
Citation: Kotsiafti, A.; Giannakas, K.;

Christoforou, P.; Liapis, K. Progress

toward Better Treatment of

Therapy-Related AML. Cancers 2023,

15, 1658. https://doi.org/10.3390/

cancers15061658

Academic Editors: Thomas Pabst

and François Guilhot

Received: 29 January 2023

Revised: 6 March 2023

Accepted: 7 March 2023

Published: 8 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Progress toward Better Treatment of Therapy-Related AML
Angeliki Kotsiafti 1,*, Konstantinos Giannakas 2, Panagiotis Christoforou 3 and Konstantinos Liapis 4

1 Department of Hematology, Alexandra Hospital, 115 28 Athens, Greece
2 Department of Hematology, Metaxa Oncology Hospital, 185 37 Piraeus, Greece
3 Pathophysiology Department, National and Kapodistrian University of Athens, 157 72 Athens, Greece
4 Dragana Campus, Democritus University of Thrace Medical School, 681 00 Alexandroupolis, Greece
* Correspondence: kotsiauti.aggeliki@gmail.com

Simple Summary: Therapy-related acute myeloid leukemia (t-AML) is one of the most serious
long-term complications of cancer chemotherapy. Various cytotoxic agents and exposure to ionizing
radiation can lead to the development of t-AML, which is usually associated with adverse genetic
changes and a poor prognosis. Over the past decade, insights into leukemogenesis have generated
significant advances in the risk stratification of t-AML, and have offered us the opportunity to develop
individualized options for treatment that target disease biology. In this article, we review current
knowledge on the biology of t-AML, putting emphasis on its molecular origin; we also discuss recent
advances in its treatment including CPX-351, the use of less intensive regimens (e.g., venetoclax
combined with a hypomethylating agent), and novel, molecularly targeted and antibody-based
therapies that promise to increase the cure rate.

Abstract: Therapy-related acute myeloid leukemia (t-AML) comprises 10–20% of all newly diag-
nosed cases of AML and is related to previous use of chemotherapy or ionizing radiotherapy for
an unrelated malignant non-myeloid disorder or autoimmune disease. Classic examples include
alkylating agents and topoisomerase II inhibitors, whereas newer targeted therapies such as poly
(adenosine diphosphate–ribose) polymerase (PARP) inhibitors have emerged as causative agents.
Typically, t-AML is characterized by adverse karyotypic abnormalities and molecular lesions that
confer a poor prognosis. Nevertheless, there are also cases of t-AML without poor-risk features. The
management of these patients remains controversial. We describe the causes and pathophysiology of
t-AML, putting emphasis on its mutational heterogeneity, and present recent advances in its treatment
including CPX-351, hypomethylating agent plus venetoclax combination, and novel, molecularly
targeted agents that promise to improve the cure rates. Evidence supporting personalized medicine
for patients with t-AML is presented, as well as the authors’ clinical recommendations.

Keywords: therapy-related; acute myeloid leukemia; AML; risk stratification; individualized therapy;
personalized therapy; chemotherapy; radiotherapy; alkylating agents; topoisomerase II inhibitors;
venetoclax (BCL-2 inhibitor); CPX-351; TP53 mutations; NPM1 mutations

1. Introduction

According to the 2017 World Health Organization (WHO) classification system for
tumors of hematopoietic and lymphoid tissues, therapy-related myeloid neoplasms in-
clude cases of acute myeloid leukemia (t-AML), myelodysplastic syndromes (t-MDS),
and myelodysplastic/myeloproliferative neoplasms (t-MDS/MPN), which arise as a com-
plication of cytotoxic chemotherapy and/or radiation therapy administered for a prior
neoplastic or non-neoplastic disorder [1]. Epidemiologic evidence shows that the incidence
of t-AML has greatly increased during the past three decades as a result of better (but also
mutagenic) cancer treatments and the increased survival of cancer patients [2].

Therapy-related AML accounts for 10–20% of all cases of newly diagnosed AML. Any
age group can be affected. Most cases of t-AML associated with a prior neoplastic disorder
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(~70%) occur after the treatment of solid tumors (e.g., after treatment for breast cancer)
and ~30% after treatment of hematological neoplasms, e.g., non-Hodgkin’s lymphoma
(NHL) [3,4]. For example, AML can be expected to develop in 2–10% of patients who receive
alkylating agents as part of their therapy for breast cancer, ovarian cancer, or NHL [5].
Apart from neoplastic disorders, exposure to cytotoxic agents also occurs during treatment
for non-neoplastic disorders. This category includes patients with various autoimmune
and inflammatory conditions, such as multiple sclerosis, systemic lupus erythematosus,
vasculitis (e.g., Wegener’s granulomatosis and Churg–Strauss syndrome), rheumatoid
arthritis, and inflammatory bowel disease, who have been exposed to chemotherapeutic
agents (alkylating agents or antimetabolites) as a component of their treatment. In rare
cases, t-AML may follow high-dose chemotherapy in the context of treatment of a non-
myeloid disorder, e.g., autologous stem-cell transplantation for Crohn’s disease or multiple
sclerosis. AML occurring after treatment for non-neoplastic disorders accounts for 5–20%
of all cases of t-AML [2].

Therapy-related AML is thought to be the consequence of mutational events or chro-
mosomal changes in primitive hematopoietic stem cells (HSCs) induced by leukemogenic
cytotoxic therapy or radiotherapy. It is usually, but not always, associated with cytogenetic
lesions [6–9].

Overall, the prognosis for patients with t-AML is considerably worse than that for
patients with primary de novo AML. It is estimated that the median overall survival (OS) is
8–10 months and the 5-year OS is 10–20% [4,10–12]. Therefore, allogeneic hematopoietic-cell
transplantation (HCT) from a suitable donor has been established practice for all patients
with non-acute-promyelocytic-leukemia (non-APL) t-AML in first complete remission
(CR1) for more than 30 years [13]. More recently, however, this generalized approach has
become controversial due to the increasing recognition of the prognostic significance of the
molecular tumor genetics in relation to the risk of relapse [14]. There are clearly no universal
right approaches and there may well be different levels of benefit from HCT in the different
risk groups of patients with t-AML. Therefore, efforts have been made to individualize
treatment even for patients with t-AML. In this context, t-AML is no longer considered
separately (with regard to treatment) in the latest European LeukemiaNet recommendations
(2022 ELN) [15]. In ELN guidelines, the term “therapy-related” is applied as a qualifier
(“diagnostic qualifier”) in the case of AML classified based on its genetic profile, to indicate
a history of exposure to cytotoxic agents.

2. Etiology of t-AML

The occurrence of t-AML is typically a late adverse effect after the administration of a
leukemogenic agent. The main causative agents that have been linked to the development
of t-AML include alkylating agents and topoisomerase II inhibitors. Other factors causally
associated with t-AML include antimetabolites, anthracyclines (through their ability to
inhibit DNA topoisomerases I and II), antimicrotubule (antitubulin) agents (usually in
combination with other cytotoxic agents), and ionizing radiation [16]. Moreover, recent
studies have reported an increased incidence of MDS and AML after the administration
of targeted treatment with the poly (adenosine diphosphate [ADP]–ribose) polymerase
(PARP) inhibitors olaparib, niraparib, and rucaparib for metastatic or recurrent epithelial
ovarian cancer, particularly in women with germline mutations in BRCA1 and BRCA2
(mBRCA) genes [17]. The cytotoxic factors associated with t-AML are shown in Table 1.

