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G R W N e

Simple Summary: Brain tumors comprise a large, varied group, with gliomas being the most
common malignant tumors arising in the brain. This state-of-the-art review discusses the role of
epigenetics in low-grade gliomas, i.e., those gliomas which are typically less invasive and have better
survival rates than their high-grade counterparts. This paper is a summary of the current paradigms
in DNA methylation and histone modification in low-grade gliomas, with their integration into
the recently published WHO Classification for CNS Tumors, Fifth Edition. This paper, targeted
towards a clinical audience, also describes the role of DNA methylation and histone modification
in pathogenesis, clinical behavior, and outcomes of low-grade gliomas, with an emphasis on the
potential therapeutic targets in associated cellular biomolecules, structures, and processes.

Abstract: Gliomas, the most common type of malignant primary brain tumor, were conventionally
classified through WHO Grades I-IV (now 1-4), with low-grade gliomas being entities belonging
to Grades 1 or 2. While the focus of the WHO Classification for Central Nervous System (CNS)
tumors had historically been on histopathological attributes, the recently released fifth edition of the
classification (WHO CNS5) characterizes brain tumors, including gliomas, using an integration of
histological and molecular features, including their epigenetic changes such as histone methylation,
DNA methylation, and histone acetylation, which are increasingly being used for the classification of
low-grade gliomas. This review describes the current understanding of the role of DNA methylation,
demethylation, and histone modification in pathogenesis, clinical behavior, and outcomes of brain
tumors, in particular of low-grade gliomas. The review also highlights potential diagnostic and/or
therapeutic targets in associated cellular biomolecules, structures, and processes. Targeting of MGMT
promoter methylation, TET-hTDG-BER pathway, association of G-CIMP with key gene mutations,
PARP inhibition, IDH and 2-HG-associated processes, TERT mutation and ARL9-associated pathways,
DNA Methyltransferase (DNMT) inhibition, Histone Deacetylase (HDAC) inhibition, BET inhibition,
CpG site DNA methylation signatures, along with others, present exciting avenues for translational
research. This review also summarizes the current clinical trial landscape associated with the
therapeutic utility of epigenetics in low-grade gliomas. Much of the evidence currently remains
restricted to preclinical studies, warranting further investigation to demonstrate true clinical utility.

Keywords: methylation; methylomics; G-CIMP; MGMT; DNMT; ATRX; H3K27M; CpG island; tumor
suppressor; methyltransferases; histone acetylation
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1. Introduction

Gliomas are a heterogenous group of central nervous system (CNS) tumors that are
grouped based on their common origin from glial or precursor cells [1,2]. Gliomas include
entities such as glioblastoma, astrocytoma, oligodendroglioma, ependymoma, and mixed
gliomas amongst others. Taken together, they comprise over 60% of all primary brain
tumors and nearly 25% of all malignant brain neoplasms [1,3-5].

Gliomas have been conventionally classified through Grades I-IV (now using 1-4)
using the World Health Organization (WHO) schema, with low-grade gliomas typically
referring to tumors belonging to Grade 1 or 2, even though some authors have infrequently
referred to Grade 3 tumors as LGGs [1,3,5-7].

To discuss DNA methylation in LGGs, it is essential to (A) first recognize which entities
are classified as LGGs currently, as their neuropathological classification has evolved in
the last two decades, and (B) have a broad understanding of methylation processes. In
general, Grade I gliomas, such as pilocytic astrocytoma, are typically localized, have low
invasion potential, and remain amenable to surgical resection [1,8]. Grade 2 gliomas, also
called diffuse LGGs (DLGGs), are more locally invasive and require adjuvant strategies
for their curative therapy [1,2,4-6,8,9]. While the focus of the classification of gliomas has
historically been on clinicopathological attributes, the recently released fifth edition of the
CNS tumor classification (WHO CNS5) now characterizes brain tumors, including gliomas,
using an integration of histological and molecular features, including DNA methylation [5].

2. Current Status of LGGs in the WHO Classification

Historically, gliomas were classified primarily based on their histologic attributes [1,3].
This practice continued until the 2007 WHO classification, which recognized seven differ-
ent types of gliomas, based on differentiation along astrocytic and/or oligodendroglial
lineages [10]. Further prognostic entities were later defined based on the histologic grading,
with cellular features of mitoses and necroses associated with both higher grades and worse
prognosis [10]. However, this classification system suffered from significant intra-observer
and inter-observer variability, along with a lack of clarity regarding reproducible methods.

