor growth [189]. In addition, CAF-derived exomes contain micro RNAs
(miRNAs) that promote breast cancer progression and metastasis [190].

Due to their prevalence in the breast TME and pro-tumoral functions, CAFs are an
attractive target for E-ACTs. CAR T-cells targeting fibroblast activation protein (FAP)
have been evaluated in syngeneic 4T1 TNBC mouse models with conflicting results. One
study found that FAP-specific CAR T-cells demonstrated minimal anti-tumor activity and
caused bone toxicities due to expression of FAP on bone marrow stromal cells [191]. Other
preclinical studies of anti-FAP CAR T-cells derived from other mAb clones report significant
anti-tumor activity in 4T1 [192] and other solid tumor models [193], with no on-target/off-
tumor toxicities. Despite limited success in breast cancer thus far, methods for targeting
CAFs to improve T-cell efficacy are being actively investigated. A recent study found that
CAFs secrete high levels of IL-6, increasing PD-L1 expression in TNBC cells and inhibiting
CAR T-cell efficacy. The authors recommend the exploration of methods to target the
signaling pathways driving IL-6 and PD-L1 expression to improve the response to CAR
T-cell therapy [80].

4.2.3. Endothelial Cells

Endothelial cells within the TME play a pivotal role in tumor angiogenesis through
their expression of vascular endothelial growth factor (VEGF) and vascular endothelial
growth factor receptors (VEGFR) [194,195]. Tumor-associated endothelial cells also hinder
T-cell extravasation by suppressing the required endothelial adhesion molecules [196].
In breast cancer, tumor cells can promote mesenchymal phenotypes in endothelial cells,
which favor tumor proliferation, stemness, and invasiveness [197]. Due to their pivotal
role in the breast TME, endothelial cells are a prime target for engineered T-cell therapies.
CAR T-cells specific for tumor endothelial marker 8 (TEM8), a cell surface protein that
functions in endothelial cell migration and invasion, are effective not only against TNBC
cells but also against the associated tumor endothelium [198]. Furthermore, a ligand-based
CAR utilizing VEGF-C as the antigen binding domain effectively targeted VEGFR-2 and
VEGFR-3-positive breast cancer cells and the tubular structures formed by human umbilical
vein endothelial cells (HUVECs), thus inhibiting angiogenesis [194]. Moderate anti-tumor
effects were seen in a study utilizing VEGFR-2-specific CAR macrophages. However, the
authors did not evaluate their impact on the associated endothelial cells [199].

4.2.4. Metabolic Conditions

Hypoxia and competition for metabolic fuels within the TME contribute to exacerbated
immunosuppression and poor T-cell survival. In the hypoxic TME, tumor cells, immune
cells, and other cellular components constantly compete for limited amounts of metabolic
fuels and nutrients [200]. The lack of essential nutrients and low availability of oxygen force
T-cells to adopt an anaerobic metabolism, hindering full T-cell activation. In addition, other
cellular components of the TME can deplete amino acids essential for T-cell activation and
proliferation, such as arginine and cysteine, and release reactive oxygen species that hinder
T-cell signaling [201]. Tumor cells can produce high levels of metabolites like adenosine and
lactate, leading to T-cell inhibition [202]. CAFs and mesenchymal cells can also produce
toxic metabolites for T-cells [203], and it has been shown that selective depletion of those cell
populations diminishes the immunosuppressive conditions and improves T-cell metabolic
function [204–206].

Other strategies to combat the effects of these “chemical” immunosuppressors have
been tested in preclinical breast cancer models. For example, adenosine exerts immuno-
suppressive effects in T-cells through the A2a receptor (A2aR) [207]. mRNA and protein
analysis of breast tumor samples also revealed that A2aR expression is associated with
aggressive phenotypes, poor survival, and immunosuppressive immune infiltrates [208].
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CRISPR/Cas9 knockout of A2aR can increase the effector function of CAR T-cells with-
out compromising their memory phenotype or persistence. A2aR knockout CAR T-cells
mediated an enhanced therapeutic response in a HER2+ murine breast cancer model [209].

5. Persistence of Adoptively Transferred Engineered Cells

While E-ACTs have the potential to become a powerful component of the breast cancer
treatment arsenal, success is limited in part due to a lack of cell persistence at the tumor site.
Compared to cell therapies for hematologic malignancies, which encounter the cancer cells
immediately upon entering the bloodstream, T-cells redirected against breast cancer must
endure long enough to navigate to and penetrate the immunosuppressive TME. Only after
this do they encounter their target antigen. Moreover, for successful tumor debulking and
elimination, these cells must not only reach the tumor but also thrive and remain within it
until the clearance of malignant cells. Several strategies have been utilized to support CAR
T-cell persistence and expansion in breast cancer models (Figure 3).
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Figure 3. Strategies to further engineer T cells to improve their efficacy. Methods that have been
explored to increase the persistence and functionality of CAR T-cells include (A) Incorporating a
cytokine transgene allowing additional production of stimulatory cytokines (IL-15, IL-7, and IL-18),
(B) Constitutively active IL-7 receptor which signals without the need for IL-7 cytokine binding,
(C) engineering switch receptors that turn an inhibitory signal into a positive stimulating one, such
as an IL-4 receptor with an IL-7 signaling domain, (D) knockout of receptors that transmit inhibitory
signals to T-cells, such as the A2aR receptor, which inhibits T-cells in the presence of adenosine, and
(E) the costimulatory TR2.4-1BB receptor that induces activation of TRAIL-R2, thereby leading to
apoptosis of MDSCs while delivering a co-stimulatory signal through the 4-1BB endodomain.