Types of t-AML

The most common type of t-AML occurs 4–10 years after exposure to alkylating agents
and/or ionizing radiation. The mechanism of action of alkylating agents depends on the
creation of bonds, through alkylation, in one or both strands of the DNA double helix [18].
The risk of this complication peaks 5–10 years after the start of chemotherapy. These
patients frequently present with MDS, which may then progress to frank AML [19]. This
subtype of t-AML is often associated with a loss of genetic material, typically deletions of
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chromosomes 5 and 7. It is also commonly associated with chromosome 17 or 17p deletion,
complex karyotype, and TP53 mutations [8,16].

Table 1. Chemotherapeutic agents implicated in t-AML.

Drug Class Mechanism of Action

Alkylating Agents
Cyclophosphamide, * cisplatin, carboplatin, melphalan, busulphan,

chlorambucil, lomustin, carmustine, dacarbazine, procarbazine,
thiotepa, mitomycin C

Creation of bonds in one or both DNA strands, through
alkylation

Topoisomerase II Inhibitors
Etoposide, teniposide, doxorubicin, idarubicin, daunorubicin,

mitoxantrone, * actinomycin D, amsacrine

“Topoisomerase II poisons” convert topoisomerase II into
a DNA-damaging enzyme

Antimetabolites
Fludarabine, cladribine, * pentostatin, thiopurines (6-mercaptopurine,

* 6-thioguanine, azathioprine *), mycophenolate mofetil *

They act as mimics of other molecules, and in this way,
they interfere with DNA and RNA synthesis

Antitubulin Agents
Vinblastine, vindesine, vincristine, docetaxel, paclitaxel

Antimitotic agents that bind tubulin dimers and disrupt
the formation of mitotic spindle

Poly (ADP-Ribose) Polymerase (PARP) Inhibitors
Olaparib, talazoparib, niraparib, rucaparib

Inhibitors of the PARP family of enzymes inhibit
homologous recombination repair (PARP enzymes,

activated by DNA damage, repair the single-helix DNA
breaks by forming branched PAR chains that serve as a

docking platform for DNA repair enzymes)

Abbreviations: t-AML, therapy-related acute myeloid leukemia; PARP, poly (ADP-ribose) polymerase.
* Widely used as immunosuppressive agents in the treatment of autoimmune and immune-mediated inflam-
matory disorders.

A second distinct subtype of t-AML accounting for 20–30% of t-AML has been identi-
fied as a complication of treatment with topoisomerase II inhibitors (also called “topoiso-
merase II poisons”), such as epipodophyllotoxins. In contrast to alkylating-agent-related
AML, topoisomerase-inhibitor-related AML develops after a relatively short latency period
(1–5 years) and is not preceded by MDS [20]. Epipodophyllotoxins block cells in the late S
to G2 phase of the cell cycle. Their major target is the enzyme DNA topoisomerase IIA, a
nuclear enzyme that is essential in DNA replication by creating double-stranded cuts in
DNA. The binding of epipodophyllotoxins to the enzyme–DNA complex results in persis-
tence of the transient, cleavable form of the complex and, thus, renders it susceptible to
irreversible double-strand breaks [21]. Exposure to drugs that inhibit topoisomerase II—i.e.,
the epipodophyllotoxins etoposide and teniposide; the anthracyclines daunorubicin, dox-
orubicin, and epirubicin; and the anthracenedione mitoxantrone—predisposes patients to
the development of t-AML with balanced chromosomal translocations, including KMT2A
(MLL) translocations at chromosome band 11q23, t(8;21), t(16;16), t(15;17), and t(9;22), and
NUP98 translocations at chromosome band 11p15.5 [15,22].

3. Pathophysiology of t-AML
3.1. Genetic Predisposition for t-AML

Although many patients are exposed to mutagenic agents as part of their treatment,
only a small minority of them develop t-AML in their lifetime. Additionally, among
individuals exposed to the same amount of cytotoxic therapy, only a few develop t-AML.
This suggests that genetic predisposition may be a key factor.

Clinicians should be aware that as many as 20% of otherwise typical cases of t-AML
occurring after treatment for breast or ovarian cancer may actually be AML with germline
predisposition caused by inherited mutations in the DNA repair genes (BRCA1, BRCA2,
PALB2, TP53, or CHEK2), typical of familial cancer predisposition syndromes [23–26].
Somatic (acquired) mutations in TP53 have been detected in most human cancers including
breast cancer. However, inherited mutations (transmitted through the germline) of TP53
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also underlie the Li–Fraumeni syndrome, a rare familial association of breast cancer in
young women, leukemia (AML/MDS), childhood sarcomas (“BLS” syndrome), and/or
other neoplasms, which is transmitted as an autosomal dominant trait. For example, a
woman who has survived breast carcinoma and/or sarcoma and is now facing t-AML with
del(17) on karyotype and TP53 mutation on next-generation sequencing (NGS) should be
screened for Li–Fraumeni syndrome (even if her family history is not indicative of it) [22].
Knowing that an important subgroup of younger patients with t-AML carry germline
mutations in cancer predisposition genes is important not only for their treatment (e.g.,
selection of appropriate family donors for allogeneic HCT) but also for identifying family
members who may be at high risk for the development of tumors.

Studies have also examined whether polymorphisms in genes involved in the
metabolism of alkylating agents and topoisomerase II inhibitors such as cytochrome
P450 enzymes (CYP3A4/CYP3A5), GSTM1, GSTT1, and NQO1 may confer an increased
risk of t-AML, with so far controversial results [10,27].

3.2. Current Model for the Molecular Pathogenesis of t-AML

Beyond genetic predisposition and the inheritance of familial cancer genes, NGS has
revealed that, in many patients, the first step in the process of t-AML development is
age-related clonal hematopoiesis also known as clonal hematopoiesis of indeterminate
potential (CHIP) [28]. According to this model, HSC clones harboring somatic TP53 or
PPM1D mutations are detected in patients before chemotherapy exposure [29,30]. Owing
to its competitive advantage, the TP53-mutant clone enlarges in the bone marrow after
chemotherapy administered for a neoplastic or non-neoplastic disorder. The acquisition
of additional mutations or the emergence of cytogenetic abnormalities such as chromo-
some 5/5q or 7/7q deletion leads to a selection of subclones of hematopoietic cells with
an increasingly impaired differentiation capacity, which drives leukemic transformation
(Figure 1) [8,22,31].

The mutational burden in t-AML is similar to de novo AML, but the relative frequency
of specific mutations differs significantly, e.g., mutations in the gene encoding nucleophos-
min (NPM1) are not as common in t-AML as in de novo AML (Figure 2) [16,32,33]. Notably,
TP53 mutations are the most common molecular abnormality in t-AML.

3.3. TP53 Mutations

The TP53 tumor-suppressor gene, located on the short arm of chromosome 17, encodes
a 53-kd nuclear phosphoprotein that suppresses cell growth in response to DNA damage
through several mechanisms including cell-cycle arrest at the G1/S checkpoint, activation
of DNA-repair enzymes, and initiation of apoptosis in cases of severe DNA damage [9].
From a mechanistic point of view, the activation of the DNA damage checkpoint results
in the formation of TP53 homo-tetramers (tetramerization is essential for p53 activation
in vivo). Activated TP53 then interacts with other tumor suppressors such as p21Waf1/Cip1,
p63, and p73, activates numerous microRNAs (including the miR-34 family of miRNAs)
and proapoptotic proteins (BCL-XL, BCL2, Bax), and alters the function of mTOR kinase.