With advances in molecular analysis, glioma classification has undergone a paradigm
shift, with significant molecular heterogeneity reported among each histologic type of
glioma [1,6,11,12]. One such seminal advance was the discovery of mutations in the isoc-
itrate dehydrogenase (IDH) 1 and 2 genes, with IDH1/2 mutations identified in over
70% of LGGs [13]. Furthermore, IDH1/2-mutant (IDHmt) tumors were found to have a
demonstrably better prognosis than IDH1/2-wild type (IDHwt). In 2015, a study utiliz-
ing The Cancer Genome Atlas (TCGA) analyzed 293 LGGs and identified an additional
molecular marker—the loss of chromosomes 1p and 19g—allowing subclassification into
three prognostically distinct groups. Arranged from best to worst prognosis, LGGS can
be fundamentally ordered into (A) IDH-mutant (IDHmt) LGGs with 1p/19q chromoso-
mal codeletion, e.g., oligodendrogliomas, which are associated with gene mutations of
Telomerase Reverse Transcriptase (TERT); (B) IDHmt LGGs without 1p/19q chromosomal
codeletion, e.g., astrocytomas that are typically associated with mutations in Tumor Protein
53 (TP53) and ATP-Dependent Helicase ATRX (ATRX); and (C) IDH wild-type (IDHwt)
LGGs [14]. Subsequent studies elucidated genetic signatures unique to each of these three
groups [15,16].

Recognizing these advances, the WHO 2016 classification of gliomas emerged, which
utilized a combination of histologic and molecular signatures for classification [17]. Here,
six separate entities of glioma were identified, each with a unique molecular signature.
While this was a welcome step, one persistent limitation was the continued reliance on
‘brisk’ mitotic activity to distinguish Grade 3 from Grade 2 gliomas, requiring subjective
counting of specimens, something that was compounded by the fact that mitotic activity
had little significance in IDHmt LGGs [18].

The most recent, fifth edition of the WHO Classification of Tumors of the Central
Nervous System (WHO CNS5) took this one step further by incorporating the recommen-
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dations from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor
Taxonomy (cIMPACT-NOW) [14,19-22], along with the landmark DNA methylation-based
classification of CNS tumors published in Nature [12]. The WHO CNS5 uses an integrated
histo-molecular assessment, prioritizing genetic and molecular alterations, which were
emphasized for several tumor types [5]. A summary of the view of the WHO CNS5 has
been provided in Figure 1.

WHO CNS?5 utilizes a hybrid approach with regard to tumor grouping [23]. While
some tumor groups still find a lack of utilization for any molecular testing requirements
such as meningiomas, several new types and subtypes are primarily characterized by
molecular features such as medulloblastoma and ependymomas [5]. Gliomas currently fall
under the group of “Gliomas, Glioneuronal and Neuronal Tumors”. The grading of gliomas,
now done using WHO Grade 1-4 instead of Grade I-1V, is to be based on a combination of
histologic and molecular features [5]. Gliomas have also been separated into pediatric-type
and adult-type, thus reorganizing and grouping entities with common genetic alterations
(Table 1). Gliomas were also rearranged accounting for their prevalent genetic mutations,
especially IDH 1/2 mutation (better prognosis), 1p/19q codeletion (better prognosis), and
CDKN2A /B homozygous deletion (worse prognosis). Grading is now to be done within
individual tumor types, instead of across tumor types. Perhaps the most landmark change
for clinicians was the change in classification of glioblastomas (GBMs). As per WHO CNS5,
GBM includes only IDH-wild type entities, while previously GBMs included both IDHmt
(10%) and IDHwt (90%) [24].

As per WHO CNSS5, diffuse astrocytic tumors can now be classified as Grade 2 (i.e.,
LGG), Grade 3, or Grade 4, the latter two being high-grade gliomas (HGGs). Diffuse
astrocytic tumors with IDHwt, i.e., baseline more aggressive than IDHmt, that lack GBM-
specific histology but have at least one of three particular genetic alterations would also be
classified as GBMs [5]. These specific alterations are: (1) TERT promoter mutations (TERT-
pmt), (2) EGFR gene amplifications, and/or (3) loss of chromosome 10 (+7/—10) [5,23].
On the other hand, IDHmt astrocytomas with CDKN2A /B homozygous deletions and
related alterations can now be classified as WHO Grade 4, even if histologically lacking
necroses or microvascular proliferation [5]. Thus, IDH mutation testing has become a key
requirement for appropriate classification into LGG or HGG [23]. The characterization of
methylomic attributes was added to diagnostic criteria, albeit as “desirable characteristics”,
acknowledging the general inaccessibility of these tools [25].

While recognizing newer or updated entities in the new classification, it is also essential
to note that low-grade gliomas (LGG), in particular astrocytomas, can transform into higher-
grade tumors or display more aggressive behavior after some time [2]. Nearly 70% of diffuse
LGGs transform into a higher-grade type [26,27]. This is likely the result of the gradual
accumulation of genetic and epigenetic alterations, which together allow cellular replication
to take place in an unrestrained fashion. Epigenetic alterations in cancer cells have been
demonstrated to increase genomic fragility, increase angiogenic capabilities, decrease the
attribute of cellular adhesion, permit entry into the cell cycle, help avoid apoptosis and
lead to defects in DNA repair, as further examined below [28].
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Figure 1. A summary view of the World Health Organization (WHO) 2021 classification of central
nervous system (CNS) tumors. This original figure has been created using data available from the
WHO CNS5 publication.
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Table 1. Status of gliomas in the fifth edition of the WHO Classification of Tumors of the Central
Nervous System (WHO CNS5). Adapted under Creative Commons Attribution-Noncommercial-
Share Alike 4.0 License from [23]. Available from: https:/ /www.ijpmonline.org/text.asp?2022/65/5/
5/345057. Accessed on 15 December 2022.