5.1. Engineered Chimeric Receptors

One approach to improve T-cell persistence in suppressive breast cancer TME is the in-
clusion of engineered receptors that provide additional cytokine signaling or co-stimulation.
This added support can help CAR T-cells resist inhibitory signals. Inverted cytokine recep-
tors, for instance, provide proliferative signals in response to immunosuppressive cytokines
in the TME, turning the tumor’s defenses against it. IL-4 is an inhibitory Th2 cytokine that
has been shown to promote the survival of breast cancer cells and support Tregs [210–212].
An inverted cytokine receptor composed of the IL-4 receptor exodomain fused to the IL-7
receptor endodomain improved the persistence and anti-tumor activity of anti-MUC1 CAR
T-cells against an IL-4-secreting breast cancer CDX model [53]. As the immunosuppres-
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sive TME typically contains low levels of the immunostimulatory cytokines necessary to
maintain CAR T-cell activation, IL-7 signaling has also been provided as an engineered
constitutively active receptor known as C7R [213]. C7R activates the IL-7 signaling axis
without needing extracellular cytokines and enhances the anti-tumor activity of anti-AXL
CAR T-cells in TNBC models [98,213]. Currently, three E-ACT clinical trials include C7R
co-stimulation (NCT04099797, NCT03635632, NCT04664179).

5.2. Soluble Cytokine Production

CAR T-cells engineered to secrete specific cytokines are also known as TRUCK (T-cells
Redirected towards Universal Cytokine Killing) CAR T-cells [187,214]. TRUCK CAR T-
cells incorporating various soluble cytokines, including IL-15, IL-7, and IL-18, have been
explored for breast cancer.

5.2.1. Interleukin-15 (IL-15)

While IL-15 is structurally similar to IL-2, it possesses certain functions in vivo that dis-
tinguish it from IL-2 and make it a desirable candidate for enhancing E-ACT efficacy [215].
Unlike IL-2, IL-15 does not affect Treg expansion. It regulates tumor-infiltrating lymphocyte
numbers within the TME and plays a crucial role in T-cell activation, expansion, differentia-
tion, and function [215–217]. In a recent preclinical study, IL-15 co-expression enhanced the
persistence and anti-tumor activity of anti-EGFRvIII CAR T-cells in a murine breast cancer
model [218]. These CAR T-cells also expressed CXCR2, which accelerated T-cell trafficking
to the tumor site via chemokines expressed in the breast TME [218]. Additional studies in
other solid tumor models also demonstrate that IL-15 co-expression is a powerful method
to enhance T-cell proliferation and anti-tumor activity in the solid TME [216,217,219–222].
These encouraging results will hopefully inspire additional breast cancer studies and lead
to clinical investigations.

5.2.2. Interleukin-7 (IL-7)

As with IL-15, IL-7 is a critical player in the expansion of naïve and memory T-cells and
does not affect Tregs [223,224]. In preclinical breast cancer studies, IL-7 is often combined
with chemokines such as CCL19 and CCL21 to improve the chemotaxis of CAR T cells
and other immune cells to the tumor site. In combination with CCL21, IL-7 improved
the anti-tumor activity of CLDN18.2-specific CAR T-cells in a syngeneic mouse model
without lymphodepletion [225]. Another study found that anti-Folate Receptor α (FRα)
CAR T-cells co-expressing IL-7 and CCL19 demonstrated superior T-cell infiltration [226].
The addition of CCL19 and CCL21 increased the infiltration of endogenous dendritic
cells [225,226], while CCL21 also showed inhibition of tumor angiogenesis [225]. IL-7 is
also being investigated in other solid tumor CAR T-cell models [227–229].

5.2.3. Interleukin-18 (IL-18)

IL-18 is a pleiotropic cytokine with various functions in different T-cell types. Most
notably for CAR T-cell therapies, IL-18 induces IFN
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production, decreases Tregs, and
increases the expansion of CD8+ T-cells [230–232]. Ruixin and colleagues’ previously
mentioned study of anti-EGFRvIII CAR T-cells with CXCR2 also included conditions
with IL-18 co-expression (as opposed to IL-15). Similar to their results for IL-15, anti-
EGFRvIII CAR T-cells co-expressing IL-18 had reduced expression of exhaustion markers
and superior anti-tumor activity [218]. Additional studies in other solid tumor models
have also produced promising results [231,233–235].

6. Cost of Autologous Therapy

One of the significant challenges of autologous E-ACT is the cost. Autologous E-ACT
requires a lengthy and complex manufacturing process that must be carefully orchestrated
and tailored to each patient. For example, current FDA-approved CAR T-cell therapies
range from $373,000 to $475,000 for a single infusion [236–238]. Overall, the exorbitant
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costs of E-ACT can be improved by lower-cost manufacturing techniques and allogeneic,
or “off-the-shelf,” therapies. Such techniques are beginning to be explored in the context of
breast cancer.

6.1. Non-Viral Manufacturing Techniques

Genetic modifications for cellular immunotherapies are commonly introduced via viral
transduction. While this method results in high transduction efficiencies, it is extremely
labor intensive, has limited capacity for multigene insertions, and is expensive to produce
clinically [239–241]. Non-viral manufacturing techniques, such as transposons and in vitro-
transcribed (IVT) mRNA, have emerged as potential low-cost alternatives.

6.1.1. Transposon Systems

DNA transposons are mobile genetic elements excised from one part of the genome
and integrated into another using a “cut and paste” mechanism mediated by a transposase
enzyme [242]. Sleeping Beauty (SB) is one of the most widely used transposon systems
for genetically modifying human cells. SB is a synthetic transposon derived from inactive
transposon sequences in fish genomes [243,244]. The SB vector system comprises two
components: the transposon DNA, consisting of the gene of interest flanked by inverted
terminal repeats (ITRs), and the SB transposase [243,244]. The SB transposase recognizes
the ITR sequences and transfers the transgene from the donor vector to the acceptor site in
the genome [244]. Much of the preclinical validation of SB as a viable method for genetic
manipulation in E-ACT is focused on CAR T-cell therapy for hematological malignancies
and is well-reviewed by Moretti et al. [244].

