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Simple Summary: Radiotherapy (RT) is used worldwide as a gold standard treatment approach for
cancer management. However, the RT treatment modality contains limitations along with numerous
side effects. Nanoparticles (NPs) have unique properties that can be utilized in the field of cancer
treatment. Therefore, the combination of NPs with RT opens a new arena in cancer treatment. Their
synergistic effect strengthens ionizing radiation sensitivity and allows for tumor-selective treatment
while reducing side effects. More importantly, NP-based RT offers greater control over RT alone
and has shown higher selectivity. In addition, the combined treatment also helps to overcome
radioresistance and drug-resistance phenomena. The main mechanism through which NP-based RT
destroys cancer cells includes production of ROS, which damage DNA, inhibiting the DNA-repair
system, perturbing the cell cycle, and controlling the tumor microenvironment. NP-based RT has
been reported to destroy cancer stem cells and has shown good results in clinical trials. Moreover, the
addition of phototherapy to NP-based RT reduces the limitations of phototherapy and has shown
excellent cancer cell-killing potentiality.

Abstract: Radiation has been utilized for a long time for the treatment of cancer patients. However,
radiotherapy (RT) has many constraints, among which non-selectivity is the primary one. The
implementation of nanoparticles (NPs) with RT not only localizes radiation in targeted tissue but also
provides significant tumoricidal effect(s) compared to radiation alone. NPs can be functionalized with
both biomolecules and therapeutic agents, and their combination significantly reduces the side effects
of RT. NP-based RT destroys cancer cells through multiple mechanisms, including ROS generation,
which in turn damages DNA and other cellular organelles, inhibiting of the DNA double-strand
damage-repair system, obstructing of the cell cycle, regulating of the tumor microenvironment, and
killing of cancer stem cells. Furthermore, such combined treatments overcome radioresistance and
drug resistance to chemotherapy. Additionally, NP-based RT in combined treatments have shown
synergistic therapeutic benefit(s) and enhanced the therapeutic window. Furthermore, a combination
of phototherapy, i.e., photodynamic therapy and photothermal therapy with NP-based RT, not only
reduces phototoxicity but also offers excellent therapeutic benefits. Moreover, using NPs with RT
has shown promise in cancer treatment and shown excellent therapeutic outcomes in clinical trials.
Therefore, extensive research in this field will pave the way toward improved RT in cancer treatment.

Keywords: cancer treatment; radiotherapy; radiation treatment; nanoparticles; nanoparticle-based
radiotherapy; combination therapy; phototherapy; mechanism

1. Introduction

Cancer is a great threat to global public health [1]. It is one of the main causes of
significant morbidity and global deaths per year [2]. In 2022, approximately 1,918,030 cancer
cases and 609,360 cancer related deaths were reported [3], and 26 million new cancer cases
are projected to occur by 2030 [4]. Cancer develops by uncontrolled proliferation of cells due
to pathophysiological alterations of the inherent cell division process that later disseminate
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to different tissues [5,6]. Radiotherapy (RT) is actively used to treat primary, as well as
terminal, tumors [7]. This course of treatment damages cancer cells upon exposure to
ionization radiation [8]. A beam of high-energy ionization radiation destroys intracellular
components of tumors, killing cancer cells [9]. Radiation treatment is effectual for more than
half of cancer patients [10–12] and is applied in two-thirds of cancer treatment regimens
in Western countries as a significant treatment modality for locoregional tumors [13].
Approximately 30–50% of all cancer patients receive RT, either alone or as an adjuvant
treatment [14].

However, RT has limitations that includes dose heterogeneity, intrinsic as well as
acquired resistance to RT, and tumor recurrence [15,16]. In addition, delivering sufficient
tumoricidal radiation doses induces toxicity in both cancer and nearby non-cancerous
cells since both cells have similar mass energy absorption tendencies [17]. Therefore,
RT is restricted by the highest tolerated dose to the surrounding normal tissues [13].
Moreover, hypoxic tumors resist radiation treatment [18]. RT also exhibits side effects
(acute, consequential, or late complications) causing radiation toxicity in the skin, mucosa,
liver, lungs, kidneys, and heart [19–23].

The advent of nanoparticles (NPs) has assisted in the evolution of traditional RT
from a “one-size-fits-all” concept to tailored and dynamic treatment modalities [13]. High
surface-to-volume ratios, increased cellular uptake, and adjustability make NPs a suitable
choice for tumor-targeted and less toxic treatment approaches [24–29]. NPs that are pre-
pared from high Z materials act as radiosensitizers, receiving external beams of ionizing
radiation [30,31]. Additionally, NPs can be modified by target molecules, and radiosen-
sitizers are able to penetrate and accumulate in tumors to achieve tumor selectivity, as
well as enhanced therapeutic doses [32–35]. Such NP-based radiosensitizing agents draw
contrasts between cancer and non-cancerous cells owing to variability in their mass ab-
sorption coefficients [17]. Nanostructured radiosensitizers intensify radiation to increase
the local dose and overcome hypoxia and rapid proliferation [36,37]. The combination
of phototherapy with NP-based RT further improvises cancer management by increasing
significant anticancer activity while reducing the limitations of both photothermal and
photodynamic treatment [38].

In this review, we highlight the potentiality of NP-based RT to overcome the limitations
of conventional RT, as well as combined treatment of RT with chemotherapy (CT). We have
describe the robust and significant tumoricidal activity of the NP-based radiotherapeutic
approaches compared to radiation or NP treatment only in cancer, and we explore its effects
on cancer stem cells and in clinical trials. In addition, NP-based RT’s potential to overcome
radioresistance and drug resistance is discussed. Moreover, we indicate some crucial
limitations of NP-based RT and address the future prospects of this treatment modality.

2. Combinational Use of RT and Chemotherapy

Radiotherapy utilizes high-energy beams to destroy cancer cells and thereby shrink
tumors [39]. On the other hand, chemotherapy (CT) uses cytotoxic drugs that are capable of
killing cancer cells and inhibit cancer cell growth [40]. These conventional treatments have
limitations, such as insufficient therapeutic properties and side effects [41]. In this regard,
combination of RT with CT offers an improved therapeutic effect compared to using a single
approach. CT is widely used in lung cancer [42], esophageal cancer [43], rectal cancer [44],
and hepatocellular carcinoma [45]. However, toxic side effects and a lack of selectivity
and synergy between RT and CT are key problems in chemotherapeutic treatment. In
addition, severe side effects of Pt-based anticancer drugs have restricted their clinical
application [41,46]. On the other hand, RT is often off-target and damages surrounding
healthy cells, and it is difficult to obtain optimum radiation [47]. The application of
nanostructured radiosensitizers in RT has attained great attention recently. Using high Z
materials as nano radiosensitizers enhances RT owing to their Compton scattering and
photoelectric effects [48]. Moreover, introducing platinum-based anticancer drugs, such
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as cisplatin (II), oxaliplatin (II), and carboplatin (II), as radiosensitizers has yielded more
effective RT strategies [49].