Gliomas, Glioneuronal

and Neuronal Tumors WHO Grade Remarks

Ependymal Tumors

Adult-type diffuse gliomas

“Diffuse” and “anaplastic” are terms no longer
Astrocytoma, IDH-mutant 2,3,4 used; no tumor exists now that is called
“astrocytoma, IDH-wild type”.

Oligodendroglioma, IDH-mutant and Similar grading approaches to WHO CNS4

1p/19q-codeleted 23 (2016); tumor type “oligoastrocytoma” deleted.
Terms such as “multiforme” and “Glioblastoma,
IDH mutant” were removed from WHO CNS5.
Glioblastoma, IDH-wildtype 4 Three subtypes, namely giant cell type,

gliosarcoma, and epithelioid type, are still
discussed in the WHO CNS5 text but removed
from the classification.

Pediatric-type diffuse low-grade gliomas (pDLGG)
Diffuse astrocytoma, MYB- or MYBL1

altered 1 Newly recognized tumor type.
First added in WHO 2007 classification under
Angiocentric Glioma 1 neuroepithelial tumors”, later moved in WHO

2016 classification to “other gliomas” and in
WHO 2021 moved to “pDLGG”

Polymorphous low-grade neuroepithelial

tumor of the young 1 Newly recognized tumor type.

Diffuse low-grade glioma, MAPK altered Unassigned Newly recognized tumor type.

Pediatric-type diffuse high-grade gliomas (HGG)

Diffuse midline glioma (DMG), H3 Revised nomenclature: H3K27-altered instead of

K27-altered 4 H3K27-mutant to rec.ogmze additional
mechanisms.
Diffuse hemispheric glioma, H3 .
Gademutant 4 Newly recognized tumor type.
Diffuse pediatric-type HGG, H3-wildtype .
and IDH-wildtype 4 Newly recognized tumor type.
Infant-type hemispheric glioma Unassigned Newly recognized tumor type.

Circumscribed astrocytic gliomas

Pilocytic astrocytoma 1 -

High-grade as;crocytoma with piloid Unassigned Newly recognized tumor type.
eatures
Pleomorphic xanthoastrocytoma 2,3 The term “anaplastic” is eliminated.
Subependymal giant cell astrocytoma 1 -
. . Revised nomenclature — location modifier of
Chordoid glioma 2 “third ventricle” dropped.
Astroblastoma, MN1 altered Unassigned Revised nomenclature — genetic modifier added

for specificity (MNT1 altered).
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Table 1. Cont.

Gliomas, Glioneuronal
and Neuronal Tumors

WHO Grade

Remarks

Glioneuronal and neuronal tumors

Ganglioglioma 1 -
Desmoplastic infantile 1 }
ganglioglioma/astrocytoma
Dysembryoplastic neuroepithelial tumor 1 -
Diffuse glioneuronal tumor with
oligodendroglioma-like features and Unassigned Newly recognized tumor type.
nuclear clusters
Papillary glioneuronal tumor 1 -
Rosette-forming glioneuronal tumor 1 -
Myxoid glioneuronal tumor 1 Upgraded from a Prov151onal status in 2016 to a
distinct tumor type.
Diffuse leptomeningeal glioneuronal )3 Three subtypes added: DLGNT-1g-gain,
tumor (DLGNT) ’ DLGNT-MC-1, and DLGNT-MC-2.
Gangliocytoma 1 -
Multinodular and vacuolating neuronal New tumor type in WHO 2021, after l?elng
tumor 1 upgraded from a mere pattern of ganglion cell
tumors in WHO 2016.
Dysplastic cerebellar gangliocytoma 1 )
(Lhermitte-Duclos disease)
Central neurocytoma -
Cerebellar liponeurocytoma 2 -
Extraventricular neurocytoma 2 -

3. Overview of DNA Methylation and Demethylation

The importance of epigenetic processes in the clinical neurosciences may be amply
demonstrated in the role of DNA methylation patterns in the physiological regulation of
differentiation, in particular, through cellular, spatial and temporal specificities [29,30].
Notably, epigenetic deregulation has also been included amongst the updated hallmarks
of cancer [31,32]. In the cancer cell, it acts in both a standalone fashion and synergistically
with other genetic changes, in driving neoplastic evolution [29-32]. However, despite
substantial advances in the understanding and the utility of investigating methylomics of
various malignancies, considerably less headway has been made in the clinical utilization
of epigenetics in brain tumors, especially in less aggressive tumors such as low-grade
gliomas [30]. DNA methylation has been the most widely studied and most clinically
explored epigenetic change in gliomas [28]. Given the complexity of the cellular processes
involved, a brief review for clinicians of processes involved in DNA methylation follows.