Compared to viral vectors, the production of transposon plasmids under GMP con-
ditions is significantly cheaper and faster. Using transposons also does not require the
complex biohazard procedures associated with viral vector production [242]. Despite
these advantages, few clinical trials evaluating E-ACT for breast cancer utilize transposon
systems. As of July 2023, two clinical trials use the SB system for CAR/TCR T-cell therapy
for breast cancer (NCT04102436, NCT05694364). These trials are in the recruiting phase,
with no results posted.

6.1.2. In Vitro-Transcribed (IVT) mRNA

Another alternative to viral manufacturing techniques is IVT mRNA. While the process
mirrors viral transduction, IVT mRNA is unique in that genetic modification is transient,
allowing for enhanced safety and the ability to modulate expression levels [240,244–246].
After isolation and expansion of patient T-cells, IVT mRNA encoding the construct of
interest, such as a CAR, TCR, or cytokine, is electroporated into the cells. After mRNA
translation is confirmed, the cells are re-infused into the patient [245]. Early preclinical
papers demonstrate that electroporation of TCR-encoding IVT mRNA into T-cells produces
cytotoxic CTLs that specifically recognize the target peptide [247,248]. In recent years, IVT
mRNA has been further optimized with ionizable lipid nanoparticle-mediated mRNA
delivery for improved viability compared to electroporation, as well as the ability to
reprogram T-cells in situ using IVT mRNA carried by polymeric nanoparticles targeted to
cytotoxic T-cells [240,249,250].

Clinical trials have been initiated using IVT mRNA CAR T-cells for solid tumors,
including breast cancer. A clinical trial evaluating the safety and feasibility of mRNA-
transfected anti-c-Met CAR T-cells found that all patients tolerated a single intra-tumoral
injection of 3 × 107 or 3 × 108 cells. However, no measurable clinical responses were
observed (NCT01837602) [47]. The transient nature of mRNA expression may necessitate
multiple infusions due to reduced CAR T-cell persistence in vivo [244]. For example, an
early phase I clinical trial evaluating the same mRNA-transfected anti-c-Met CAR T-cells
for breast cancer and melanoma patients planned to administer up to six doses of 1 × 108

modified T-cells over a short two-week period; however, this study was unfortunately
terminated due to a halt in funding (NCT03060356). Safety concerns regarding the ad-
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ministration of multiple T-cell doses and the large amount of T-cell product required for
repeated dosing raise questions regarding the feasibility of IVT mRNA-modified T-cells, and
more trials are needed to fully evaluate their efficacy in various solid tumors, particularly
breast cancer.

6.2. Allogeneic (“Off-the-Shelf”) Therapies

Allogeneic, or “off-the-shelf”, therapies are a desirable alternative to current autolo-
gous methods for breast cancer E-ACT. Not only are allogeneic therapies more cost-effective,
as cell products can be banked for future use and administered upon request, but immune
cells from healthy donors also have greater cellular fitness than patient immune cells that
have been through multiple rounds of cytotoxic therapies [251,252]. One of the major
concerns regarding allogeneic therapies is mitigating graft-versus-host disease (GvHD).
GvHD occurs due to human leukocyte antigen (HLA) mismatches between the donor
and the recipient [253]. The immunocompetent donor T-cells recognize the recipient as
foreign, resulting in life-threatening cytotoxic activity that could seriously harm the pa-
tients [254]. Natural killer (NK) cells and gamma delta (
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lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

δ) T-cells are promising candidates
for allogeneic therapies in breast cancer, as both can circumvent the need for HLA matching.

6.2.1. Natural Killer (NK) Cells

NK cells are innate cytotoxic immune cells that recognize targets in an antigen-
independent manner and play a significant role in tumor surveillance [255,256]. The
fact that NK cells do not require HLA matching makes them an attractive candidate for al-
logeneic CAR-NK cell therapies [256]. NK cells can be isolated from three primary sources:
donor peripheral blood (PB), cord blood (CB), or differentiation from CB hematopoietic
stem and progenitor cells (HSPCs) or induced pluripotent stem cells (iPSCs) [252]. Al-
though PB is an easily accessible source of NK cells, issues with donor-to-donor variability
and the limited number of NK cells in a single pheresis present challenges [252,256]. CB
NK cells are present at higher numbers and can be easily expanded, however, donors
cannot be used again as there is a finite amount of starting material; moreover, regulations
regarding the use of CB vary among countries [252,253]. Conversely, iPSCs have immense
proliferative potential, are easily genetically modified, and allow for a homogenous cell
product [252,253,256]. In addition to donor-derived NK cells, numerous studies have uti-
lized the NK-92 cell line as an alternative to primary NK cells. However, NK-92 cells have
reduced anti-tumor potency due to the need for irradiation [257].

Preclinical studies of CAR-NK cells for breast cancer have primarily utilized modified
NK-92 cells [41,258–263] or, less frequently, PB-derived NK cells [264]. Overall, NK-92-
derived and PB-derived CAR-NK cells efficiently traffic to the tumor site [41] and exhibit
specific anti-tumor cytotoxicity in preclinical models [258,260–262,264]. Despite their po-
tential for allogeneic therapy, both registered CAR-NK cell trials for breast cancer utilize
autologous cell products (NCT05686720, NCT02839954).