A key advantage to combined treatment is the prospect of achieving a greater organ-
preservation rate. Another advantage is its independent cell-destroying effect. RT aims
to control the primary tumor, whereas CT eliminates distant metastasis. The combined
treatment modality is also advocated based on clinical trial results. Phase II trials have
reported convincing results of combined treatments [50]. However, the combined approach
has some challenges to overcome. Several parameters, such as the dose, duration, adminis-
tration sequence, should be optimized properly [51]. Therefore, further research is needed
to explore these limitations.

3. How Radiation Reacts with Radiosensitizers of High Z Materials

The bombarding of ionizing radiation with NPs gives rise to several outcomes, in-
cluding photoelectric effects, the Compton electron effect, and Auger electron effects
(Figure 1) [40]. The radiation energy is imparted to the electrons of the NPs’ atoms, causing
the ejection of electrons from their orbits [41]. Such electronic ejection occurs with a kinetic
energy that is equivalent to the radiation wave energy minus the binding energy of the
electrons and assesses the electron range in tissue [42].
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volved in further process, such as photoelectric effects or the Compton effect. 

Photoelectric effects occur when low-energy photons interacts with materials (<60 
keV). The photon energy is exclusively absorbed by inner orbital electrons and is ejected 
from its orbit. This phenomenon causes the electrons of outer orbits to shift to inner orbits 
and empty space. Thus, liberated fluorescence photons with specific wavelengths depend 

Figure 1. NP interaction with ionizing radiation. (A) The collision of incident photons with inner
orbital electrons causes a photoelectric effect. The inner electron absorbs photon energy and ejects
it as a photoelectron. Due to the ejection of photoelectrons, electrons from outer shell fill the gap
resulting in the emitting of X-rays or the Auger electron. (B) On the other hand, the collision of
incident photons with outer orbital electrons causes the Compton effect. The Compton electron
absorbing photon energy is ejected from the atom, which may excite and ionize subsequent atoms.
The photon loses a fraction of its energy and either continues on its course or is alternatively involved
in further process, such as photoelectric effects or the Compton effect.

Photoelectric effects occur when low-energy photons interacts with materials (<60 keV).
The photon energy is exclusively absorbed by inner orbital electrons and is ejected from
its orbit. This phenomenon causes the electrons of outer orbits to shift to inner orbits and
empty space. Thus, liberated fluorescence photons with specific wavelengths depend on
the difference between the energy of two orbits, called secondary radiation (Figure 1). Later,
Auger electrons are emitted when outer orbit electrons fill the empty space of the inner
orbit due to photoelectric effects. This process relinquishes energy to outer orbits electrons,
leading to ejection of electrons from higher orbits (Figure 1) [17]. The Auger electrons
have high linear energy transfer properties and hence could be extremely injurious to
cells [43]. The probability of photoelectric effects occurring is assessed by the formula
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(Z/E)3, where E = the incoming photon’s energy, and Z = the absorber molecule’s atomic
number. Thus, the possibility of photoelectric effects is enhanced with increased absorber
atoms, but it decreases with increased energy of incident photons. Photoelectric effects
contribute more to radiation interaction with high Z metal NPs than to absorption in soft
tissue. Therefore, photoelectrons, secondary photons, and Auger electrons released from
high-Z metal NPs enhance localized doses, along with focal ionization of nearby cells via
photoelectric effects. Since photoelectric effects decrease with increased energy of photons,
most of the nanoparticles combining with radiation treatment use keV photons to optimize
the radiosensitization and enhance the local dose by 10–150 times [44–46].

The Compton interaction dominates within 25 keV–25 MeV of photon energy. Since
most RT is performed at an energy level of 6–20 MeV, this effect is the most common
interaction between incident photons and cancer tissue. In the case of the Compton effect,
incident photons strike weakly bound outer orbit electrons and donate part of their energy
to the electrons, stimulating electrons to leave the outer orbit. Concurrently, the photons
become scattered after giving part of their energy and further interacting with other atoms
(Figure 1). Afterward, the emitted electrons continue to ionize adjacent tissues. The
possibility of a Compton interaction depends inversely on the incoming photon’s energy
but is not dependent on the material’s atomic number. Therefore, high-Z metal NPs do not
have a substantial role in the Compton effect [17,40,46,47].

4. Biological Response of NPs-Based RT

Complementing nanotherapeutics with ionizing radiation exhibits an enhanced biolog-
ical response in cancer management through several approaches. The major mechanisms
include inhibiting DNA-repair processes, producing reactive oxygen species (ROS), which
damage DNA or other biomolecules by oxidation, inhibiting tumor metastasis by control-
ling the tumor microenvironment (TME), and arresting the cell cycle (Figure 2).
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Figure 2. Biological responses of NPs aiding RT. Ionizing radiation causes direct damage to DNA,
which is repaired by the cells’ own repair mechanism. However, NPs with RT interfere with the
DNA-repair process, leading to cancer cell death. Moreover, ionization induces ROS generation,
which damage DNA-killing cancer cells. In addition, radiation together with NPs arrests the G2/M
phase of the cell cycle and results in cancer cells death eventually.
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4.1. DNA Damage

Ionizing with X-rays, γ-rays, or proton radiation itself causes spontaneous double
strand breaks (DSBs) in DNA by breaking atomic and molecular bonds [48–50], and un-
repairing of DSB leads to genetic instability, cell division termination, and reduced prolifer-
ation and consequently to death [51,52]. However, such DSBs are repaired by the cellular
DNA damage response (DDR) [53]. Three main proteins from the phosphatidylinositol
3-kinase-related kinase family, namely ataxia-telangiectasia mutated (ATM), ATM and
Rad3 related (ATR), and DNA-dependent protein kinase (DNA-PK), are involved in identi-
fying and repairing DNA DSBs [54]. Three different types of sensor protein complexes are
responsible for the recruitment, as well as activation, of these three proteins of the PI3K
family at damaged DNA sites, i.e., MRE11/RAD50/NBS1 (MRN) for ATM, RPA/ATRIP
for ATR, and KU70–KU80/86 for DNA-PK [55].

The main goal of DDR machinery is to delay the progression of the cell cycle and fix
the damage [56]. When cancer cells are exposed to IR, they undergo transient cell cycle
arrest to repair DSBs either by non-homologous end joining (NHEJ) throughout the entire
cell cycle or by homologous recombination (HR) during the S and G2 phase [57]. ATM
is primarily responsible for activating the HR pathway. Other proteins, including breast
and ovarian susceptibility protein (Brca2), Rad51, and X-ray repair cross complementing
protein 2 (XRCC2), are also involved in the HR pathway [58]. On the other hand, DNA-
PK mainly regulates the NHEJ pathway in association with DNA ligase IV and X-ray
repair cross complementing protein 4 [59,60]. Another pathway involves both ATM and
ATR. Here, MRN sensor protein complex senses damage sites and activates ATM [61].
Autophosphorylation of ATM kinase sends signals to transducers such as checkpoint
kinase 2 (Chk2) and the transcription factor p53. p53 controls the expression of p21,
which interacts with cyclin-dependent kinase (CDK) complex and arrests the G1 phase
of the cell cycle [62]. Modification of chromatin also occurs together with the process,
and then the DNA repair process is initiated. However, mutation of the p53 makes the
G1 checkpoint defective in most of the cancer cells. Hence, the G2 checkpoint plays a
crucial role for surviving cancer cells. RPA/ATRIP sensor protein complex recognizes and
activates ATR. Here, ATR phosphorylates checkpoint kinase 1 (Chk1), which degrades cell
division cycle 25A (CDC25A) through further phosphorylation and slows the progression
of DNA replication during the S phase. The ATM-Chk2 and ATR-Chk1 signaling pathway
acts together with DNA-PK phosphorylate p53, which controls genes required for DNA
repair, arresting the cell cycle, and apoptosis [55,61,63].