The cellular DNA, including that of the cancer cell, is constructed out of four elements
(DNA bases), namely, adenine (A), thymine (T), guanine (G), and cytosine (C). While
adenine and guanine are purines, thymine and cytosine are pyrimidines. Base pairing
occurs between AT and GC, but a methylated cytosine, with its corresponding CG base
pairing, may undergo deamination to form a thymine.

DNA methylation is a process by which methyl (CH3-) groups are added to the DNA
bases, to allow for an additional layer of regulation of gene expression. This modification
can change the activity of a DNA segment without changing the underlying sequence. DNA
methylation typically occurs on cytosine bases, leading to the formation of 5-methylcytosine,
often called the ‘fifth DNA base’. It is estimated that 3-6% of cytosine bases in human
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cells carry methyl groups [28], where it is especially predominant in repetitive genomic
sequences. The constant methylation status of these sequences has been reported to
potentially play a role in the routine upkeep of healthy cells by averting chromosomal
instability, translocations, and genetic disruptions. The latter, which may occur through
the reactivation of certain transposon-derived sequences that have self-propagation and
random site insertion properties, is prevented by hypermethylation [28,33]. Additionally,
DNA methylation is one of the most reliable means to transmit epigenetic information
across cellular replication [34-36]. Thus, maintaining the integrity of DNA methylation
patterns is essential for proper cellular function, and disruptions to this process can have
significant effects on health and disease.

Because cytosine is typically paired with guanine, a DNA sequence where several methy-
lated cytosine and guanine pairs come together are known as ‘CpG or CG Islands’, where
the highest amount of methylation is present in the genome [37]. CpG islands can be found
throughout the genome, and their exact location and frequency can vary depending on the
organism and the specific region of the genome [37]. CpG islands frequently occur near the 5’
end of genes (~70%) that contain DNA sequences corresponding to the promoter, untranslated
region (5'-UTR), and exon 1 (Figure 2). Unmethylated CpG sites permit the related sequences to
be expressed when the required transcriptional activators are available [28,38,39].

Normal cell
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Figure 2. Altered DNA methylation and its downstream impact in the cancer cell. Reproduced with

permission from [28].

The process of DNA methylation is carried out by DNA methyltransferases (DNMT),
which transfer a methyl group from S-adenosyl methionine (SAM), a carrier molecule, to
the DNA molecule, resulting in the addition of a methyl group to the cytosine base. While
several of these enzymes exist, all of them utilize SAM as the carrier molecule. The proteins
encoded by the DNMT3 gene and its variants (DONMT3A, DNMT3B, regulatory DNMT3L)
preferentially methylate unmethylated DNA strands and thus carry out a major part of de novo
methylation [35]. Meanwhile, the proteins encoded by the DNMT1 gene methylate DNA whose
single strand has already been methylated (hemimethylated DNA) in a preferential fashion [35].
This permits it to maintain the methylation patterns across cellular replication [36,40].
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To ensure the reliability of DNA methylation, cells have several mechanisms in place to
monitor and repair methylation patterns. For example, enzymes of the Ten-Eleven Translo-
cases (TET) family (TET1, TET2, TET3), can remove methyl groups from DNA, and help re-
verse the de novo methylation process, while other enzymes can recognize and repair dam-
aged or improperly methylated DNA. TET enzymes, which are x-ketoglutarate-dependent
dioxygenases, convert 5-methylCytosine (5mC) to 5-hydroxymethylCytosine (5hmC), 5-
formylCytosine (5fC), and 5-carboxylCytosine (5caC) in a stepwise fashion [41,42], as part
of the normal cytosine methylation cycle (Figure 3). The 5-carboxylcytosine is later removed
by the human thymine-DNA glycosylase (hTDG) enzyme, in a process exemplifying “ac-
tive DNA demethylation” [43,44]. This is immediately followed by the insertion of an
unmethylated cytosine residue at the excision site, carried out by the DNA Base Excision
Repair (BER) system [45]. The TET-hTDG-BER system is known to ensure that cells can
actively and rapidly demethylate specific loci in response to environmental changes, such
as cellular stressors. This active demethylation is in contrast to the passive demethylation
process which occurs in locations where DNMT1 is not present to methylate DNA during
replication [46]. Additionally, 5-hmC, by itself, has been hypothesized to play a role in the
regulation of gene expression, given that it is noted to be present in both tissue-specific gene
bodies and DNA enhancers, the latter being short regulatory sequences where transcription
factors bind. Thus, dysregulation of this tightly controlled active methylation and active
demethylation in healthy cells leads to errors that eventually permit the hallmark neoplastic
features to manifest [32]. Efforts are underway to generate genome-wide 5-hmC profiles
(tissue maps) of cells in various tumors [47].