6.2.2. Gamma Delta (

Cancers 2024, 16, x FOR PEER REVIEW 2 of 33 
 

 

in breast cancer is vital to improving their therapeutic outcomes. In this review, we ana-
lyze the main types of E-ACTs for breast cancer, their limitations and challenges, and the 
current landscape of these therapies in clinical trials. 

2. Engineered Adoptive T-Cell Therapies for Breast Cancer 
E-ACTs are a type of immunotherapy in which the patient’s immune cells are modi-

fied to confer a customized immune response to their cancer [5–7]. These therapies can be 
divided into two major categories: chimeric antigen receptor (CAR) T-cell therapy and T-
cell receptor (TCR) T-cell therapy. Both approaches are utilized in breast cancer models 
with varying degrees of success. Table 1 compares TCR T and CAR T-cell receptors re-
garding their MHC restriction, sensitivity, antigens recognized, and co-stimulatory mole-
cules. 

Table 1. Comparison of TCR and CAR T-cell constructs. 

 TCR T CAR T 
Constructs Minimally engineered TCR Fully synthetic receptor 

MHC Restriction Dependent Independent 

Affinity and Sensitivity 
Lower affinity,  

higher sensitivity 
Higher affinity,  

lower sensitivity 

Antigens Recognized 
Peptides presented within the MHC 

molecule (proteins) 
Cell surface proteins/molecules 

Origin of Antigens Intra-/Extracellular Cell surface 

Co-stimulatory Molecules Endogenous CD28, 4-1BB 
Linked to scFv (CD28, 4-1BB in 

combination with CD3ζ 
Probability of CRS Lower Higher 

References [8–10]  

CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with 
the signaling components of a TCR, resulting in a synthetic receptor that is not major his-
tocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed 
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains, 
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy 
and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
endogenous CD3ε/ɣ/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engi-
neered TCR (E-TCR) T-cells can recognize peptides from both intracellular and extracel-
lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

δ) T-Cells

Cancers 2024, 16, x FOR PEER REVIEW 2 of 33 
 

 

in breast cancer is vital to improving their therapeutic outcomes. In this review, we ana-
lyze the main types of E-ACTs for breast cancer, their limitations and challenges, and the 
current landscape of these therapies in clinical trials. 

2. Engineered Adoptive T-Cell Therapies for Breast Cancer 
E-ACTs are a type of immunotherapy in which the patient’s immune cells are modi-

fied to confer a customized immune response to their cancer [5–7]. These therapies can be 
divided into two major categories: chimeric antigen receptor (CAR) T-cell therapy and T-
cell receptor (TCR) T-cell therapy. Both approaches are utilized in breast cancer models 
with varying degrees of success. Table 1 compares TCR T and CAR T-cell receptors re-
garding their MHC restriction, sensitivity, antigens recognized, and co-stimulatory mole-
cules. 

Table 1. Comparison of TCR and CAR T-cell constructs. 

 TCR T CAR T 
Constructs Minimally engineered TCR Fully synthetic receptor 

MHC Restriction Dependent Independent 

Affinity and Sensitivity 
Lower affinity,  

higher sensitivity 
Higher affinity,  

lower sensitivity 

Antigens Recognized 
Peptides presented within the MHC 

molecule (proteins) 
Cell surface proteins/molecules 

Origin of Antigens Intra-/Extracellular Cell surface 

Co-stimulatory Molecules Endogenous CD28, 4-1BB 
Linked to scFv (CD28, 4-1BB in 

combination with CD3ζ 
Probability of CRS Lower Higher 

References [8–10]  

CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with 
the signaling components of a TCR, resulting in a synthetic receptor that is not major his-
tocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed 
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains, 
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy 
and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
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δ T-cells constitute 1–5% of lymphocytes and primarily reside in epithelial
tissues [251,265,266]. Most circulating
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and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
endogenous CD3ε/ɣ/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engi-
neered TCR (E-TCR) T-cells can recognize peptides from both intracellular and extracel-
lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

9Vδ2 TCR specific for nonpep-
tide phosphoantigens without CD4 or CD8 coreceptors [267]. Despite their small numbers,
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CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with 
the signaling components of a TCR, resulting in a synthetic receptor that is not major his-
tocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed 
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains, 
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy 
and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
endogenous CD3ε/ɣ/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engi-
neered TCR (E-TCR) T-cells can recognize peptides from both intracellular and extracel-
lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

δ T-cells contribute to anti-tumor immunity through their co-expression of activating NK
receptors and Toll-like receptors and their ability to lyse target cells [266]. Furthermore,
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CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with 
the signaling components of a TCR, resulting in a synthetic receptor that is not major his-
tocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed 
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains, 
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy 
and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
endogenous CD3ε/ɣ/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engi-
neered TCR (E-TCR) T-cells can recognize peptides from both intracellular and extracel-
lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

δ

T-cells are an ideal candidate for allogeneic cell therapies because their TCR can recognize
targets in an MHC-independent manner, minimizing GvHD risk [251].

Studies have demonstrated that
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CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with 
the signaling components of a TCR, resulting in a synthetic receptor that is not major his-
tocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed 
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains, 
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy 
and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
endogenous CD3ε/ɣ/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engi-
neered TCR (E-TCR) T-cells can recognize peptides from both intracellular and extracel-
lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

δ T-cells can target breast cancer cell lines both
in vitro and in vivo [267–269]. We did not encounter any preclinical studies of CAR

Cancers 2024, 16, x FOR PEER REVIEW 2 of 33 
 

 

in breast cancer is vital to improving their therapeutic outcomes. In this review, we ana-
lyze the main types of E-ACTs for breast cancer, their limitations and challenges, and the 
current landscape of these therapies in clinical trials. 