For this purpose, DNA double-strand repair inhibition (DSBRI) appears to a promising
strategy for RT [64]. However, it is a challenge to achieve tumor selective DSBRI-based
radiotherapeutic treatment since such approaches often sensitize normal cells [65]. Inter-
estingly, introduction of NP-based radiotherapeutic approaches mediates tumor-specific
DSBRI owing to their increased permeability and retention effects [66,67]. Zhang et al.
developed nano-constructure by combining androgen receptor (AR) with shRNA and
folate-targeted H1 nanopolymer (NP AR-shRNA). NP AR-shRNA selectively destroyed
prostate cancer cells by mimicking DNA DSBs and activated kinase activity, in turn imped-
ing DNA damage repair signaling pathways (Figure 2) [68]. The presence of γ-H2AX is
used as an indicator to detect DNA DSB in higher eukaryotes [69,70]. NP AR-shRNA in
combination with IR (4 Gy) increases the expression of γ-H2AX in PC3 and 22Rv1 cells by
nearly three-fold compared to IR alone (4 Gy). In vivo experiments showed that irradiation
downregulated the expression of AR protein while increasing γ-H2AX expression in 22Rv1
tumors. Additionally, mice bearing PC3 and 22Rv1 cells were exposed to NP AR-shRNA
under X-ray (total 9 Gy) and displayed significant tumor reduction compared to only X-ray
treatment [68]. Similarly, Yao et al. formulated nanoparticles by conjugating DSB bait
(Dbait) with H1 polymer (Dbait@H1 NPs), selectively killing prostate cancer cells upon
exposure to radiation by inhibiting DSB repair [71]. Dbait@H1 NPs attached selectively to
folate receptor and mimicked DNA DSBs upon release into the nucleus [72,73]. Dbait of
Dbait@H1 NPs activates DNA-PK and phosphorylate γ-H2AX. Then, factors associated
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with DNA damage repair are assembled at the free end of Dbait, preventing them from
affecting the DSB sites of the real chromosome and resulting in prolonged defects in DSB
repair [74–77]. Irradiating (4 Gy) PC-3 cells with Dbait@H1 NPs induced γ-H2AX foci
numbers three times higher than radiation alone (4 Gy) (Table 1). Moreover, the same
radiation dose also increases phosphorylation of DNA-PK and H2AX of both PC-3 and
22Rv1 cells. Moreover, an in vivo study showed that mice carrying both PC-3 and 22Rv1
cells were exposed to 9 Gy of radiation and 60 µg/kg of Dbait@H1 NPs and exhibited
1.67- and 2.5-fold reduced tumor volumes, respectively, compared to only radiation (9 Gy)
(Table 1) [71]. Similarly, HeLa cells exposed to AuNPs and irradiation at 4 Gy of 220 kVp
and 6 MVp caused enhanced γ-H2AX, suggesting induction of possible DNA DSB [78].
Combined treatment with PEGylated-AuNPs and 4 Gy RT (150 kVp) increased DNA dam-
age 1.7-fold in U251 cells compared to radiation alone [79]. Additionally, Zheng et al.
reported that AuNPs at a radiation dose of 6 Gy induced DSB in HepG2 cells [80].

Chen et al. modified AuNPs with bovine serum albumin (BSA@AuNPs), which
induced a 2.02-fold increase in γ-H2AX density compared to X-ray radiation only in
U87 cells upon exposure to a 3-Gy dose of 160 kVp X-ray. Moreover, treating mice with
BSA@AuNPs under X-ray radiation (5 Gy) reduced tumor volume significantly compared
to X-ray radiation alone [81]. Similarly, a nanoformulation of KU55933 (NPs@KU55933)
impeded the repair process of DSBs and exhibited enhanced tumor volume reduction
in vivo. Exposing two types of lung cancer cells (i.e., H460 and A549 cells) to NPs@KU55933
at a radiation dose of 15 Gy showed a remarkable tumor size reduction compared to the
X-ray irradiation group (Table 1) [82].

4.2. Reactive Oxygen Species (ROS)

Ionization in combination with NPs brings about indirect necrosis or apoptosis via
oxidation of biomolecules, including proteins, lipids, and DNA, along with mitochondrial
dysfunction [7,83,84]. High-intensity ionizing radiation generates ROS, including superox-
ide anion radicals (O2

−), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH), through
water radiolysis, and they interact with cellular biomolecules, leading to apoptosis/cellular
death [7,85–89], as well as suppressing tumor progression [90]. Therefore, sufficient ROS
production is crucial to mediate DNA damage, as well as suppress DNA repair (Figure 2).

Zhao et al. fabricated Gd-bearing polyoxometalates linked with chitosan nanospheres
and integrated with hypoxia inducible factor 1α (HIF-1α) siRNA (GdW10@CS_HsiRNA)
that showed enhanced radiosensitization in hypoxic tumors. GdW10@CS functions as
an external radiosensitizer for depositing ionizing radiation doses and as a nanocarrier
of HIF-1α siRNA to stop DNA DSB restoration. Additionally, GdW10@CS annihilates
intracellular reduced glutathione (GSH) levels upon exposure to X-ray radiation, leading
to overproduction of ROS through W6+-triggered GSH oxidation, thereby facilitating
radiotherapeutic efficiency. Irradiating BEL-7402 cells with 6 Gy of X-ray and GdW10@CS
(100 µM) produced Compton and Auger electrons, which interact with surrounding H2O
or O2 molecules, thus producing 10-fold more ROS, as well as exhausting GSH levels
three times more compared to X-ray treatment alone. Furthermore, 20 µL of GdW10@CS
along with 10 Gy of X-ray radiation were administered into BALB/c mice bearing BEL-
7402 tumors and reduced tumor volumes by nearly five- and eight-fold compared to
GdW10@CS_HsiRNA without RT and RT without GdW10@CS_HsiRNA, respectively [91].
Zhan et al. designed a nano-enabled coordination platform with bismuth and cisplatin
prodrug (NP@PVP) that improves the efficiency of chemoradiotherapy by X-ray radiation.
The bismuth in NP@PVP increases generation of ROS to intensify DNA damage after X-ray
irradiation. Treating EMT-6 cells with NP@PVP and X-ray irradiation (5 Gy) generated
3.21-fold more ROS compared to platinum-based drugs along with X-ray irradiation at
the same dose. In vivo results showed that mice carrying EMT-6 tumors treated with
NP@PVP (2 mg kg−1) under irradiation with X-rays (5 Gy) showed 54.7% inhibited tumor
growth compared to X-ray treatment only [92]. Choi et al. synthesized radiation-responsive
PEGylated gold nanoparticles containing dihydrohodamine 123 (DHR-123) (RPAuNPs).
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RPAuNPs absorbs the X-ray energy and transfers it to nearby molecules through electrons,
including photoelectrons, Compton election, and Auger electrons, which generate ROS by
water radiolysis. Exposure of RPAuNPs (7.75 µg/mL) at to Gy of X-ray radiation increases
the fluorescence by 7-fold owing to the local generation of ROS. The same treatment of
MDA-MB-231 cells yields similar results, with increased ROS levels in nearby cells. Mice
bearing MDA-MB-231 xenografts treated with RPAuNPs at a concentration of 6 µg/100 µL
and irradiation of 6 Gy at 225 kVp exhibited 3- to 6-fold higher ROS production compared
to the treatment with RPAuNPs without X-ray irradiation [93]. In addition, mitochondria
are an important source of cellular ROS production [94]. Tang et al. constructed Gd-doped
titanium dioxide nanosensitizer (G@TiO2 NPs), which targets mitochondria for effective RT.
G@TiO2 NPs generates ROS effectively since it possesses a large photoelectric cross-section
for X-rays [95].