The transcriptional activity of TP53 is carried out by five distinct domains including
the transactivation activation domain (TAD) and the proline-rich domain (PRD), located
at the N-terminal portion of the p53 protein, the core DNA-binding domain (DBD) and
the tetramerization domain (TET) (responsible for the oligomerization of the p53 protein,
which exists as a tetramer), and the carboxy-terminal regulatory domain (CTD) at the
C-terminal portion of the protein. The C-terminal portion also includes several nuclear
localization sequences (NLS) (Figure 3) [34,35].

TP53 is mutated in a large proportion of tumors [34,36]. In fact, acquired TP53
mutations represent the most common specific genetic change in human cancer. The types
of mutations affecting TP53 include gain-of-function, loss-of-function, and separation-of-
function mutations [37,38]. Approximately 18,000 different mutations have been found in
different types of malignancies. It is noteworthy that TP53 shows a specific set of mutations
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depending on the type of malignancy [34,39]. Mutations that deactivate p53 (loss-of-
function mutations) usually occur in the DBD. Most of these mutations impair the ability
of the protein to bind to its target DNA sequences, thus preventing the transcriptional
activation of p53 target genes. The loss of TP53 function confers a clonal advantage [9].
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Figure 1. Pathogenesis of t-AML. Evidence supports the view that chemotherapy and/or radiation
selects for the expansion of a mutant clone (founder clone) in the hematopoietic-stem-cell (HSC)
and/or progenitor-cell compartment of the bone marrow that is more resistant to DNA damage. After
chemotherapy/radiotherapy exposure, the pool of normal HSCs is affected and depleted, allowing
the mutant clone to expand, owing to its survival advantage. Cytotoxic therapy affects the stem cell,
causing DNA damage (i.e., additional mutations and/or chromosomal abnormalities) that drives the
emergence of fully leukemic clones and changes in the bone marrow microenvironment, including
bone marrow stromal cells and T-cell subsets (cytotoxic T-cells, regulatory T-cells). Stromal cells
support HSC function but, if challenged with genotoxic agents, can inhibit normal HSC survival,
providing an opportunity for the selection of pre-leukemic clones, and T-cell dysfunction interferes
with tumor immunosurveillance. All these mechanisms contribute to the development of leukemic
cells and ultimately to the emergence of t-AML. Abbreviations: t-AML, therapy-related acute myeloid
leukemia; PARP, poly (ADP-ribose) polymerase.

In t-AML, the usual mutation (>80%) is a monoallelic missense mutation (i.e., a point
mutation in which a single nucleotide is substituted by another, leading to the replacement
of a single amino acid) in the DNA-binding domain [40–42]. The result of this mutation
is the abnormally increased expression of the mutant p53 protein due to a longer half-life
compared to the wild-type protein (in normal tissues, p53 protein is present in very low
quantities so that it is not readily detectable by immunochemistry. However, in TP53-
mutated leukemic cells, large amounts of p53 protein accumulate in the nucleus which can
be seen by staining [“p53 over-expression”]; this is generally attributed to the accumulation
of over-stabilized, mutant protein). Less frequent mutations include deletions, truncations,
insertions, nonsense, and splice-site mutations [40,41,43]. The definition of t-AML with
TP53 mutation requires the presence of a somatic TP53 mutation with a variant-allele
frequency [VAF] of >10%. Monoallelic TP53-mutated t-AML has a poor prognosis. The
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term “multi-hit” mutations refers to the presence of two distinct TP53 mutations (each with
a VAF of >10%) or a single TP53 mutation with either (i) 17/17p deletion on cytogenetics;
(ii) copy-neutral loss of heterozygosity (LOH) at the 17p (TP53 locus); or (iii) VAF of >50%,
which is 75% concordant with copy-neutral LOH variants [44,45].
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Different TP53 mutations occur at different stages in the course of AML. For example,
biallelic defects and multi-hit events take place at a very early stage during leukemogenesis.
These mutations contribute to the creation of a dominant clone [46,47]. Monoallelic TP53
mutations, on the other hand, usually occur at later stages of the disease as subclonal
events [46,47]. Monoallelic TP53 mutations may also coexist with other driver mutations
such as SF3B1, TET2, DMT3A, and ASXL1 mutations [46,47]. TP53 mutations are associ-
ated with complex or monosomal karyotypes and “chromosome shattering” (also known
as “chromothripsis”), a phenomenon characterized by extensive chromosomal rearrange-
ments [48–50].

An important development is the discovery that p53 activates the transcription of a
set of microRNAs, including the miR-34 family. Pathogenic mutations in TP53 result in
diminished expression of microRNA-34a (miR-34a), a potent tumor-suppressive microRNA,
leading to the over-expression of c-MYC oncogene and upregulation of PD-L1 in tumor
cells [22,51].

3.4. Molecular Basis of t-AML

Lindsley and coworkers investigated the genetic basis of t-AML and secondary AML
(s-AML) and identified three distinct subtypes of somatic mutations: (i) secondary-type
mutations involving eight genes (SRSF2, SF3B1, U2AF1, ZRSR2, ASXL1, EZH2, BCOR,
and STAG2) which are commonly linked to MDS and are now recognized as “AML with
myelodysplasia-related (MR) gene mutation” in 2022 ELN recommendations; (ii) TP53
mutations, which are associated with complex karyotypes (often monosomal, with frequent
abnormalities of chromosomes 5 and 7), intrinsic therapy resistance, and very poor sur-
vival; and (iii) “de novo”-type (or pan-AML-type) mutations including NPM1 mutations,
KMT2A (MLL) rearrangements at 11q23 locus, core-binding-factor (CBF) chromosomal
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rearrangements, myeloid-transcription-factor mutations (e.g., RUNX1, CEBPA, and GATA2),
signal-transduction-protein mutations (e.g., FLT3, N-RAS, and K-RAS), and other mutations
(e.g., IDH1, IDH2, and WT1) [8].
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“Secondary-type” mutations are found in 30% of t-AML cases and are associated with
poor outcomes. TP53 mutations are seen in ~50% of t-AML cases. NPM1 mutations are iden-
tified in 5.4% of patients without concurrent “secondary-type” or TP53 mutations [8,30,52],
suggesting that there is a non-random pattern of co-mutations with mutual exclusivity
between TP53 and NPM1 mutations in t-AML. Patients with t-AML with “secondary-
type” mutations are significantly older than patients with “de novo”/pan-AML mutations
(Figure 4). Clinically, t-AML with “secondary-type” mutations closely resembles s-AML. In
contrast, patients with t-AML with “de novo”-type mutations closely resemble patients
with primary de novo AML [8,53].
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Recently, Papaemmanuil and coworkers presented another categorization of patients
with AML into 16 distinct molecular subgroups [54]. Regarding t-AML, the majority of
patients had high relapse rates and poor prognosis, regardless of the achievement of early
minimal residual disease (MRD) negativity. However, beyond this general rule, patients
with t-AML who achieved CR, including those with TP53 mutations, seemed to benefit
from HCT. Additionally, patients who had >2 mutations had worse prognosis compared
to those who carried a single-gene mutation. The prognosis was even worse in patients
with TP53 mutations or inv(3)/t(3;3), resulting in deregulated MECOM (EVI1) and GATA2
expression [54]. However, it should be emphasized that even patients carrying TP53
mutations benefited from HCT, especially in CR1 (and less so after CR2) [54].