2. Engineered Adoptive T-Cell Therapies for Breast Cancer 
E-ACTs are a type of immunotherapy in which the patient’s immune cells are modi-

fied to confer a customized immune response to their cancer [5–7]. These therapies can be 
divided into two major categories: chimeric antigen receptor (CAR) T-cell therapy and T-
cell receptor (TCR) T-cell therapy. Both approaches are utilized in breast cancer models 
with varying degrees of success. Table 1 compares TCR T and CAR T-cell receptors re-
garding their MHC restriction, sensitivity, antigens recognized, and co-stimulatory mole-
cules. 

Table 1. Comparison of TCR and CAR T-cell constructs. 

 TCR T CAR T 
Constructs Minimally engineered TCR Fully synthetic receptor 

MHC Restriction Dependent Independent 

Affinity and Sensitivity 
Lower affinity,  

higher sensitivity 
Higher affinity,  

lower sensitivity 

Antigens Recognized 
Peptides presented within the MHC 

molecule (proteins) 
Cell surface proteins/molecules 

Origin of Antigens Intra-/Extracellular Cell surface 

Co-stimulatory Molecules Endogenous CD28, 4-1BB 
Linked to scFv (CD28, 4-1BB in 

combination with CD3ζ 
Probability of CRS Lower Higher 

References [8–10]  

CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with 
the signaling components of a TCR, resulting in a synthetic receptor that is not major his-
tocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed 
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains, 
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy 
and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
endogenous CD3ε/ɣ/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engi-
neered TCR (E-TCR) T-cells can recognize peptides from both intracellular and extracel-
lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

δ

T-cells that focus on breast cancer, however, a study using off-the-shelf anti-GPC3 CAR
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CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with 
the signaling components of a TCR, resulting in a synthetic receptor that is not major his-
tocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed 
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains, 
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy 
and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
endogenous CD3ε/ɣ/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engi-
neered TCR (E-TCR) T-cells can recognize peptides from both intracellular and extracel-
lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

δ

T-cells controlled hepatocellular carcinoma tumor growth without evidence of GvHD [216].
One clinical trial was planned to assess allogeneic NKG2DL-targeting CAR
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CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with 
the signaling components of a TCR, resulting in a synthetic receptor that is not major his-
tocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed 
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains, 
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy 
and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
endogenous CD3ε/ɣ/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engi-
neered TCR (E-TCR) T-cells can recognize peptides from both intracellular and extracel-
lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 
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various relapsed or refractory solid tumors, including TNBC, but the trial status is unknown
(NCT04107142).

7. Current Clinical Trials
7.1. Trends in E-ACT Trials for Breast Cancer

A search of clinicaltrials.gov using the keywords “breast cancer”, “CAR T-cells”, and
“TCR T-cells” (as well as synonyms “CAR” and “TCR”) yielded a total of 49 unique trials (as
of 24 July 2023). One additional trial was identified during the literature search for a total of
50 trials. A comprehensive list of these trials is found in Supplementary Table S1. Among
these trials, 32 (64%) utilized CAR T-cells, 14 (26%) used TCR T-cells, and the remaining
4 (8%) utilized engineered cells other than traditional αβ T-cells (Figure 4A). The earliest
E-ACT trials involving breast cancer were initiated in 2013 (NCT01837602, NCT01967823).
The University of Pennsylvania began a study to test the safety and efficacy of intratumoral
injections of anti-c-Met CAR T-cells in patients with metastatic breast cancer [47]. The
first TCR T-cell trial involving breast cancer targeted NY-ESO-1 and was initiated at the
National Cancer Institute (NCI). During the last decade, there has been a steady increase
in the cumulative number of E-ACT trials, with distinct peaks around 2015/2016 and
2020 (Figure 4B). Among the E-ACT trials to date, 29 (58%) are in Phase I, 15 (30%) are
in Phase I/Phase II, and only three (6%) are in Phase II (Figure 4C). No Phase III trials
have been initiated, likely due to a lack of positive results that warrant a Phase III trial.
As of 24 July 2023, 23 trials are recruiting (46%), six have been completed (12%), and a
total of 18 have been terminated (6, 12%), withdrawn (3, 6%), suspended (2, 4%), or their
status is unknown (7, 14%) (Figure 4D). Lymphodepletion is associated with the augmented
function of adoptively transferred immune cells, as it expands tumor-reactive T-cells and
suppresses endogenous Tregs [270]. Most current E-ACT trials for breast cancer include
lymphodepletion in their protocols (48%), and only two trials (4%) have chosen to omit
lymphodepletion for reasons not cited (Figure 4E).