HH,
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| /Kshmc \ | 5caC
T B TDG T 2
- BER | i
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PASSIVE I IT1DG&BER
LOSS 1 or
TET PO Ny I 7 passive
P % | 4 LOSS
w, 4 NH,
=y Xy
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Figure 3. Cytosine methylation and demethylation cycle. C, cytosine; 5mc, 5-methylCytosine; ShmC,
5-hydroxymethylCytosine; 5fc,5-formylCytosine; 5caC, 5-carboxylCytosine, TDG, thymine-DNA gly-
cosylase; BER, Base Excision Repair, TET, Ten-Eleven Translocases, DNMT, DNA Methyltransferases.
Reproduced with permission from [48].

4. DNA Methylation in Low-Grade Gliomas

The utility of studying DNA methylation was first identified in glioblastoma, due to
its aggressiveness and poor prognosis. While such studies have begun to include low-grade
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gliomas (LGGs) as well, literature specific to LGGs remains scarce (Persico et al., 2022),
even though there is wide recognition that DNA methylation is likely to play a key role in
the next frontier of oncology diagnostics and therapeutics [49,50].

Fundamentally, methylation of a locus typically results in the repression of its expres-
sion level, which can then affect the expression level of other genes that are downstream
targets. Methylated DNA sequences are less accessible to the cellular machinery that reads
the genetic code. For example, if the locus has elements that repress expression (e.g., 5’
regulatory region) of the associated gene(s) (e.g., a DNA damage repair gene), then the
methylated locus would become silenced, leading to an increase in gene expression of the
associated gene (in this case higher production of DNA damage repair proteins).

In general, while cancer cells undergo a global loss of DNA methylation (Figure 2),
CpG islands of tumor-suppressor genes (TSGs) undergo preferential hypermethylation [28].
The epigenetic silencing of TSGs permits the cancer cell to evade pro-apoptotic changes,
proceed with unrestrained cellular replication, display angiogenesis and reduce cellular
adhesion, amongst other mechanisms, thus contributing to the classically described hall-
marks of cancer cells [28,35,51] (Figure 2). These unique DNA methylation changes are also
accompanied by histone modifications, another epigenetic alteration that permits further
silencing of TSGs and increased expression of oncogenes [52-54], as discussed later in the
text. Hypermethylation of tumor suppressor genes is increasingly being explored as a
prognostic marker in low-grade gliomas, for instance, testing for MGMT methylation status
to predict response to chemotherapy [55]. O6-methylguanine-DNA methyltransferase
(MGMT) is a protein involved in DNA repair. When the MGMT gene locus become methy-
lated (i.e., hypermethylated), the amount of DNA repair across the genome reduces, leading
to increased sensitivity to cytotoxic medications, making the tumor more responsive to
chemotherapy [33]. Therefore, in gliomas, MGMT hypermethylation is associated with a
better response to temozolomide, a DNA alkylating agent.

MGMT promoter hypermethylation is being increasingly explored as a clinical target
in LGGs. It has been recently reported to be a predictor of hypermutation in LGGs at the
time of recurrence. Mathur et al. demonstrated in 2020 that methylation-based silencing of
MGMT expression enhances mutagenic processes caused by temozolomide in LGGs, thus
leading to the development of hypermutation in these tumors. Further, analysis of DNA
methylome of genes involved in DNA damage repair in the EORTC 22033 trial cohort has
demonstrated that patients having a high MGMT-STP27 score, which measures methylation
status, prognosticates those patients of IDHmt LGGs who are most likely to benefit from
temozolomide chemotherapy [56]. Meanwhile, work from UCSF has demonstrated that
temozolomide positively selects for tumor cells with MGMT hypermethylation in patients
with LGGs lacking DNA mismatch repair (MMR) [57]. Given these and similar findings
from the literature, MGMT promoter methylation is likely to serve as a useful biomarker
for predicting response to therapy and risk of hypermutation at recurrence [56-58].

In addition to the involvement of DNA methylation in cellular processes in LGGs,
errors in DNA methylation also predispose to mutations. Compared to cytosine (C), methy-
lated cytosine residues (mC) are more prone to deamination, i.e., loss of the amine (-NH2)
group, forming thymine residues, which are less likely to be repaired accurately [45]. This
mutational event then changes the DNA sequence, which is the primary driver of the
sequence of corresponding messenger RNA, leading to abnormalities in structure, quan-
tity, or function in subsequent protein synthesis. Thus, ‘CpG Islands’ are more prone to
mutations than human DNA sequences in general. One pertinent example is the glioma
CpG island methylator phenotype (G-CIMP), a pattern of genetic changes that includes
MGMT methylation, which is often associated with the presence of IDH1 or IDH2 gene mu-
tations. G-CIMP, while quite underexplored in LGGs, likely represents a major avenue for
future research given that Grade 2 astrocytoma (IDHmt) and oligodendroglioma (IDHmt,
1p/19q codeletion) are both characteristically associated with G-CIMP. This attribute gains
importance given that, amongst WHO Grade 2/3 astrocytomas, oligodendrogliomas, and
glioblastomas developing from these lower grade entities, IDH1 mutation occurs at codon
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number 132 in over two-thirds of these, with IDH2 mutations occurring in 6% of them [13].
Given that MGMT resides on chromosome 10, it has been reported that compared to GBM,
where at least one copy of chromosome 10 is lost, IDHmt lower-grade gliomas do not lose
either copy. Thus, sufficient silencing of the MGMT gene may not occur in these IDHmt
gliomas, leading to MGMT expression, followed by remnant capacity for DNA repair. This
is the likely cause behind the resistance of IDHmt gliomas to temozolomide chemother-
apy, compared to GBM [45]. Additionally, the deletion of 1p36 has been demonstrated to
occur in nearly 73% of oligodendrogliomas and 18% of astrocytomas, while the deletion
of 19q13.3 chromosome has been found to occur in 73% of oligodendrogliomas and 38%
of astrocytomas. 1p/19g-codeletion has been demonstrated to occur in nearly 64% of
oligodendrogliomas and 11% of astrocytomas [59,60].