Clearly, the past decade has reshaped our view of t-AML. Rather than considering
t-AML as one clinical entity, it is more appropriate to view t-AML as at least three molecular
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types (according to the Lindsley model) that vary in prevalence with age, each bearing
more similarity to AML with the same genetic alterations and no leukemogenic exposure.

3.5. A Permissive Bone Marrow Microenvironment Facilitates t-AML Growth

The immune system inside the bone marrow is also involved in the development of
t-AML. Population-based studies show that AML is more common among patients with
autoimmune diseases than the general population [55,56]. The risk of developing t-AML
appears to be related to the type of autoimmune disease and type and duration of its
treatment. Drugs used to treat autoimmune diseases such as azathioprine, mitoxantrone,
and cyclophosphamide may directly damage DNA and increase the risk of leukemogene-
sis [55,56]. However, drugs used in autoimmune disorders such as azathioprine may also
affect the balance between T-cell subsets. Experiments in mice have shown that high doses
of azathioprine downregulate regulatory T-cells (T-regs), whereas lower doses upregulate
T-regs [57]. Abnormalities in T-regs may play a role in the transition of MDS to AML [58,59].
For example, in patients with clinically stable MDS (regardless of the disease stage), T-reg
levels remain stable, but upon transformation to AML, an increase in T-reg numbers is
noted both in the marrow and in the peripheral blood [60]. In addition, reduced immune
surveillance by cytotoxic T-cells is seen in patients with autoimmune disorders. Chronic
inflammatory signaling and inflammatory conditions can modulate the bone marrow
microenvironment and facilitate the survival and proliferation of leukemic cells [56,61].
Notably, the transcription factor nuclear factor-κB (NF-κB), a central pro-inflammatory me-
diator, and polymorphisms in the interleukin-1 receptor antagonist (IL-1Rα) are involved
in both autoimmune diseases and leukemogenesis [56,62–65].

3.6. Role of Pro-Inflammatory Cytokine Signaling

The response of a body to a cancer is not a unique mechanism but has many paral-
lels with the chronic inflammation seen in chronic infections. Balkwill and Mantovani’s
metaphor, stating that if genetic damage is “the match that lights the fire of cancer”, some
types of inflammation provide “the fuel that feeds the flames”, puts emphasis on inflam-
mation as a major contributor in the growth of some cancers [66]. Multifaceted activation
of the immune system and chronic inflammation accompany many hematologic neoplasms
including MDS and AML. Certain pro-inflammatory cytokines such as the tumor necrosis
factor α (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6) play an important role in
the development of AML. IL-1 occurs as two structurally related polypeptides (IL-1α and
IL-1β), each of which has a broad spectrum of both beneficial and harmful biologic effects.
IL-1β, in particular, contributes to the proliferation and survival of leukemic cells [65,67].
It has been found that IL-1β participates in the immune response through a dual mech-
anism: the activation of the IL-1 receptor (IL-1R)/Toll-like receptor (TLR) and caspase-1
activation [68,69]. The activation of IL-1β induces a signaling cascade that leads to the
phosphorylation and ubiquitination of MyD88, IRAK-4, and TRAF-6 and, ultimately, NF-κB
activation [70]. At the same time, IL-1β induces the activation of p38 mitogen-activated
protein kinase (MAPK), as well as the activation of the transcription factor GATA2 [70–73].
Both p38 MAPK and GATA2 contribute to the proliferation of leukemic blasts. Monocytes
and macrophages represent the main cell source of IL-1β. IL-1βmay be a target for future
therapies in AML.

IL-35, transforming growth factor β (TGF-β), and IL-10 have also been implicated in
the pathogenesis of AML. IL-35 belongs to the IL-12 family and is produced by T-regs. In
patients with AML, high concentrations of IL-35 have been found in bone marrow plasma,
corresponding to an increased proportion of T-regs [74–76]. TGF-β contributes to many
cellular processes including cell survival, proliferation, and migration. In AML, TGF-β
inhibits the proliferation of leukemic stem cells (LSCs), maintaining their longevity.

The administration of DNA damaging agents, in association with disturbances in
T-cell subsets and pro-inflammatory changes in the bone marrow microenvironment, may
favor the development of t-AML in patients with autoimmune disorders.
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4. Management
4.1. Individualized Risk Assessments in t-AML

The risk assessment of patients with t-AML should be individualized based on the
2022 ELN genetic risk classification (Table 2) [15]. According to ELN recommendations,
“genetic aberrations are given priority in AML classification, with additional predisposing
features (e.g., therapy-related AML, secondary AML, or germline predisposition) appended
as qualifiers of the primary diagnosis” [8,64]. Thus, t-AML should be investigated and
classified like primary de novo AML. For example, in patients with NPM1-mutated t-AML,
it is crucial to exclude karyotypic abnormalities and FLT3 internal tandem duplication
(FLT3-ITD). Normal-karyotype NPM1-mutated t-AML without FLT3-ITD is classified as
a favorable-risk disease. In contrast, NPM1-mutated t-AML with adverse cytogenetics
such as -7 or complex karyotype—as often occurs in t-AML—is categorized as adverse-risk
disease by ELN. Currently, the impact of intermediate-risk cytogenetic lesions, e.g., +8 or
+4, in patients with NPM1-mutated t-AML remains unclear [77].

Table 2. Current stratification of de novo and therapy-related acute myeloid leukemia (2022 European
LeukemiaNet [ELN] genetic risk classification). For patients with an estimated risk of relapse >35–40%
(i.e., patients with adverse and the majority of patents with intermediate-risk profile), allogeneic
hematopoietic stem-cell transplantation is indicated.

Favorable

t(8;21) (q22;q22.1); RUNX1–RUNX1T1
inv(16) (p13.1q22) or t(16;16) (p13.1;q22); CBFB–MYH11
Mutated NPM1 without FLT3-ITD
bZIP in-frame mutated CEBPA

Intermediate

Mutated NPM1 with FLT3-ITD
Wild-type NPM1 with FLT3-ITD (without adverse-risk genetic lesions)
t(9;11) (p21.3;q23.3); MLLT3–KMT2A
Cytogenetic and/or molecular abnormalities not classified as favorable or adverse

Adverse

t(6;9) (p23.3;q34.1); DEK–NUP214
t(v;11q23.3)/KMT2A rearranged
t(9;22) (q34.1;q11.2); BCR–ABL1
t(8;16) (p11;p13); KAT6A–CREBBP
inv(3) (q21.3;q26.2) or t(3;3) (q21.3;q26.2); GATA2–MECOM (EVI1)
t(3q26.2;v)/MECOM (EVI1)-rearranged
−5 or del(5q); −7; −17 or abnl(17p)
Complex karyotype, monosomal karyotype
Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2
Mutated TP53

4.2. Overall Prognosis of t-AML

Historically, patients with t-AML have been under-represented within clinical trials
and excluded from large-scale studies. Excluding the rare patient with t-AML who be-
longs to the 2022 ELN favorable-risk group, the overall prognosis of t-AML remains very
poor [1,9,22,78]. This is not only because of the high frequency of adverse cytogenetic (e.g.,
-7/-7q, -5/-5q, -3/-3q, -17/-17p, complex and/or monosomal karyotypes) and molecular
lesions (e.g., TP53 mutations), but also due to the sequelae of prior chemotherapy and
sometimes persistent primary disease, particularly metastatic cancer or lymphoma.