A wide variety of antigens are targeted in these trials. Unsurprisingly, the most
common CAR T-cell target for breast cancer is HER2 (25%). Patients’ tumors are only
considered HER2+ if they have a HER2 immunohistochemistry (IHC) score of 3+ or an IHC
score of 2+ with positive fluorescence in-situ hybridization (FISH) [3]. Anti-HER2 CAR
T-cells are an attractive alternative for HER2-low breast cancers, i.e., breast cancers with a
HER2 IHC score of 2+ without a positive FISH or a score of 1+. Other CAR T-cell targets
being investigated include MUC1 (18.8%) and mesothelin (15.6%), both of which have
demonstrated promising results in preclinical studies [51,53,57,271]. Compared to CAR
T-cells, TCR T-cells have the advantage of targeting intracellular CGAs and neoantigens
that would otherwise be inaccessible to CAR T-cells. CGAs and neoantigens also tend to
have more restricted expression, minimizing potential on-target/off-tumor toxicities [32].
The most common TCR T-cell targets include NY-ESO-1 (36%), MAGE-A3 (14%), and
KK-LC-1 (14%). A comprehensive list of antigen targets for both CAR T and TCR T trials
can be found in Figure 4G. Unlike CAR T-cells, successful TCR T-cell treatment requires
that the patient possesses compatible HLA alleles. Among TCR-T trials, HLA-A*02 was the
most prevalent restricting HLA (50%), followed by HLA-A*01 (21.4%) (Figure 4F). Most
E-ACT trials for breast cancer utilize autologous cell products, apart from two current
trials evaluating allogeneic CAR T-cells (NCT05239143) and CAR
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CAR T-cell therapies combine the specificity of a monoclonal antibody (mAb) with 
the signaling components of a TCR, resulting in a synthetic receptor that is not major his-
tocompatibility complex (MHC)-restricted (Figure 1) [11]. The typical CAR is composed 
of a single-chain variable fragment (scFv) fused to hinge and transmembrane domains, 
followed by an intracellular signaling domain [12]. The scFv is derived from the heavy 
and light chain variable regions of a mAb and is responsible for antigen recognition [13]. 
The intracellular signaling domain of first-generation CARs is comprised solely of the 
CD3ζ or FcR   ɣ    signaling domains; clinical efficacy with these first-generation CARs 
was limited, however, as it was proven that they do not produce a durable anti-tumor 
response due to a lack of expansion and persistence [14,15]. Second- and third-generation 
CAR constructs incorporate the signaling domains of known T-cell co-stimulatory mole-
cules. The two most common co-stimulatory domains used are CD28 and 4-1BB (CD137). 
Others include inducible T-cell co-stimulator (ICOS), CD27, MyD88, CD40, and OX40 
(CD134) [16,17]. Fourth-generation CARs, also known as T-cells redirected for universal 
cytokine killing (TRUCKs), are engineered to incorporate cytokines or their receptors, 
which serve to support T-cell activity and survival [18,19], resulting in more durable T-
cell responses [20]. 

TCR T-cell therapies, on the other hand, utilize naturally occurring TCRs isolated 
from T-cell clones that recognize the tumor antigen of interest. The ⍺ and β chains of the 
isolated TCR are expressed in the recipient’s T-cells, which dimerize and associate with 
endogenous CD3ε/ɣ/δ/ζ subunits to confer the desired specificity (Figure 1) [21]. Engi-
neered TCR (E-TCR) T-cells can recognize peptides from both intracellular and extracel-
lular tumor antigens presented on surface MHC molecules, including neoantigens arising 
from tumor-specific mutations [6,21]. Since TCRs recognize tumor antigens in an MHC-
dependent manner, E-TCRs are matched to the patient’s expressed MHC alleles [22]. As a 
significant portion of breast cancer cases have mutations in PIK3CA, TP53, and ESR1 

δ T-cells (NCT04107142).
These “off-the-shelf” therapies will significantly reduce patient waiting times and minimize
the labor required to manufacture a single dose of CAR T-cells. Furthermore, some trials are
exploring engineered cell products derived from other cell types, including CAR NK cells
(NCT02839954, NCT05686720) and CAR macrophages (NCT04660929) targeting MUC1,
mesothelin, and HER2, respectively.

clinicaltrials.gov
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Figure 4. Current trends of E-ACT clinical trials for breast cancer. E-ACT trials registered in
clinicaltrials.gov were assessed as of 24 July 2023. (A) Types of E-ACT trials. (B) The number
of new E-ACT trials initiated each year and the cumulative number of registered E-ACT trials by year.
(C) Phases of the 50 E-ACT trials. (D) Clinical status of the 50 E-ACT trials. (E) Use of lymphodeple-
tion in E-ACT trials. (F) Restricting HLAs of the 14 TCR T trials. (G) Frequency of targets in E-ACT
trials. (H) Locations where E-ACT trials have been conducted by country. (I) Primary sponsors of the
29 E-ACT trials conducted in the United States.
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Most breast cancer E-ACT trial locations are in the United States (58%), followed by
China (36%), Malaysia (2%), Israel (2%), and Japan (2%) (Figure 4H). Among the 29 E-ACT
trials held in the United States, 41.4% are sponsored by academic institutions, 34.5% by
industry, and the NIH sponsors 24.1%. Most trials opened at academic institutions are
from the University of Pennsylvania (3 trials, 25%), followed by Memorial Sloan Kettering
Cancer Center, Fred Hutchinson Cancer Center, and Baylor College of Medicine, each
with two trials. (Figure 4I). Each of the trials sponsored by the industry is supported by
a different company, as listed in Figure 4I. The NCI initiated all NIH trials. In the earlier
years of breast cancer E-ACT trials (2013–2017), trial sponsorship primarily came from
academic institutions and the NIH. Since 2018, however, the number of industry-sponsored
trials has increased, which helps to accelerate the initiation of new trials.

Trial results were located via analysis of published manuscripts. We identified seven
trials that have published results from breast cancer patients. Clinical results of four CAR
and three TCR T-cell trials are detailed in Table 3. We provide a broad analysis of the results
from these trials, with particular emphasis on their safety and feasibility. Of note, all seven
trials are in the early phase and therefore have a relatively small sample size. Despite
their small numbers, the results of these early trials are a crucial step toward the clinical
establishment of these products and will guide the conduct and design of future trials.

Table 3. Available breast cancer E-ACT trial results.

Year Trial ID Target Total #
Pts Comments Phase Responses Adverse

Effects Ref.

CAR

2017 NCT01837602 c-Met 6

Intratumoral
administration; mRNA

electroporated CAR T-cells;
Tumors resected two days

later

0/I Clinical response was
not measured

All grade 3
SAEs were

deemed
unrelated

to the
study drug

[47]

2023 NCT03060356 c-Met 7

mRNA electroporated CAR
T-cells; Up to six infusions
of CAR T-cells without LD;
CAR T not found in tumor
biopsy; 4 TNBC patients.