4.3. Tumor Microenvironment (TME)

The tumor microenvironment (TME) consists of various types of cells (endothelial
cells, immune cells, fibroblasts, etc.) and extracellular components (extracellular matrix,
growth factors, cytokines, etc.) that surrounds tumors and are nourished by blood and the
lymphatic vascular network [96,97]. The TME functions critically in the regulation of tumor
progression, immune escape, and metastasis [98]. It has significant influence on therapeutic
effectivity [99]. Therefore, TME-associated NP-based RT offers potentiality in destroying
cancer cells efficiently [100].

ROS are among the key players to alternate the tumor microenvironment (TME) during
RT [101]. Among many other features of the TME, hypoxia mostly compromises tumor
sensitivity to anticancer drugs, along with reactivity toward free radicals, thus creating
hurdles in RT [7]. The anoxic and hypoxic TME of solid tumors compromises the production
of ROS, causing poor responses to tumor cells [102,103]. Furthermore, hypoxia=activated
hypoxia inducing factor-1 promotes resistance to RT and increases expression of genes
involved in angiogenesis and metastasis of tumors [104–106]. Therefore, management of
the TME is critical in killing cancer cells.

O2 is indispensable during RT since it reacts with DNA breaks to avoid repair of
DNA by tumor cells, thus relieving hypoxia and enhancing RT-mediated cell killing [107].
Considering this point, Liu et al. prepared a nanostructure system, PFC@PLGA-RBCM, by
enveloping perfluorocarbon (PFC) within poly(d,l-lactide-co-glycolide) (PLGA), which then
was coated with a red-blood-cell membrane (RBCM). PFC@PLGA-RBCM NPs contains a
PFC core, which is able to dissolve O2 to a great extent, and the RBCM coating contributes
to enhanced blood circulation of NPs. PFC@PLGA-RBCM NPs deliver oxygen efficiently to
the TME, which helps to relieve tumor hypoxia and enhance the efficacy of RT. Injecting
4T1-tumor-bearing mice with PFC@PLGA-RBCM NPs (200 µL) and exposing them to
X-ray radiation (8 Gy) showed enhanced tumor volume reduction by nearly 8- and 2.5-
fold compared to PFC@PLGA-RBCM NPs without irradiation and X-ray irradiation only,
respectively [108]. Chen et al. fabricated NPs via encapsulating catalase (Cat) by poly(lactic-
co-glycolic) acid and hydrophobic imiquimod (Cat@PLGA_R837). Upon irradiation (8 Gy)
in CT-26 cell lines, Cat loaded inside Cat@PLGA_R837 decomposes H2O2 to produce O2,
thus relieve the hypoxic TME significantly (Table 1) [89]. Moreover, X-ray irradiation
induced gold NPs with silica cores (SAuNPs) to exhibit enhanced antitumor effects under a
hypoxic environment. At 8 Gy of radiation, SAuNPs caused 20% more cellular death of
CT26 cells than in a control group under hypoxic conditions, while only 5% death occurred
under normoxic condition. In addition, irradiation with X-rays increased ROS production
by 40% in normoxic conditions compared to 20% in hypoxic conditions [109].
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4.4. Targeting the Cell Cycle

Targeting the cell cycle is an effective approach in cancer treatment. Different nano
formulations in combination with radiation mediate disruption of the cell cycle, leading to
apoptosis [85]. Furthermore, cell cycle phases have distinctive effects on radiosensitivity.
For instance, the late S-phase is the most radioresistant, while G2 is the most radiosensitive
phase [110]. Cells activate cell cycle checkpoints in the G1, S, and G2 phases in response to
radiation to repair genomic defects, maintenance integrity, or prevent cell division through
activation of cell death mechanisms [111]. The literatures has reported that NPs with
radiation arrest mostly the G2/M phase while reducing cells in the G0/G1 phase of the cell
cycle (Figure 2) [112–114].

Roa et al. constructed gold NPs capped with glucose (Glu-AuNPs), showing improved
cell-targeting capacity and excellent radio-sensitization. Glu-AuNPs stimulated activation
of cyclin dependent kinase (CDK), leading to an accelerated G0/G1 phase and halting the
G2/M phase of the cell cycle by activating CDK1 and CDK2. Irradiating DU-145 cells with
2 Gy of ortho-voltage together with Glu-AuNPs (15 nM) arrested the cell cycle at the G2/M
phase and exhibited enhanced growth inhibition by 1.5- to 2-fold compared to X-ray alone.
Glu-GNPs inhibited cyclin A’s expression by 42.3%. Cyclin A together with CDK2 form
cyclin A–CDK2 complex and initiate the transition of G2/M. Hence, inhibiting cyclin A
caused G2/M transition delay [115]. Chen et al. synthesized ultra-small selenium NPs
(SeNPs) of 27.5 nm by chemical methods [116]. SeNPs have shown excellent biological
activity and low toxicity [117,118]. Upon irradiation, SeNPs arrested the G2/M phase while
accelerating the G1/S phase. X-ray irradiation of SeNPs (0.15µg/mL) at 6 Gy on MCF-7
cells upsurged the G2/M phase proportion by 7.4-fold compared to radiation alone [116].
Xu et al. conjugated gold with glycine (G), arginine (R), and aspartate (D) peptides (Au-G-
R-D). While exposed to 6-mV X-rays with a 4-Gy dose, Au-G-R-D (50 µg/mL) arrested the
G2/M phase significantly (6.4%) in A375 melanoma cells compared to radiation alone [119].
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Table 1. In vivo effects of NP-based RT.

Nanoparticle
Formulation

Test Animal
Model

Animal
Age

Cancer
Type

Cell
Line

Tumor Growth Delay Compared to Control Group

Concentra-
tion

Radiation
Dose Observations Ref.