4.3. Is t-AML with Favorable Genetic Lesions as Favorable as De Novo AML?

There have been conflicting reports regarding the incidence and prognosis of t-AML
with favorable-risk lesions. In 2004, Schoch and colleagues showed that the prognosis of
patients with t-AML was more favorable than s-AML, and that patients with t-AML and
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intermediate or unfavorable cytogenetics had similar OS with their de novo counterparts,
whereas age and white-cell count had no impact on OS in t-AML [79]. However, this was not
the case for patients with t-AML with CBF rearrangements (i.e., t(8;21) or inv(16)/t(16;16));
these patients appeared to have inferior OS compared to de novo CBF AML [79]. In
comparing t-AML and de novo AML with favorable cytogenetics, Aldoss and Pullarkat
concluded that a history of prior cytotoxic treatment can affect outcome in CBF AML but
not to the degree of advocating a change in treatment strategy or transplantation indications
for CBF t-AML. In addition, they showed that OS rates were similar between patients with
de novo and therapy-related APL [80].

Gemtuzumab ozogamicin (GO), a humanized anti-CD33 monoclonal antibody conju-
gated with the cytotoxic agent calicheamicin, has shown positive results in newly diagnosed
CBF AML. A meta-analysis of five randomized trials confirmed that although adding GO
to standard chemotherapy did not increase response rates, it reduced the risk of relapse
and significantly improved OS among younger and older adults with CBF AML [81,82].
Thus, GO might be expected to benefit patients with CBF t-AML, too.

Falini and colleagues first demonstrated that the abnormal cytoplasmic localization of
nucleophosmin resulted in increased responsiveness to induction chemotherapy in patients
with normal-karyotype AML [83]. In 2008, a Danish study tried to evaluate the frequency
of NPM1 mutations in t-AML. Among 140 patients with t-AML, they identified 10 patients
harboring NPM1 mutations, of whom four had a normal karyotype and raised the question
whether these four patients actually represented “de novo AML with medical history”
rather that true t-AML [84,85]. Another Danish study, however, confirmed that NPM1-
mutated t-AML without karyotypic lesions does exist [86]. In a Swedish national cohort
study of 6779 patients with AML including 686 with t-AML, Nilsson and coworkers showed
that after adjusting for age and performance status, survival was similar in favorable-risk
therapy-related and de novo AML (hazard ratio [HR] 0.99; 95% confidence interval [CI]
0.89–1.11; p = 0.95). They concluded that the best combination for survival was NPM1-
mutated/FLT3 wild-type, and that such patients could be approached therapeutically
similarly to patients with de novo AML. Notably, the presence of FLT3-ITD did not seem
to have a negative impact on survival in t-AML (perhaps due to their low frequency),
while NPM1-mutated t-AML carried significantly better survival rates than NPM1 wild-
type t-AML. This study also revealed that patients with t-AML were less likely to receive
intensive chemotherapy and undergo HCT than their de novo counterparts. The study by
Nilsson and colleagues, unlike the study by Schoch, demonstrated worse OS in t-AML with
intermediate-risk and adverse cytogenetics and similar OS in t-AML with favorable-risk
cytogenetics, compared to de novo AML [79,87].

4.4. Therapeutic Approach of Patients with t-AML

As a rule, patients with t-AML should be managed according to the same general
therapeutic principles (i.e., according to whether they are candidates for intensive or
non-intensive therapy and allogeneic HCT) as their de novo counterparts.

In practice, the patient’s age, general health/performance status, nutritional status,
specific coexisting conditions/comorbidities, possible complications from the original
disease or previous treatments, sequelae of prior chemotherapy (e.g., cardiac injury as a
consequence of anthracycline exposure or cisplatin-induced chronic kidney disease), cumu-
lative dose of anthracyclines, chronic immunosuppression from prior disease or ongoing
therapy, history of severe infections, and status and prognosis of the underlying primary
malignant or autoimmune disorder, as well as the disease features, the patient’s wishes (and
those of the patient’s relatives, including support at home) and emotional status, and the
physician’s attitude and interest all influence clinical decision making [88]. It is important to
note that there may be a depletion of normal HSCs, and the bone marrow stroma may have
been damaged as a consequence of previous chemotherapy or radiotherapy, so patients
with t-AML may suffer prolonged cytopenias after additional chemotherapy. Following
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prior supportive care, patients may be refractory to additional transfusion support, and
therefore not good candidates for myelosuppressive chemotherapy [88].

Patients considered fit for intensive chemotherapy should be treated with standard
anthracycline plus cytarabine induction chemotherapy (“3 + 7”), followed by standard
consolidation and/or allogeneic HCT, depending on their 2022 ELN genetic risk (see
Figure 5 for an example). CPX-351, a liposomal formulation of cytarabine and daunorubicin
at a fixed 5:1 molar ratio, represents an alternative intensive (induction) chemotherapy
option for these patients. In fact, CPX-351 is the first approved treatment specifically for
patients with t-AML. Its approval was based on findings from a multicenter, randomized,
open-label, phase III study of CPX-351 versus “3 + 7” in patients 60–75 years old with
newly diagnosed t-AML. CPX-351 had higher CR and CR with incomplete count recovery
(CRi) (47.7% versus 33.3%), and higher median OS (9.56 versus 5.95 months) rates than
“3 + 7” chemotherapy. The 5-year OS with CPX-351 was 18% versus 10% for those receiving
“3 + 7”. Notably, CPX-351 delayed the median time to neutrophil and platelet count
recovery by approximately seven days and increased the risk of bleeding. Early 30-day
mortality, however, was not increased (5.9% versus 10.6%) [89–91]. No randomized data
exist for the use of CPX-351 in younger patients (age <60 years) with t-AML.

Patients not considered medically fit for intensive chemotherapy (i.e., older or frail pa-
tients) are usually treated—outside of the context of a clinical trial—with the hypomethylat-
ing agents (HMA) azacitidine or decitabine, either alone or in combination with venetoclax,
an oral selective inhibitor of the anti-apoptotic protein BCL-2.

4.5. Can Mutations Predict Response to HMA-Venetoclax Combination?

It has been shown that patients with AML harboring mutations in NPM1, IDH1/2,
or TET2 (and possibly RUNX1 and STAG2 in the relapsed/refractory setting) respond
favorably to azacitidine–venetoclax (or decitabine–venetoclax), independently of the under-
lying karyotype. In particular, the 1-year survival rate of NPM1-mutated AML receiving
venetoclax with azacitidine was 80% versus only 12% for azacitidine alone and 56% for
induction chemotherapy [92]. Similarly, the azacitidine–venetoclax combination achieved a
higher CR/CRi rate than induction chemotherapy (56–89% versus 61%) in newly diagnosed
IDH-mutated AML, particularly IDH2-mutated AML [93,94]. TET2 mutations are also very
sensitive to azacitidine–venetoclax, with a CR/CRi rate of ~86% (versus 39% for TET2
wild-type AML) [93,94]. Patients with relapsed/refractory RUNX1-mutated AML may
also respond favorably to the venetoclax with azacitidine or decitabine with an expected
CR/CRi rate of 35–75% and prolonged OS. However, newly diagnosed RUNX1-mutated
AML is less sensitive to azacitidine–venetoclax than RUNX1 wild-type AML (CR/CRi rate
50% versus 64%) [94,95]. In a recent study of 86 patients treated at the Memorial Sloan Ket-
tering Cancer Center (New York, NY, USA), a novel association between STAG2 mutations
and improved survival after azacitidine–venetoclax combination was reported, albeit only
when azacitidine–venetoclax was administered for relapsed/refractory AML [96].