Additionally, methylation is known to alter the overall 3-dimensional organization
of chromatin protein used for DNA compaction. Chromatin consists of loops or topology-
associated domains (TADs), which are normally conserved and maintained across cells [45].
The architecture of TADs has been demonstrated to be disturbed in IDHmt gliomas, causing
excessive oncogene and anti-apoptotic factor expression [61,62]. One example is the Cohesin
and CCCTC-binding factor (CTCF), whose alteration affects the organization of TADs [45].

DNA methylation has also recently been implicated in the functioning of the Telom-
erase Reverse Transcriptase (TERT) gene, whose function is visually described in Figure 4.
TERT-promoter mutations (TERT-pmt) are known to be amongst the most common and
the earliest mutations in the most invasive gliomas [63-67]. TERT mutations have been
reported to be closely associated with IDH1/2 mutations and 1p/19qg-codeletion in oligo-
dendroglioma, but less well correlated in astrocytomas [68,69]. It has been hypothesized
that TERT promoter mutations enhance the neoplastic potential of tumors with low rates
of self-renewal, such as low-grade gliomas [70]. Where methylation additionally plays a
role is in the regulation of the TERT gene, whose promoter region has elements called “GC
boxes”. These GC-base pair rich DNA sequences preferentially bind to the transcriptional
activator SP1, leading to increased gene expression. These GC boxes are closely regulated
through DNA methylation [71]. Furthermore, hypermethylation of the TERT promoter
region has been demonstrated to be one factor behind the dysregulation of TERT function
in cancer cells [72-74]. Uniquely, TERT hypermethylated oncological region (THOR), a
433-bp sequence, has been reported to be a region where methylation leads to increased
transcriptional TERT activity. It is situated just upstream of the TERT promoter region and
contains 52 CpG sites. THOR hypermethylation has been demonstrated to play a role in the
pathogenesis and/or outcomes of several pediatric brain tumors, including gliomas [75-77].

5" Lagging strand

3" Leading strand

Telomerase complex

Shelterin complex | |

hTERC

Figure 4. Mechanism of action of TERT enzyme, whose regulation is impacted by methylation of
promoter and upstream THOR sequence. In the figure, TERT accesses the telomere complex at the
terminal end of the DNA strand, through the Shelterin complex. It then catalyzes the addition of
telomere repeat segments with the help of the hTERC enzyme, in a structure called Telomerase
Complex. The latter’s function of telomere elongation works against the routine telomere shortening
that occurs during DNA replication. Figure reproduced under Creative Commons Attribution-
Noncommercial 4.0 License from [74].



Cancers 2023, 15, 1342

11 0f 22

DNA methylation, within the context of low-grade gliomas, also plays a role in the
regulation of the ADP-ribosylation factor-like (ARL) family of genes. The ADP-ribosylation
factor (ARF) family of proteins, a part of the RAS superfamily, had been previously
demonstrated to play a part in the pathogenesis of both glioblastoma and lower-grade
gliomas [78-80]. Utilizing the TCGA database, Tan et al. recently identified low expression
of ARL9 mRNA, along with ARL9 hypermethylation, which had hitherto been unexplored
in LGGs, as positive prognostic factors in LGG [81]. The ARL9 protein expression was
reported as correlating with CD8 T-cells in the LGG tissue, indicating the role of ARL9
methylation in tumor immune infiltration [81].

Broad prognostic signatures based on epigenetics have been very recently developed
for low-grade gliomas. A two-CpG site DNA methylation signature (GALNT9 and TMTC4,
both of whose expressions are highly dependent on methylation) has been recently iden-
tified that correlated highly with prognosis, regardless of the age, WHO grade, family
history of cancer, and IDH mutation status [82]. Similarly, three methylation-driven genes
(ARL9, CMYAS5, STEAP3) have been recently identified as independent prognostic factors
for survival in LGGs [83].