RT Nanoparticle Nanoparticle +
RT

Statistical
Significance

Method

KU55933 Nu/Nu mice 6–8
weeks NSCL

H460 Significant Significant Significant Response features
analysis method

500
mg/kg 15 Gy Impedes the repair process of

DNA double-stranded breaks
[82]

A549 Significant Significant Significant

Dbait@H1 NPs Male nude
mice

4–6
weeks PCa

PC-3 Significant
p = 0.032 NR Significant

p = 0.004 Two-sample t-tests
and analysis
of variance

60 µg/kg 9 Gy

Signaling pathways for repairing
DNA damage are inhibited by

Dbait@H1 NPs, which are
competitive inhibitors of DSB.

[71]
22Rv1 Significant

p = 0.001 NR Significant
p < 0.001

Cat@PLGA_R837 Balb/c mice NR CRC CT-26
No appreciable

inhibition of
tumor growth

NR
Significantly
suppresses

tumor growth

One-way ANOVA
using the Tukey’s

post-test

Cat =
0.5 mg/kg;

R837 =
0.6 mg/kg

8 Gy
Decomposes H2O2 to produce

O2 in the tumor
microenvironment.

[120]

IPI549@HMP Balb/c mice 6–8
weeks CRC

Luc+
CT26
cells

Significant Moderately
significant Significant

Student’s
two-tailed

unpaired t-test

MnO2 =
7.5 mg/kg;

IPI549 =
1.5 mg/kg

6 Gy

Myeloid cells are selectively
targeted by IPI549@HMP and

decompose endogenous H2O2 to
O2 upon X-ray irradiation

[121]

AuNPs Balb/C mice NR MC EMT-6 Non-
significant

Significantly
delayed tumor
growth but did

not reduce
tumor volume
significantly

Significantly
decreased

tumor growth
and tumor

volume

Wilcoxon’s
non-parametric

two-sample
rank-sum

1.35 g/kg 30 Gy

AuNPs, being high-Z
nanoparticles, preferentially

absorb X-rays and subsequently
reduce tumor.

[122]

NPs-lncAFAP1-
AS1

siRNA

BALB/c
normal mice

and nude
mice

4–5
weeks BC

MDA-
MBA-
231R

Significantly
decreased

tumor volume
p < 0.001

Significantly
decreased

tumor volume
p < 0.01

Significantly
decreased

tumor volume
p < 0.001

Student’s unpaired
two-sided t-test

and one-way
ANOVA

1 nmol
siRNA 10 Gy

Tumor growth is reduced due to
blockage of the Wnt/β Catenin

signaling pathway and
scavenging intracellular GSH.

[123]

Au@Tat-R-EK
NPs BALB/c mice 6–8

weeks LC LM3 Moderately
significant Not Significant Significant

One-way analysis
of

variance (ANOVA)
in Origin software

25 mg/kg 6 Gy

Au@Tat-R-EK NPs
respond to overexpressed
cathepsin B in the tumor

microenvironment that induces
site-specific

enhancement of tumor cell uptake
and afterward damages DNA

effectively upon X-ray irradiation.

[124]
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Table 1. Cont.

Nanoparticle
Formulation

Test Animal
Model

Animal
Age

Cancer
Type

Cell
Line

Tumor Growth Delay Compared to Control Group

Concentra-
tion

Radiation
Dose Observations Ref.

RT Nanoparticle Nanoparticle +
RT

Statistical
Significance

Method

AuNP@CRZ Nude mice 10–11
weeks

ACC
of the
sali-
vary

gland

ACC

Impeded tumor
growth (p <

0.001) but did
not

significantly
reduce tumor
volume to less
than its size at
T0 (p > 0.05)

Significantly
decreased

tumor
volume (p <
0.001) and
caused a

reduction in
tumor

volume (p <
0.001).

Decreased
tumor volume
compared to

previously (p <
0.001), and it

caused
significant

shrinkage of
the tumor to

near
disappearance

(p = 0.007).

Unpaired
two-sided t-test 2 mg/kg 18 Gy Tumor-cell repair mechanism

is reduced [125]

Lu–Au-
NLS-RGD-anti-

VEGF
aptamer

Athymic
male mice

6–7
weeks MG U87MG

Tumor size
progression

was
significantly
slower (p <

0.05)

Tumor size
progression

was
significantly
slower (p <

0.05)

Tumor size
progression

was
significantly
slower (p <

0.05)

ANOVA 75.19 80 Gy
Tumor development is inhibited
by halting the formation of new

blood vessels
[126]

Doc-NPs BALB/c mice 4–5
weeks GC BGC823

Not significant
in tumor

doubling time

Not significant
in tumor

doubling time

Significant
effect on tumor
doubling time

t-test 5 mg/kg 15 Gy

Doc-NPs cause cell cycle arrest in
G2-M phase whereas irradiation
leads to ROS generation which

induce DNA damage

[127]
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Table 1. Cont.

Nanoparticle
Formulation

Test Animal
Model

Animal
Age

Cancer
Type

Cell
Line

Tumor Growth Delay Compared to Control Group

Concentra-
tion

Radiation
Dose Observations Ref.

RT Nanoparticle Nanoparticle +
RT

Statistical
Significance

Method

AuNPs C3H/HeJ
mice

8–10
weeks SCC SCCVII

Time for
doubling of

tumor volume
and survival

time increased
significantly

(p < 0.04)

Time for
doubling of

tumor volume
and survival

time increased
by 23 days and

37%,
respectively

Time for
doubling of

tumor volume
and survival

time increased
most

significantly
(p < 0.04)

2-sided Z-statistics
test 1.9 g/kg 42 Gy

AuNPs boost the radiation
treatment in a radioresistant

squamous cell carcinoma
[128]

AuNPs
Syngeneic

black B6C3f1
mice

NR MBT Tu-
2449

No abatement
of tumor
growth

18% long-term
survival

56% long-term
survival

Log-rank
(Mantel–Cox)

survival
analysis test with

95% CIs using
GraphPad Prism®

software

4 g/kg 35 Gy
AuNPs combined with radiation

cause about 53% (>1 year)
tumor-free survival

[129]

NP@PVP +
B + Pt BALB/c mice 5–6

weeks BC EMT-6
Tumor growth
was inhibited

by 45.4%

Tumor growth
was inhibited

by 51.9%

Tumor growth
was inhibited

by 91.2%
Student’s t-test 4 mg/kg 5 Gy

The bismuth in NP@PVP + B + Pt
functions as a radiosensitizer and
increases the production of ROS,
which damage DNA under X-ray

irradiation

[92]

Abbreviations: NP = Nanoparticle; Dbait@H1 NPs = NP-DNA double-strand breaks bait (consisting of polycation polyethylenimine, cross-linked with β-cyclodextrin and conjugated with
folic acid); Cat@PLGA_R837 = NP@Poly(lactic-co-glycolic) acid (PLGA) + water-soluble catalase (Cat) + hydrophobic imiquimod (R837), IPI549@HMP = PI3-kinase γ (PI3kγ) inhibitor
(IPI549) + PEGylated HMnO2 (HMP); AuNPs = Gold-NPs; NPs-lncAFAP1-AS1 siRNA = Long noncoding actin filament-associated protein 1 antisense RNA1 with Small interfering RNA;
Au@Tat-R-EK NPs = Gold + nuclear targeting peptide sequence (GRKKRRQRRRPQ) + peptide sequence (GFLG) + zwitterionic peptide sequence consisting of alternative glutamic
Acid (E) and lysine (K); AuNPs@CRZ = AuNPs + Crizotinib; Lu–Au-NLS-RGD-anti-VEGF aptamer = Lutetium177 + Gold + Nuclear Localization Sequence-Arg-Gly-Asp + anti-VEGF
aptamer; Doc-NPs = Docetaxel-NPs. NP@PVP + B + Pt = Polyvinylpyrrolidone with bismuth and cisplatin Gy = Gray (unit of ionizing radiation dose in the International System of
Units); NR = Not reported; NSCL = Non-small cell lung cancer; PCa = Prostate cancer; CRC = Colorectal cancer; MC = Mammary carcinoma; BC = Breast cancer; LC = Liver cancer; ACC
= Adenoid cystic carcinoma; MG = Malignant glioma; GC = Gastric cancer; SCC = Squamous cell carcinoma; MBT = Malignant brain rumor.