In contrast, TP53, PTPN11, N-RAS/K-RAS, U2AF1, and perhaps FLT3-ITD mutations
have been associated with poor outcomes and, possibly, reduced sensitivity to azacitidine–
venetoclax. The co-occurrence of high-allelic-ratio FLT3-ITD with NPM1 mutations ad-
versely affected outcomes compared to NPM1 mutations alone or NPM1 mutations with
low-allelic-ratio FLT3-ITD [93]. The median OS of FTL3-mutated AML treated with inten-
sive chemotherapy was 5.8–26 months versus 12.5 months for azacitidine–venetoclax and
8.6 months for azacitidine alone [97]. N-RAS, K-RAS, and PTPN11 mutations are prevalent
in t-AML. When treated with HMA–venetoclax, N-RAS mutations are associated with
poor response rates (CR/CRi 0–36%) and shorter median OS (3.8 months), compared with
patients with wild-type N-RAS (7.4 months) [93–95]. Patients with TP53 mutations re-
spond poorly and relapse early after conventional chemotherapy (2-year OS 12.8–14%) [98];
in addition, they respond poorly to azacitidine–venetoclax (median OS 1.9 months for
relapsed/refractory TP53-mutated AML) [95].
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Figure 5. Illustrative case of t-AML. A 49-year-old woman was referred because of neutropenia and
thrombocytopenia of 2 months’ duration that were found on routine tests. Four years previously, she
had been treated for Churg–Strauss syndrome with steroids and intravenous pulse cyclophosphamide
500 mg once per month for 6 months. Her history included cold-agglutinin disease, osteoporosis,
and anxiety with coexisting depressive disorder. Her medications included low-dose prednisolone
and azathioprine. The hemoglobin was 14.0 g/dL, white-cell count 9140/µL (neutrophils, 820/µL),
MCV 86.6 fL, and platelet count 58,000/µL. May-Grünwald-Giemsa staining of a peripheral-blood
smear revealed 58% blasts with Auer rods, easily identifiable under oil immersion (×1000) (Figure).
Bone marrow examination demonstrated a moderately cellular marrow with 38% leukemic blasts
expressing CD34partial, CD117, CD13, CD33, and HLA-DR. A diagnosis of AML without maturation
was made. She had a normal karyotype and an exon 12 NPM1 mutation without FLT3-ITD or
other lesions on a targeted NGS panel. How should she be treated? Recommendation: The patient
has t-AML post cytotoxic/immunosuppressive therapy with an alkylator (cyclophosphamide) and
antimetabolite (azathioprine). The type of t-AML induced by cyclophosphamide is usually preceded
by MDS which then progresses to overt AML. Our patient’s 2-month history of neutropenia and
thrombocytopenia is not sufficient to document preceding t-MDS (according to the minimal diagnostic
criteria for MDS, persistent cytopenia lasting for ≥4 months is required for a diagnosis of MDS).
Her disease is classified according to ELN as “AML with mutated NPM1, therapy-related”. She
belongs to the ELN favorable-risk group. Important considerations for definitive therapy in this
patient include prognosis of her original non-malignant disease and possible complications from
the original disease or previous treatments. Additional work-up showed ejection fraction 55%,
oxygen saturation 96%, and slightly diminished lung volumes on a chest CT scan. Therefore, she
was deemed fit for intensive chemotherapy. She received “3 + 7” chemotherapy and went into
CR. Her clinical course was complicated by neutropenic fever, soft-tissue infection, and platelet-
transfusion refractoriness due to platelet HLA alloimmunization. She was found to have a 40-
year-old, fully matched sibling donor. ELN suggests HCT in CR1 for fit patients with t-AML who
have poor or intermediate risk genetic features. Our patient belongs to the favorable group and
therefore we did not refer her for HCT. The treatment plan included a second cycle of anthracycline-
cytarabine chemotherapy, followed by three cycles of consolidation with intermediate-dose cytarabine
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(1.5 g/m2), reserving HCT in case of disease relapse. Although there is evidence supporting the use
of gemtuzumab ozogamicin in NPM1-mutated AML, it was not administered due to concern for
excess myelosuppression in this patient who already had platelet refractoriness and a diminished
bone marrow reserve stem-cell pool as a result of prior chemotherapy and prolonged azathioprine
use. NPM1 mutations are particularly suitable for assessing MRD since they are typically stable
at relapse and do not drive clonal hematopoiesis. Thus, the patient’s NPM1 mutation can be used
as a surrogate marker to assess the probability of relapse. Molecular MRD assessment should be
performed at the end of her treatment by means of a real-time qPCR assay, and then monitored every
3 months for 2 years using bone marrow samples. Abbreviations: t-AML, therapy-related acute
myeloid leukemia; MDS, myelodysplastic syndrome; ELN, European LeukemiaNet; CR, complete
remission; HCT, hematopoietic-cell transplantation; MRD, minimal/measurable residual disease;
qPCR, quantitative polymerase chain reaction.

Spliceosome-complex mutations (SRSF2, ZRSR2, U2AF1, and SF3B1) have variable
sensitivity to combination therapy, possibly due to the co-occurrence of other mutations.
For example, SRSF2 mutations, which are often associated with IDH2 mutations, have
demonstrated favorable response to azacitidine–venetoclax, with a 1-year and 2-year OS
of 100% and 87%, respectively [99]. Notably, IDH2 mutations preferentially co-occur with
SRSF2 mutations rather than other mutations in RNA splicing machinery (88% versus 11%).
By contrast, U2AF1 mutations co-occur with RAS mutations, suggesting that the resistance
and early relapse of U2AF1-mutated AML after azacitidine–venetoclax may be the result
of RAS co-mutation rather than of U2AF1 itself [93,100]. SF3B1-mutated AML has been
identified as a marker of venetoclax resistance [101], and it remains to be seen whether
HMA–venetoclax, especially decitabine–venetoclax (since SF3B1-mutated AML appears
to be particularly sensitive to decitabine-based therapy) [102], can overcome resistance
through a synergistic effect [103].

In vitro studies have shown that ASXL1 mutations are associated with BCL-2 overex-
pression and increased levels of global cytosine hypermethylation, suggesting sensitivity to
venetoclax–azacitidine [104]; however, this hypothesis requires prospective confirmation.

In one study, DNMT3A-mutated relapsed/refractory patients who were naive to
HMAs achieved high response rates and prolonged survival with venetoclax combina-
tion therapy, whereas DNMT3A-mutated patients who had previously received HMAs
responded poorly to HMA–venetoclax, with poor survival outcomes [96]. This may suggest
sensitivity of DNMT3A mutations to epigenetic modification. Many studies to date have
focused on the metabolic and apoptotic effects of these combinations (e.g., reduced mito-
chondrial oxidative phosphorylation, lower expression of amino-acid transporters, and
increased release of cytochrome c [cyt c] in LSCs), but it is also important to investigate the
mechanism by which venetoclax may act synergistically with HMAs to modify epigenetic
targets in DNMT3A-mutated AML. It is not expected that clonal hematopoiesis (particularly
DNMT3A mutations) will be eradicated after first-line HMA-based treatment.