I 4/7 = 57.1% SD
No grade 3
or higher
toxicity

[272]

2021 NCT02706392 ROR1 21

CAR T-cells were seen in
tumor biopsy; CAR T-cells

upregulated inhibitory
receptors and lost the ability

to produce effector
cytokines; 3 TNBC patients

I 2/21 = 9.5% SD

All patients
noted as ex-
periencing

adverse
events

[273]

2021 NCT02414269 Mesothelin 27

LD, Intrapleural
administration,

+Pembrolizumab; 1 BC
patient

I/II
56% SD; ORR: 12.5%

(PR); BC patient did not
respond

No adverse
events

were noted
[274]

TCR

2017 NCT02111850 MAGE-
A3 17

LD and high-dose IL-2 were
given;

2 BC patients
I/II

ORR: 23.5%
5.9% (CR), 17.6% (PR)
BC patients did not

respond

Transient
G3

transamini-
tis

(2 pts)

[275]

2022 NCT01967823 NY-
ESO-1 9 LD; 1 BC patient I

ORR: 33% (PR)
BC patient did not

respond

1 Grade 3
Lung
injury
3 CRS

[276]

2022 NCT03412877 p53
R175H 1 LD; Pembrolizumab given

on day 16 after TCR T-cells II

55% decrease in tumor
burden. Progressed six
months post-treatment

due to loss of HLA
expression

Grade 3
acute CRS,
resolved

[116]

LD = lymphodepletion, ORR = objective response rate, SD = stable disease, CR = complete response, SAE =
serious adverse event, CRS = cytokine release syndrome.
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7.2. Safety and Efficacy of CAR T-Cells for Breast Cancer
7.2.1. c-Met-Specific CAR T-Cells: A Safe and Moderately Effective Target

Two CAR T-cell trials with published results for breast cancer patients target c-Met.
An initial phase 0/phase I study evaluated the safety and feasibility of intratumoral (I.T.)
injections of autologous c-Met CAR T-cells in patients with metastatic breast cancer (four
TNBC, two ER+HER2−). Three patients received dose level 1 (DL1) at 3 × 107 cells, and
three received DL2 at 3 × 108 cells. It was not specified whether lymphodepletion was
used. No measurable clinical responses were observed, and all grade 3 serious adverse
events (SAEs) were deemed unrelated to the study drug [47]. CAR mRNA was detected
in the peripheral blood or tumor tissue in 5 of 6 (83.3%) patients, however, levels became
Undetectable 24 h after I.T. injection. These initial results demonstrated the safety of
autologous c-Met CAR T-cells. Earlier this year, the same group published results from
an additional early phase I study evaluating the safety and efficacy of intravenous (I.V.)
c-Met CAR T-cells. This study included four TNBC patients and three melanoma patients.
Patients received six doses of 1 × 108 cells each over 14 days without lymphodepletion.
Published study results observed 4 of 7 (57.1%) patients with stable disease (SD) and 3 of 7
(42.8%) with progressive disease (PD). Among the four TNBC patients, two had SD, and
two showed PD. Of the seven total patients, six (85.7%) experienced grade 1/2 toxicity,
and one (14.3%) experienced grade 1 cytokine release syndrome (CRS). No grade 3 or
higher toxicity, neurotoxicity, or treatment discontinuation occurred [272]. Together, the
results from these two trials demonstrate the safety and therapeutic potential of c-Met
CAR T-cells. Additional trials and preclinical studies are warranted to fully evaluate their
clinical efficacy.

7.2.2. ROR1-Specific CAR T-Cells: Initial Safety and Poor Intratumoral Persistence

One phase I study evaluated the safety, persistence, trafficking, and preliminary anti-
tumor activity of ROR1-specific CAR T-cells in patients with ROR+ solid and hematologic
malignancies. A total of 21 patients with various tumor types participated in this trial and
were divided among three DLs with lymphodepletion. A subsequent manuscript describes
the results of three metastatic TNBC patients and will be the focus of this analysis [273].
Among these patients, 1 of 3 (33.3%) progressed after treatment, while 2 of 3 (66.7%) had SD,
with one patient achieving a partial response (PR) after advancing from DL2 to DL3. Only
one TNBC patient experienced grade 1 CRS. As for CAR T-cell expansion and trafficking in
mTNBC patients, 2 of 3 (66.7%) experienced a robust CAR T-cell expansion in their periph-
eral blood, with no toxicity to normal tissues. At peak expansion, however, these T-cells
upregulated inhibitory receptors and lost the ability to produce crucial effector cytokines.
Unfortunately, CAR T-cells did not accumulate or persist at the tumor site. The success of
ROR1-specific CAR T-cells may require additional cytokine stimulation or co-stimulatory
receptors. One such trial is currently recruiting and incorporates membrane-bound IL-15,
intrinsic PD-1 blockade, and a kill switch for additional safety (NCT05694364).

7.2.3. Mesothelin-Specific CAR T-Cells: Emerging Results from an Ongoing Trial

A phase I/II trial evaluating regional delivery of mesothelin-specific CAR T-cells in
patients with malignant pleural disease is ongoing (NCT02414269), and phase I results
that include one breast cancer patient were recently published [274]. This patient received
3 × 105 CAR T-cells per kilogram intrapleurally via intervention radiology-guided imaging
following lymphodepletion. No adverse events were noted, and the patient received
multiple lines of therapy after CAR T-cells and survived 11 months. These preliminary
results suggest that mesothelin is a safe target that warrants further clinical investigation.