Cancers 2023, 15, 1892 12 of 25

5. Uptake and Excretion of NPs during RT

The success of the NP-based RT largely depends on internalization of the nanos-
tructured radiosensitizers into the tumor, along with clearance from the body to avoid
any toxicity. Yi et al. explored the possible effect of X-ray irradiation on the uptake and
efflux of NPs by cancer cells. It was reported that exposure to X-rays (6 Gy) enhanced
the uptake of different nano-structured compounds, including melanin-coated CuS NPs
with PEG, AuNPs, silica NPs, and HAS NPs, by 32%, 25%, 33%, and 20%, respectively,
by 4T1 cells compared to without X-ray radiation. Furthermore, looking into the proba-
ble mechanism, irradiation causes a reduction in the G0/G1 phase while increasing the
G2/M phase [130]. Cells show varying levels of endocytosis at different phases of the cell
cycle: G2/M > S > G0/G1 [131,132]. Thus, increased G2/M phase after X-ray radiation
increased the uptake of NPs by cancers cells [130]. Similarly, Davies et al. prepared nano-
sized liposomal doxorubicin and reported that RT increased the uptake of doxorubicin
by two- to four-fold in the tumor [133]. However, traditional radiosensitizers such as
cisplatin exhibited significant tumor uptake and excellent RT sensitization. However, the
poor renal clearance caused kidney toxicity [134]. Larger NPs sized 20–100 nm accumu-
lated in the spleen and liver where they lasted for few months, thus mediating long-term
toxicity [135,136]. NPs smaller than 5 nm are eliminated shortly in vivo via renal clear-
ance [137]. Zhang et al. fabricated polymer micelles with ultra-small AuNPs (PMG NPs)
sized 1.9 nm. PMG NPs improved RT and were removed from the body without causing
any toxicity [138].

6. Radiation-Induced Bystander Effects

The biological effects of radiation were believed to be restricted only within targeted
tumor areas but have been found to affect adjacent non-targeted tissue surrounding the
targeted area [139]. This event is called the radiation-induced bystander effect (RIBE), in
which nearby non-irradiated cells act like radiation-exposed cells (Figure 3a) [140–143].
RIBE arises through signal transmission from irradiated to nearby non-irradiated healthy
cells, direct cellular contact, or secreting of soluble factors in the neighboring area [142,144].
These bystander signals may alter genetic expression, exchange sister chromatid, cause
genomic stability, damage DNA, reduce cell proliferation, and alter the translation process
of non-exposed cells [142,145]. Major bystander signaling molecules are ROS, micro-
ribonucleic acid (miRNA), and extracellular oxidized DNA [146,147], which reach sur-
rounding healthy cells via binding to receptors or passive diffusion [147]. For instance, cells
died by RT-released cell free chromatin particle (cfchp), which integrates into the bystander
cells’ genome and causes DNA damage along with inflammation [148]. However, the
abovementioned RIBE can be abrogated by cfchp inactivating agents, such as anti-histone
antibody complexed NPs (CNPs). Kirolikar et al. reported that γ-rays (50 Gy) activated
RIBE biomarkers, including H2AX, NFκB, IL-6, and caspase-3, in brain cells. Concur-
rent treatment with CNPs abrogated such RIBE biomarker activation and thus prevented
cfchp-induced cell death (Figure 3b) [149]. Likewise, Zainudin et al. irradiated MCF-7
and hFOB 1.19 cells with a photon beam of 6 MV along with bismuth oxide NPs (Bi2O3
NPs). Exposure to ionization radiation plus Bi2O3 NPs did not induce ROS generation or
DNA fragmentation due to RIBE. Therefore, the survival rate increased by 3–8% to both
bystander cells [150]. Furthermore, Rostami et al. investigated the consequences of RIBE
on MCF7 and QUDB cells after treating both cell lines with glucose-covered gold NPs
(G-AuNPs) and 2 Gy of 100-kVp X-ray radiation. The results showed 13.2% reduced cell
viability and an 11.5% decreased survival fraction in QUDB bystander cells compared to
irradiated bystander cells without G-AuNPs. However, MCF7 cells did not show any RIBE
upon radiation exposure [144].
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7. The Effects of NPs-Based RT in Cancer Stem Cells

Cancer stem cells (CSCs) are common in most cancers; they cause metastases and func-
tion as a cancer cell reservoir, causing tumor relapse after CT, radiotherapy, or surgery [151].
CSCs’ ability to proliferate unlimitedly and their resistance to drugs pose great threats in
cancer management [152]. CSCs are characteristically resistant to CT due to their quies-
cence, capacity to repair DNA, and ABC-transporter expression [153]. The self-renewal
property allows them to extend tumor cell numbers after chemo- or radiotherapy [154,155].
Conventional treatments are not able to destroy CSCs; therefore, novel treatment strategies
are highly demanded.

Fiorillo et al. developed graphene oxide (GO)-based nanostructures that were able to
prevent tumor-sphere formation in six different cancer cell lines, including MCF7 for breast
cancer, SKOV3 for ovarian cancer, PC3 for prostate cancer, MIA-PaCa-2 for pancreatic
cancer, A549 for lung cancer, and U87-MG for brain cancer. They applied tumor sphere
assay to measure the formation of tumor spheres to evaluate the effect on GO. The results
suggested that GO targets the phenotypic prosperity of CSCs and reduces bona fide
CSC numbers by inducing their differentiation and inhibiting their proliferation. More
specifically, GO-based treatment inhibited several major signal pathways, including WNT-
and Notch-driven signaling, STAT1/3 signaling, and the NRF2-dependent anti-oxidant
response, together with inducing the differentiation of CSC, thus decreasing the general
stemness [156]. Likewise, Yao et al. designed gastric CSCs targeting carbon nanotubes
based on chitosan and loaded with salinomycin with hyaluronic acid (SWCNTs), which
selectively eradicate gastric CSCs [157]. Later, Al Faraj et al. modified SWCNTs with
CD44 antibodies and showed enhanced targeting of breast CSCs and promise in clinical
studies [158].