Overall, DNA methylation is an important mechanism for regulating gene expression
in cancer cells, including LGGs, through several pathways (Figure 5). Alterations in DNA
methylation lead to changes in gene expression that can result in neoplastic processes. The
precise pattern of DNA methylation likely varies between cells of different grades and
types of LGGs, being influenced by several factors, most of which are under investigation.
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Figure 5. Potential targets in the various pathways where DNA methylation plays a role in regulating
gene expression in gliomas. (Green dots are unmethylated Cytosine, red dots are 5-methylCytosine;
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blue dots are 5-hydroxymethylcytosine). (A) Promoter hypermethylation may prevent the binding
of transcriptional factors (TF), i.e., activator, leading to gene silencing. (B) In some other cases, a
hypermethylated promoter may bind to the transcriptional repressor (REP) preferentially. When
active demethylation occurs, REP is unable to bind and gene expression occurs. (C) In another gene,
there may occur binding by two transcriptional factors (TFs), one to a methylated sequence and
another to an unmethylated sequence. (D) In normal cells, TET enzymes convert 5mc to 5hmc and
later into 5cac for maintenance purposes. When 2-Hydroxyglutarate (2-HG), a byproduct of mutant
IDH enzymes, inhibits TET, a state of global hypermethylation occurs. (E) Relationship between DNA
methylation and chromatin compaction. The latter is regulated by chromatin chaperones that are in
turn affected by DNA methylation, histone methylation, and histone acetylation. ATRX binding to
methylated gene sequences leads to an increased proportion of heterochromatin, thus reducing the
binding of transcriptional factors (TFs) to DNA. (F) When CTCTF binding sites on the genome are
methylated, then CTCF is unable to bind, leading to alteration in chromatin compaction. This causes
an exchange of an insulator by an enhancer near the said sequence. Figure reproduced, with color
correction, under Creative Commons Attribution-Noncommercial 4.0 license from [45].

5. Overview of Histone Modification

Histones are proteins that DNA is wrapped around to compact DNA in the nucleus.
Together, an octamer of histones, with DNA wrapped around it, form a nucleosome, which
is the functional unit of chromatin [84].

Histones are traditionally highly conserved across species. Post-translational modifica-
tion of the histone typically occurs at one end, called the N-terminal tail, and is a significant
epigenetic mechanism. This modification could be phosphorylation, ADP ribosylation,
methylation, or acetylation, among others [85]. Methylation and acetylation, for example,
are processes by which methyl and acetyl groups, respectively, are added to their amino
acid residues in an enzyme-dependent fashion. These modifications can also change the
expression of a DNA segment, without changing the underlying sequence.

Histone methylation is carried out by enzymes called histone methyltransferases,
which transfer a methyl group from S-adenosylmethionine (SAM) to the histone protein.
The particular residue that is methylated, and the number of methyl groups added, can
vary and can have different effects on gene expression. For example, the addition of a
single methyl group to a lysine residue on a histone protein (mono-methylation) can have
a relatively mild effect on gene expression, while the addition of three methyl groups to
the same residue (tri-methylation) can have a much stronger effect. Typically, methylation
causes transcription dysregulation [85]. Figure 6 summarizes the differences in histone
modification maps in healthy cells versus neoplastic ones.

Histone acetylation refers to the addition of an acetyl functional group, through a reac-
tion between the hydrogen atom of a hydroxyl (-OH) group and an acetyl (CH3CO) group.
This usually occurs on the lysine and arginine residues of histone proteins. Acetylation is
carried out by histone acetyltransferases (HATs), while the reverse is carried out by histone
deacetylases (HDACs). Acetylation of lysine weakens histone-DNA or inter-nucleosome
interactions [86,87], altering chromatin conformation, and facilitating transcription. Con-
versely, deacetylation diminishes transcription. In normal cells, HATs and HDACs act in
a dynamic equilibrium. Dysregulated acetylation, as in cancer cells, usually affects DNA
transcription and repair [85].
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Figure 6. Histone modification maps for a typical chromosome in normal and cancer cells. In normal
cells, DNA sequences that include the promoters of tumor-suppressor genes have more histone
modification marks associated with active transcription, such as acetylation of H3 and H4 lysine
residues (e.g., K5, K8, K9, K12, and K16) along with trimethylation of K4 residue of H3 protein. The
normal cell also has DNA repeats and other heterochromatic regions having repressive histone marks,
such as trimethylation of K27 residue and dimethylation of the K9 residue of H3, and trimethylation
of K20 of H4. In cancer cells, there is a loss of the “active” histone marks on promoters of tumor-
suppressor genes, leading to a tighter chromatin configuration. Additionally, the neoplastic cell has a
loss of repressive marks at subtelomeric DNA and other repeat regions, causing a more “relaxed”
chromatin conformation in these regions. Figure reproduced with permission from [28].