Despite their widespread use, it is important to note that HMAs have not significantly
improved the outcome of patients with t-AML; the median OS of t-AML treated with
first-line HMA is approximately 7 months. A recent study confirmed the poor outcome of
t-AML treated with HMAs [105]. The outcome was particularly poor in t-AML with TP53
mutations and/or complex karyotype. In the phase III randomized control trial VIALE-A,
the addition of venetoclax to azacitidine for patients with AML who were ineligible for
“3 + 7” because of age (≥75 years), coexisting conditions, or both led to remarkable im-
provements in CR/CRi rates (66.4% versus 28.3%) and median OS (14.7 months versus
9.6 months) compared to azacitidine alone [106]. This study included 62 patients with
t-AML (36 in the azacitidine–venetoclax arm and 26 in the azacitidine–placebo [control]
arm). Azacitidine added to venetoclax led to only modest improvement in patients with
TP53 mutations or complex karyotype (CR/CRi, ~20%; median OS <12 months). A phase
II study found that a 10-day course of decitabine improved the outcome of patients with
TP53-mutated AML enough to resemble that of intermediate-risk AML [64,107]. However,
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this finding requires prospective confirmation with a larger study. Another study analyzed
378 patients with therapy-related myeloid neoplasms, of which 96 (25.4%) received vene-
toclax (47 t-AML, 48 t-MDS, and one patient with t-MDS/MPN) [108]. Despite initial
response, early progression was seen in most cases as a result of adverse disease biology
(mutations in signaling kinases and biallelic loss of TP53, leading to venetoclax resistance).
Clearly, there is an urgent need for new treatments for these patients.

5. Guidelines from Professional Societies

For patients with t-AML aged ≤60 years who are deemed fit for intensive chemother-
apy, National Comprehensive Cancer Network (NCCN) guidelines recommend either stan-
dard induction chemotherapy (“3 + 7”) or CPX-351, whereas for patients aged
≥60 years who are eligible for chemotherapy, NCCN guidelines recommend CPX-351 [109].
Similarly, European Society for Medical Oncology (ESMO) guidelines recommend treatment
with CPX-351 for patients with t-AML who are eligible for standard intensive chemotherapy
and HMA–venetoclax combinations for those who are ineligible for intensive chemother-
apy [110].

6. Authors’ Recommendations for Individualizing Treatment in t-AML

Table 3 shows examples of biomarker-driven, individualized treatment approaches
for patients with t-AML.

Table 3. Biomarker-driven treatment approaches for patients with t-AML.

Biomarker Treatment Approach

CBF t-AML “3 + 7” + GO *

t(15;17) t-APL
ATRA + ATO for low-risk;

standard treatment or ATRA + ATO + GO for
high-risk

FLT3-ITD/TKD t-AML

“3 + 7” + midostaurin *
Gilteritinib monotherapy

Gilteritinib/Ven †

Gilteritinib/Aza †

Aza/Sorafenib †

TP53-mutated t-AML
CPX-351 *
HMA/Ven

Dec × 10 days †

t-AML with MR gene mutations (SRSF2, SF3B1,
U2AF1, ZRSR2, ASXL1, EZH2, BCOR, STAG2)

CPX-351 *
HMA/Ven (Dec/Ven for SF3B1 mutations)

NPM1mut t-AML “3 + 7” ± GO *
Aza/Ven ‡

Complex-karyotype t-AML CPX-351 *
HMA/Ven

IDH1-mutated t-AML
Aza/Ven ‡

Ivosidenib
Aza/Ivosidenib †

IDH2-mutated t-AML
Aza/Ven ‡

Enasidenib
Aza/Enasidenib †

Abbreviations: t-AML, therapy-related acute myeloid leukemia; t-APL, therapy-related acute promyelocytic
leukemia; CBF, core-binding factor; HMA, hypomethylating agent; Aza, azacitidine; Dec, decitabine; Ven,
venetoclax; GO, gemtuzumab ozogamicin; FLT3-ITD/TKD, FLT3 with internal tandem duplications/tyrosine
kinase domain mutations; MR,-related. * Patients fit for intensive chemotherapy; † Not approved by regulatory
authorities; ‡ This mutation predicts a high response rate to Aza/Ven.
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7. Emerging Treatments

Although CPX-351 offers something new in the landscape of t-AML therapy, most
patients with t-AML are less chemosensitive than those with primary AML and, therefore,
do not benefit from either CPX-351 or “3 + 7”. The efforts made by the researchers over the
previous decades to improve chemotherapy regimens have not led to major improvements,
until the recent evolution seen with new molecularly targeted therapies directed at specific
mutations. Ongoing research and clinical trials are actively seeking ways to personalize
therapy in t-AML by identifying new targets, discovering patient-specific and disease-
specific risk factors, and finding effective combinations of new agents targeting multiple
cellular processes (Table 4).

Magrolimab (Hu5F9-G4) is a first-in-class humanized IgG4 monoclonal antibody
against CD47 and prompts cancer cell phagocytosis by macrophages through the disrup-
tion of the CD47–signal-regulatory-protein-alpha (SIRPα) inhibitory checkpoint, thereby
blocking the “don’t eat me signal”. CD47 is also a marker of LSC, and targeting CD47
can potentially eliminate LSC while sparing normal HSC [111]. Magrolimab showed syn-
ergism with azacitidine in preclinical studies using AML cell lines, so this combination
was explored in a phase Ib trial that included older/unfit patients with higher-risk MDS
and newly diagnosed AML who were ineligible for induction therapy. Azacitidine with
magrolimab demonstrated an overall response rate (ORR) of 49% and a CR rate of 33%
among older/unfit patients with TP53-mutated AML treated in this trial. The median
duration of response was 8.7 months and the median OS was 10.8 months. In another study,
patients with newly diagnosed TP53-mutated AML (n = 14) were treated with magrolimab
in combination with venetoclax and azacitidine. The ORR was 86%, with a CR rate of 64%,
MRD-negativity of 55%, and substantial clearance of TP53-mutated clones in eight out of
nine patients who achieved CR/CRi [112].

Sabatolimab is a humanized, high-affinity IgG4 monoclonal antibody targeting TIM3,
a myeloid checkpoint that forms part of a co-inhibitory receptor complex overexpressed on
exhausted T-cells and also on LSCs in patients with AML/MDS. A phase Ib trial evaluated
sabatolimab in combination with HMAs in newly diagnosed patients with AML (n = 48)
and higher-risk MDS (n = 53) unfit for intensive chemotherapy. The CR/CRi rate was 40% in
patients with TP53-mutated AML with a median duration-of-response of 6.4 months [113].
Another molecule that is expressed in about 90% of the AML blasts is CD123, which serves
as the receptor for IL-3, and its downstream signaling promotes hematopoietic progenitor-
cell proliferation through the activation of the PI3K/MAPK pathway and upregulation
of antiapoptotic proteins. CD123 has emerged as a potential target in AML. For example,
flotetuzumab, a bispecific antibody that binds CD123 and CD3ε (CD123 × CD3), is under
investigation in AML. This molecule promotes T-cell activation and proliferation, resulting
in the eradication of CD123-expressing AML blasts. It has been evaluated in a phase I/II
study in relapsed/refractory AML, enriched with patients with primary induction failure or
early relapse (within 6 months of response) [114]. Among patients with relapsed/refractory
TP53-mutated AML, the overall response rate was 47% with an encouraging median OS of
10.3 months in responding patients.