7.3. Safety and Efficacy of TCR T-Cells for Breast Cancer
7.3.1. NY-ESO-1-Specific TCR T-Cells: Additional Clinical Data Needed

While NY-ESO-1 is by far the most clinically evaluated target for TCR T-cell therapy in
breast cancer, few studies report results from breast cancer patients. However, one study
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published in 2022 provides a small window into the efficacy of NY-ESO-1 redirected T-cells
in breast cancer. This phase I study tested NY-ESO-1-specific TCR T-cells in HLA-A*2:01 or
HLA-A*2:06 positive patients, including one breast cancer patient treated with one dose of
5 × 108 cells with lymphodepletion (NCT02366546). NY-ESO-1 expression for this patient
was between 5–25%, as determined by IHC. Although the patient did not develop CRS, the
transferred T-cells did not expand well in peripheral blood, and the patient progressed soon
after treatment and passed away at six months post-treatment [276]. However, three other
patients enrolled in the study showed greater than 30% tumor regression, albeit with much
higher NY-ESO-1 expression (>/=75%). The poor response of the breast cancer patient,
therefore, is likely due to low antigen density. A larger breast cancer patient population is
needed to assess the safety and efficacy of NY-ESO-1-specific TCR T-cells accurately.

7.3.2. MAGE-A3-Specific TCR T-Cells: Toxicity and No Evidence of Efficacy in
Breast Cancer

Early reports of TCR T-cell trials targeting MAGE-A3 describe severe cardiac toxicity
due to the cross-reactivity of the TCR to normal cardiac proteins [21]. A later study
aimed to target MAGE-A3 in patients with metastatic cancer who were HLA-DPB1*04:01
positive (NCT02111850). The primary objective was to determine the maximum tolerated
dose of TCR T-cells. Two breast cancer patients were enrolled in the high-dose cohort,
receiving 7.8 × 1010 (plus three doses of IL-2) and 9 × 1010 (plus one dose of IL-2) cells
with lymphodepletion. Of note, the patient treated with 9 × 1010 T-cells and one dose
of IL-2 experienced grade 4 toxicities, including elevated ALT, AST, and creatinine. The
patient later developed respiratory failure, requiring hospitalization. Both breast cancer
patients exhibited no response (NR) to treatment [275]. A similar study was conducted
in patients with HLA-A*01; however, it was terminated due to slow, insufficient accrual
(NCT02153905). Preliminary results for only three participants are posted, and it cannot be
determined if any are breast cancer patients.

7.3.3. Neoantigen-Specific TCR T-Cells: Promising Results from an Ongoing Trial

An ongoing phase II clinical trial recently published results from a chemo-refractory
breast cancer patient treated with T-cells transduced with an HLA-A*02:01-restricted TCR
specific for the p53 R175H mutation. TCR T-cells were administered following standard
lymphodepletion with no IL-2. The patient also received one dose of pembrolizumab post-
ACT. After infusion, the patient developed grade 3 acute CRS, which resolved following
intubation, vasopressors, and steroid treatment. Despite initial distress, the patient exhib-
ited a 55% decrease in tumor burden at 14 weeks post-treatment. By day 60, metastatic
sites had decreased, and all detectable skin lesions had resolved. Infused R175H-TCR
T-cells also persisted and developed into memory T-cells that could be detected four
months post-treatment. While the patient initially had a PR, they progressed at six months
post-treatment. New lesions were found to have lost expression of HLA-A*02:01, thereby
allowing the tumor cells to escape R175H-TCR T-cell recognition [116]. While these results
warrant further investigation into preventing tumor immune escape through HLA loss, the
initial anti-tumor efficacy of R175H-TCR T-cells is very promising.

8. Conclusions

E-ACTs for breast cancer are rapidly evolving, with no shortage of targets to explore.
While great strides have been made in the preclinical assessment of these novel therapies,
including technologies to improve T-cell persistence and target the immunosuppressive
TME, most preclinical models are limited in their ability to recapitulate the full scope of
interactions between the breast microenvironment and patient immune system. Various
studies have been performed in syngeneic mouse models, utilizing murine breast cancer
lines in immunocompetent mice and allowing for a comprehensive study of E-ACTs in
the context of a complete TME [61,162,185,192,199,218,273,277]. However, these studies
require the use of fully murine receptors that cannot be immediately translated to clinical
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trials without humanization. Fully humanized mice with an intact immune system can
be achieved through transplantation of human CD34+ hematopoietic stem/progenitor
cells [278]. While humanized breast cancer models have been developed [279–281], further
studies are needed to establish protocols for breast cancer E-ACT in these models.

Despite the limitations of preclinical models, we present a wealth of evidence sup-
porting the efficacy of E-ACTs for breast cancer. The real test, however, lies in their clinical
efficacy. Available phase I/II trial results for patients with breast cancer demonstrate the
general safety of CAR T-cell therapies; however, we eagerly await the analysis of results
from numerous ongoing and completed trials. Early trials of TCR T-cell therapies for breast
cancer report varied results, with some therapies showing great promise and others result-
ing in severe toxicities. Overall, while there are 14 CAR/TCR trials listed as completed,
terminated, or suspended, results regarding breast cancer patients from only seven trials
could be located. Regardless of the success of the trial, all results must be published upon
trial closure. The results of these trials will guide future research and foster advancements
in the technology and safety of E-ACT. Given the steady rise in the number of clinical
trials using E-ACT for breast cancer since 2013, we can anticipate an influx of results in the
coming years that will influence the next generation of cellular therapies. In the meantime,
new studies with “armored” next-generation engineered T-cells are emerging, promising
improved T-cell performance and clinical outcomes. The continued efforts to understand
and overcome the factors that limit the efficacy of these therapies in solid tumors will light
the way toward success.
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