8. NPs-Based RT Improving Phototherapy

NP-mediated phototherapy, including photothermal therapy (PTT) and photodynamic
therapy (PDT), has exhibited promising efficiency in treating superficial and internal
tumors [159]. However, the tremendous advantages of phototherapy come with some
limitations. PTT has high efficiency in cancer treatment due to its controllable, accurate,
and non-invasive properties [160–162]. PTT transforms photon energy to hyperthermia
through photothermal agents (PTAs) [163]. However, a characteristic drawback of laser
attenuation, PTA’s nonuniform distribution, and unwanted phototoxicity to healthy tissue
limit PTT [164,165]. On the other hand, PDT employs photosensitizers to generate ROS in
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response to near infrared irradiation (NIR) [166,167]. Nevertheless, PDT also has limitation
since a hypoxic TME hampers its application [168]. However, NP-based RT could be
considered a promising adjuvant treatment to complement phototherapy [169]. Low energy
and long wavelengths of near infrared light in phototherapy show limited penetration
depth, while the high energy and short wavelength of X-rays or γ-rays are free from
depth restrictions [170]. Furthermore, their combination reduces the radiation dose while
increasing therapeutic efficiency [171].

Treating KB cells with 20 µg/mL of iron oxide coated with gold NPs (Au@Fe2O3 NPs)
for 4 h, followed by PTT with irradiation at 808 nm, 6 W/cm2 for 10 min, and 6-MV X-ray
irradiation (2 Gy), decreased cell viability at ~40% and ~20% compared to treating them
with only RT and only PTT, respectively [172]. Further investigation revealed that such
combination treatment in KB cells enhanced the expression of Bax/Bcl2 genes by five-
and 6.67-fold, as well as HSP-70 protein by 1.84- and 2-fold, compared to radiation and
laser irradiation, respectively [173]. Bax/Bcl2 genes are involved in regulating apopto-
sis and their overexpression causing cellular apoptosis [174]. In addition, HSP-70 gene
overexpression denotes heating, oxidative stress, and inflammation, leading to cellular
death [175]. Movahedi et al. reported similar results in KB cells with gold nanorods with
folic acid (AuNRs-FA). AuNRs-FA (15 µg/mL), laser irradiation at 808 nm, 2 W/cm2, along
with 6-MV X-ray irradiation, reduced cell viability to ~70% compared to single RT or PTT
treatment [176]. Gonza’lez-Ruı’z et al. developed lutetium-177 labeled gold NPs with the
nuclear localization sequence-Arg-Gly-Asp and an anti-VEGF aptamer nano system that
significantly reduced U87MG tumor progression compared to only RT and only PTT under
laser irradiation (532 nm, 1.19 W/cm2, 3.5 min) and 89 Gy of X-ray radiation [126]. Another
in vivo study showed that PEG-[64Cu]CuS NPs inhibited the growth of anaplastic thyroid
carcinoma and provided eight days more survival time than radiation or PTT treatment
alone [177]. Liu et al. designed liquid-metal NPs consisting of metronidazole (MN) and
GRD peptides (containing glycine-arginine-aspartic acid) linked to polyethylene glycol
and polyacrylic acid (GRD-PEG-PAAMN@LM). Administering RGD-PEG-PAAMN@LM
within HepG2 tumor-containing mice under NIR irradiation at a wavelength of 808 nm,
2.0 W cm−2 for 5 min and exposing them to 6 Gy for 2 min after 48 h almost abolished tu-
mors after 14 days. Hence, the synergistic effect proved to be better than a single treatment.
Regarding deep mechanisms, the authors explained that RGD-PEG-PAAMN@LM targeted
ανβ3 integrin over expressive blood vessel walls of tumors and accumulated through
endocytosis. RGD-PEG-PAAMN@LM produced excessive thermal energy along with ROS
by means of PTT and PDT, which induced tumor apoptosis. At the same time, the MN part
entered nucleus to enhance the X-ray radiation-mediated DNA damage [178]. Some other
examples of combinational approaches are also described in the literature [179,180].

However, the highest synergistic effect of RT and phototherapy can be obtained when
the two modalities have an optimal interval. Safari et al. synthesized NPs with gold and
iron oxide cores and coated by alginate (Fe3O4@Au/Alg NPs). Exposure of KB cells to
Fe3O4@Au/Alg NPs under 1 W/cm2 of laser irradiation for 5 min arrested the G2/M phase
of the cell cycle and 24-h post-treatment with 6 Gy X-ray radiation showed maximum
radiosensitivity with 68% apoptosis [181].

9. NPs-Based RT to Overcome Radioresistance and Drug Resistance

Radioresistance (RR) is a major constraint of RT, which leads to the recurrence of
cancer [182]. Several improvements in radiotherapeutic approaches have been made out
to increase the safety and efficacy while minimizing the RR of tumors. Among different
approaches, combinational treatment of radiation with NPs stood as a prominent avenue
to overcome RR [16]. Several mechanisms, including overexpression of DNA repair en-
zyme and anti-apoptotic proteins, contribute to the development of RR [183]. Moreover,
progression of a hypoxic TME after irradiation is the one of the primary factors in RR
development [184]. However, RR can be reduced by downregulating selective genes such
as vascular endothelial growth factor (VEGF) expression that reduce hypoxia and result in
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a better radiotherapeutic response [185]. Li et al. constructed AuNPs encapsulating recom-
binant human endostatin (Au-RHES). RHES is a vascular angiogenesis–disrupting agent
that normalized transient vascularization in the H22 xenograft model and diminished hy-
poxia [186]. Additionally, AuNPs tend to inhibit heparin-binding growth factors (HB-GFs)
and basic fibroblast growth factor (bFGF), which are involved in tumor metastasis [187].
AuNPs encapsulating siRNA facilitated myelocytomatosis oncogene (c-myc) knockdown
in cancerous HeLa cells [188]. In another study, Lee et al. discovered that high expression
of low density lipoprotein receptor-related protein-1 (LRP-1) contributed to radio-resistant
CRC [189]. LRP-1 plays a vital role in maintaining the TME and regulating cancer invasion
due to its association with intracellular signaling and endocytosis of different types of
cancer [190,191]. LRP-1 could be considered a marker protein for CRC’s RR [189]. These
authors engineered a nano formulation consisting of human serum albumin possessing
the LRP-1-binding peptide and B5 for tumor targeting, along with 5-FU and Cy7 (Cy7–
B5–HSA–5-FU). Irradiation of Cy7–B5–HSA–5-FU resulted in the reversal of the radio
resistance of CRC greatly and inhibited tumor growth significantly with treatment of 2 Gy
for five days [189]. Furthermore, Li et al. reported that 1.7-nm platinum NPs increased γ

ray radiation effects by >40%, thus overcoming RR in Deinococcus radiodurans [192].
Moreover, drug resistance is responsible for chemotherapeutic failure in 90% of pa-

tients with metastatic tumors and is still a significant obstacle to achieving success in
CT [193]. Among a number of causes, hypoxia is one of the main reasons for drug resis-
tance in tumor cells [194,195]. Therefore, releasing tumor cells from hypoxic conditions is
essential to overcoming drug resistance. Nitric oxide (NO) has hypoxia-relieving properties.
It can reverse cancer cells’ drug resistance and enhance their sensitivity to radiother-
apy [196–198]. However, NO has a short half-life, and its sensitivity toward biological
substances limits its clinical application [199]. On the basis of these findings, Zhang et al.
fabricated a nanotheranostic agent by functionalizing bismuth with S-nitrosothiol (Bi-SNO
NPs). Upon exposure to radiation, X-ray broke down the S-N bond and stimulated release
of a great amount of NO. Bi-SNO NPs (300 µg mL−1) 36 nm in size under 5 Gy of X-ray irra-
diation on HepG2 cells released NO, subsequently damaged DNA robustly, and overcame
drug resistance [200].