TP53 Pathway Modulation

Given the frequency of TP53 mutations in t-AML and their poor prognosis, particular
reference is required for novel agents that target the TP53 pathway. The frequency of TP53
abnormalities increases to 70–80% in patients with complex karyotype, -17/17p, -5/5q,
and -7 [115,116]. As mentioned, the high frequency of TP53 mutations in t-AML may be
explained by the observation that pre-existing progenitor cells that carry a TP53 mutation
are resistant to DNA damage and, therefore, can expand under selective pressure from
chemotherapy administered for a non-myeloid disorder [9,117].
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Table 4. Selected newer agents in clinical development for the treatment of AML including patients with therapy-related AML.

Agent Mechanism of Action Indication Study Design Study Phase Trial-Registration Number

Entospletinib Syk inhibitor NPM1mut AML “3 + 7” vs. “3 + 7” +
entospletinib Phase 3 NCT05020665

Magrolimab

Blocks CD47 interaction with its ligand
SIRPα on phagocytic cells

(macrophages), leading to phagocytic
elimination of cancer cells

TP53mut AML Aza/Ven vs.
Magrolimab + Aza/Ven Phase 3 NCT05079230

Eprenetapopt (APR246)
p53 protein reconformation/reactivation
to restore its proapoptotic and cell-cycle

arrest functions
TP53mut MDS/AML Aza vs.

APR246 + Aza Phase 3 NCT03745716

ASTX727 Inhibitor of cytidine deaminase (CDA) AML in older patents Dec vs. cedazuridine + Dec Phase 3 NCT03306264

Galinpepimut-S WT1 inhibitor Maintenance AML in CR2
Best available treatment

(BAT) vs. Galinpepimut-S +
BAT

Phase 3 NCT04229979

Sabatolimab Anti-TIM-3 antibody High-risk MDS and AML Aza/Ven vs.
Sabatolimab + Aza/Ven Phase 2 NCT04150029

Cusatuzumab Anti-CD70 antibody AML unfit for intensive
chemotherapy

Aza vs.
Cusatuzumab + Aza Phase 2 NCT04023526

Flotetuzumab
Bispecific dual affinity retargeting

(DART) antibody-based molecule to
CD3ε and CD123

Relapsed/Refractory AML Phase 1 NCT02152956

Ziftomenib (KO-539)

Menin inhibitor—disrupts the
interactions between menin and MLL1

or MLL1-fusion protein; inhibits
leukemogenic homeobox A9 (HOXA9)
and its cofactor MEIS1 in myeloid stem

progenitor cells

KMT2A (MLL) -rearranged
AML and NPM1-mutated

AML
Phase 1 NCT04067336

Uproleselan E-selectin inhibitor (targeting bone
marrow niche) Relapsed/Refractory AML Phase 1 NCT02306291
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Table 4. Cont.

Agent Mechanism of Action Indication Study Design Study Phase Trial-Registration Number

GTB-3550/GTB-3650 CD33/CD16 bispecific antibody Relapsed/Refractory AML
and high-risk MDS Phase 1 NCT03214666

AB8939 Tubulin polymerization inhibitor Relapsed/Refractory AML Phase 1 NCT05211570

BP1002 Liposomal Bcl-2 antisense
oligodeoxynucleotide Relapsed/Refractory AML Phase 1 MCT05190471

Abbreviations: AML, acute myeloid leukemia; MDS, myelodysplastic syndrome; Aza, azacitidine; Dec, decitabine; Ven, venetoclax.
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The presence of TP53 mutations is inherently problematic for patients receiving cyto-
toxic chemotherapy since the mutated p53 protein causes dysregulation of the apoptotic
pathway, decreasing the efficacy of DNA-damaging chemotherapy agents. TP53 mutations,
especially multi-hit, result in poor clinical outcomes regardless of whether the under-
lying disorder is classified as MDS or AML on the basis of blast-cell count. Multi-hit
t-MDS/AML often represents a distinct stem-cell disorder with a paucity of co-mutations
in other myeloid malignancy-related genes (co-mutations occur in <20% of cases). As
mentioned, another adverse-risk biological characteristic associated with TP53 mutation
and complex karyotype in t-AML is chromothripsis, which is a catastrophic event leading
to extensive chromosomal rearrangement and defines a subset of complex-karyotype AML
with an extremely poor outcome [49].

Eprenetapopt (APR-246) is a first-in-class drug that binds covalently to cysteine
residues in the DBD domain of the mutant p53 protein. It has been suggested that this
binding would induce mutant p53 protein to fold back into its active, wild-type confor-
mation and function. Two studies evaluated eprenetapopt-azacitidine in patients with
newly diagnosed MDS, AML, and MDS/MPN; they found a significantly higher CR rate
in patients with TP53 mutations only (52% versus 30% in patients with co-mutations),
including those with biallelic TP53 mutations or complex karyotype (CR 49%) [118].

In search of potential therapies, studies have also evaluated the immune microen-
vironment and cytokine milieu of TP53-mutated AML. TP53 mutations are associated
with an accumulation of immune-inhibitory checkpoints including PD-L1 on LSCs, TIM-3
on myeloid-derived suppressor cells (MDSCs), and LAG3 and TIGIT on leukemic blasts.
Furthermore, TP53-mutated MDS and AML is characteristically associated with an im-
munosuppressive marrow environment with FOXP3 overexpression, increased numbers
of activated (ICOShigh) T-regs and PD1+ MDSCs, decreased numbers of OX40+ cytotoxic
T-cells and NK cells, and a marked impairment of CD28+ T-cells to secrete immune-effector
T-helper-1 cytokines [51,119]. Such profound immune dysregulation, with features of
immunosenescence and immune evasion, makes considerable biological sense for the use
of novel immunotherapy (antibody-based) approaches such as magrolimab, sabatolimab,
and bispecific antibodies in TP53-mutated t-AML [120].

8. Conclusions

The occurrence of t-AML is an important complication of the treatment of a variety of
tumors and autoimmune disorders. More than two thirds of these patients have adverse
prognostic features. Over the past decade, an understanding of the molecular pathways
leading to the development of AML has resulted in significant improvements in the risk
stratification of patients and offered the opportunity to develop individualized therapeutic
approaches that target disease biology. The development of new targeted drugs and
treatment strategies have improved the outlook of patients with AML, including t-AML.
Despite these improvements, however, survival rates for most patients with t-AML remain
poor. Clearly, new approaches to therapy are needed in this large cohort of patients. In
general, the trend in the treatment of t-AML is toward the modification of therapy to treat
specific subtypes of the disease (“biomarker-driven” strategy) and, more specifically, the
targeting of the leukemic cells with highly efficacious molecular-targeting agents and/or
immunologic (antibody-based) therapeutic strategies [120]. Current clinical investigation is
focused on the discovery of new treatments that are intended to provide an improvement
in efficacy over existing therapies. Trials are underway to determine whether novel agents
can improve cure rates for patients with t-AML. In the meantime, we ought to focus on the
optimal use of currently available treatment options to ensure excellent clinical care [121].
It seems appropriate to quote William Osler; “The best preparation for tomorrow is to do
today’s work superbly well”.
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