10. Clinical Trials

Clinical trials help to ensure the safety and effectiveness of newly formulated treatment
modalities, which is why clinical trials hold immense importance in developing treatment
approaches and assessing recommended drug doses (RDs) [201]. A phase I study was
performed to determine the RDs and safety profiles of hafnium oxide (HfO2) nanoparticles,
called NBTXR3, and external beam RT (EBRT) in adult patients with locally advanced
soft tissue sarcoma (STS) (trial registration number: NCT01433068). NBTXR3 at a dose of
53.3 g/L was initially injected with 50-Gy EBRT for five weeks, and the dose was escalated.
The result demonstrated that NBTXR3 at 10% of tumor volume was the recommended
rose, and intratumoral injection resulted in a 40% median tumor shrinkage rate and a 26%
median percentage of residual viable tumor cells [202]. Later, a multicenter, randomized,
phase II/III trial in 180 STS patients was conducted to determine the safety and efficacy
of radiation-assisted NBTXR3 and compared it with radiotherapy alone (trial registration
number: NCT02379845). Patients were divided into two groups randomly: one group
received EBRT alone (5 × 2 Gy by week) over 5 weeks, while the other group received
NBTXR3-mediated EBRT at the same radiation dose and time. The NBTXR3-mediated
EBRT group provided a two-fold greater pathologic response rate compared to EBRT alone.
The results of the trial also showed that 39% patients in the NBTXR3-mediated EBRT group
experienced emergent side effects, whereas 30% patients in the RT group experienced
serious adverse events, such as injection site pain, postoperative wound complications,
radiation skin injuries, and hypotension [203]. Other clinical trials data demonstrated
similar results. However, numbers of registered clinical trials have not showed desired
results and came up with some complications. However, overall, the NP-based RT was more
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effective than treatment with radiation only. Trial numbers NCT01946867 and NCT02901483
(head and neck cancer), NCT02721056 (liver cancer), NCT02805894 (prostate cancer), and
NCT02465593 (rectal cancer) have been registered at clinicaltrials.gov but terminated
afterward. However, overall, NP-based RT showed better efficacy than treatment with
radiation only [204].

11. Limitations and Future Perspective of NPs-Based RT

Despite of the tremendous advantages of NP-based RT, there are still challenges that
need additional development [205]. One of the primary challenges to improving the ther-
apeutic efficiency of NP-based RT is the delivery of optimal concentrations of required
NPs to cancer cells with minimal or no side effects [206,207]. Administration of NP-based
radiosensitizers through the systemic route is deemed to have negative effects on other or-
gans, in addition to tumors. This outcome reduces the patient’s general health, specifically
when localized radiosensitization is required [207,208]. Therefore, the therapeutic approach
to combining NP-based radiosensitizers with RT should be carefully determined due to
radiosensitizers’ toxicity to normal tissues [208]. Another shortcoming of systemic delivery
is that NPs that have extended circulating times may not reach the tumor during RT. Such
a delay in treatment may lead to dose enhancement compared to localized delivery [209].
Delivering NP-based radiosensitizers via implantation has been used largely in RT. Never-
theless, this strategy is limited to only specialized cancers, such as those of the lungs, breast,
prostate, etc., where spacers along with fiducial markers are commonly used [209,210].
Similarly, the inhalation route is only effective in lung cancer [209]. Therefore, further
extensive research is essential to develop the present strategies for systemic delivery of
targeted NPs.

However, the application of NP-based RT has great prospects, notably for implanting
radiosensitizers for in situ dose painting in RT [211,212]. Brachytherapy Application with
In-situ Dose-painting through Gold Nanoparticle Eluters (BANDAGE) is considered as an
excellent treatment window to enhance therapeutic efficiency during brachytherapy [211].
BANDAGE is expected to elevate the survival rate of prostate cancer patients who need
salvage therapy but have reached the dose limit of radiotherapy. Moreover, BANDAGE
is also anticipated to be used in prostate-seed brachytherapy treatment to stimulate local
radiotherapeutic effects without toxicity [205]. NP-based RT plays a vital role in the
advancement of cancer treatment, including concomitant chemoradiotherapy. The ultimate
aim of NP-based RT is to obtain greater efficacy with minimum side effects and reduced
tumor reoccurrence, helping to improve cancer prognosis and prolong patients’ lives [213].
The ideal cancer treatment modality would require the perfect radiosensitizer, which has
not yet been reported [214]. Hence, thorough research is required in this field. However,
improvising a delivery route may help to achieve substantial dose enhancement with
negligible amounts of radiation and drug toxicity.

12. Conclusions

RT is one of the main and most important treatment strategies against cancer with
up to 50% of all cancer patients receiving radiation treatment. RT kills tumors selectively
by delivering intense ionizing radiation. Such targeted treatment has been used to cure
solid, as well as metastatic, tumors. However, RT has disadvantages, such as causing injury
to nearby normal cells. Additionally, tumors distant from the radiation site receive less
intense ionizing radiation. Furthermore, RR is one of main causes of the failure of RT and
subsequent relapses of tumors. Numbers of cases of radiotoxicity have been reported in
the literature. The introduction of NPs in RT provides a state-of-the-art strategy in the field
of radiation treatment by not only bypassing the limitations and side effects of RT but also
showing significant tumoricidal activity compared to radiation only or NP-based treatment
against all types of cancer. NPs with high Z elements show robust radiation absorption
cross-sections and thus are used as radiosensitizers in external RT. Apart from high Z
materials, nanostructured radiosensitizing agents of different types are also applied in NP-
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based radiotherapeutic treatment. The incident photon interacts with the NPs’ atoms and
stimulate the ejection of photoelectrons or auger electrons, which cause the destruction of
cancer cells. The synergistic effects of NPs and ionizing radiation interfere with DNA-repair
processes, also producing ROS, which damage tumor DNA. Moreover, their combination
arrest the cell cycle of cancer cells and regulate the TME to inhibit tumor progression.
Additionally, conjugation of NPs with radiation treatment restricts bystander effects and
keeps surrounding non-cancerous cells undamaged. Such associated treatment reduces
hypoxia, maintains the TME, and obstructs the tumor metastasis process, contributing to
increased RR of tumors. Moreover, introducing nano RT with phototherapy diminishes
phototoxicity, at the same time offering complementary treatment against cancer. Overall,
NPs can be employed as radiosensitizers in RT, offering new opportunities to progress
and improve radiotherapeutic treatment. Their synergistic effects develop the clinical
efficiency of RT against various types of cancers. Therefore, more clinical research needs to
be conducted to heighten the NP-based radiotherapeutic approach to cancer treatment.
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