6. Histone Modification in LGGs

Histone modifications have been studied far more in high-grade gliomas, and the
advances made there have not yet translated into the field of LGGs, but significant potential
for translational research exists here. In particular, in diffuse midline gliomas, the H3K27M
alteration has been shown to confer poor prognosis. Here, the H3 subunit, referring to
either H3.1 or its variant H3.3, is subject to post-translational modifications, including
methylation and acetylation. Typically, in the H3K27M alteration, methionine substitutes
lysine at residue 27, resulting in halted post-transcriptional silencing by trimethylation. This
modification resembles a gain-of-function mutation that enables the inhibition of polycomb
repressive complex 2 (PRC2), as well as an increase in histone hypomethylation [88,89].
Additionally, it has become clear that the H3 variant also matters. H3.1K27M commonly
co-occurs with activin-receptor type 1 (ACVR1) and phosphoinositide 3-kinase (PI3K),
while the H3.3K27M commonly occurs with deletions of tumor suppressor 53 (TP53) and
amplification of platelet-derived growth factor, with the latter shown to be significantly
more aggressive and less differentiated [89,90]. Given the shared attributes of precursor
cells of origin for LGGs and HGGs, these specific findings need investigation in LGGs as
well.

Central to the advances made in histone modifications in LGGs has been the seminal
discovery of IDH mutations as a genetic signature of most LGGs [91]. In IDHmt glioma cells,
the disrupted metabolism of 2-hydroxyglutarate is key to their oncogenesis. As opposed
to the conversion of isocitrate to alpha-ketoglutarate («-KG) in IDHwt cells, IDHmt cells
convert «-KG to 2-HG at supraphysiologic levels. This results in 2-HG levels several-fold
higher than in IDHwt cells [92], with decreased levels of x-KG. 2-HG accumulation is likely
a key step in gliomagenesis, which sets the stage for multiple later mutations [91]. 2-HG has
been shown to alter DNA repair mechanisms, particularly the homologous recombination
(HR) pathway, as well as multiple key cellular metabolic and oxidative pathways [93,94].
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With respect to histones, 2-HG accumulation promotes methylation, through the inhibition
of Jumonji-C-domain histone demethylases (JHDMs) [91,95-97]. These cumulative effects
result in the G-CIMP phenotype of LGGs [91]. Further, as in pediatric diffuse gliomas, IDH1
mutations that cause H3K27 or H3K36 methylation have been implicated in progression
from LGGs to GBM, i.e., secondary GBM [98].

7. Current State of Therapeutics

Table 2 summarizes ongoing (as of 13 January 2023) clinical trials in IDH-mutant LGGs,
which broadly indicate that therapies targeting DNA and histone modification are gaining
increasing cognizance.

Table 2. Ongoing clinical trials in IDH-mutant LGGs. Adapted under Creative Commons Attribution
4.0 International (CC BY 4.) License from [91].

NCT

. .. "
Number Phase Population Study Medication Current Status
NCT04164901 3 Residual or recurre.nt IDH1/2-mt Vorasidenib (AG-881) Active, not recruiting
grade 2 gliomas versus placebo
Advanced IDH1-mt gliomas, GBM,
other solid tumors (hepatocellular
NCT03684811 1/2 carcinoma; bile c}uct carcinoma; FT-2102 w1th azacitidine Completed
cholangiocarcinoma; other (for gliomas)
hepatobiliary carcinomas;
chondrosarcoma)
Advanced IDHmt gliomas, other solid
NCT03991832 2 tumors (cholangiocarcinoma and Durvalumab and Olaparib Recruiting
others)
NCT03557359 2 Recurrent/progresswe IDH-mut Nivolumab Active, not recruiting
gliomas
NCT03718767 2 IDHmt gliomas Nivolumab Recruiting
IDH1/2-mt gliomas (WHO grade 2, 3,
NCT03212274 2 GBM, recurrent), other solid tumors Olaparib Recruiting
(cholangiocarcinoma, others)
NCT03561870 2 Recurrent [DHmt gliomas, high-grade Olaparib Completed
gliomas
. PARP inhibitor (BGB-290) i,
NCT03749187 1 IDH1/2-mt gliomas and TMZ Recruiting
NCT03914742 1/2 Recurrent IDH1/2-mt gliomas PARP inhibitor (BGB-290) Active, not recruiting
and TMZ
NCT03666559 2 Recurrent IDH1/2-mt gliomas Azacitidine Recruiting
Recurrent/progressive non-enhancin, ASTX727 (cedazuridine +
NCT03922555 1 Prog & cytidine antimetabolite Recruiting

IDHmt gliomas decitabine)

NCT—National Clinical Trials, IDH—isocitrate dehydrogenase; IHDmt—IDH mutant, GBM—glioblastoma * As
of 13 January 2023.

Based on the current understanding of the role of epigenetics in LGGs, several potential
targets have emerged, albeit with preclinical data. Ongoing and completed trials remain in
the early phases, and a long wait for definitive results is anticipated.

7.1. Therapeutics Targeting IDH1/2 Mutations

Given the central role of the IDH mutation in LGGs as a driver mutation and its role in
downstream epigenetic modification, it is worth discussing attempts at targeting IDH1/2
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mutations in LGGs. Data from completed clinical trials targeting IDH, all of which have
been phase I trials, are summarized in Table 3.

Table 3. Completed clinical trials with IDH-targeted therapies in glioma cells. Adapted under
Creative Commons Attribution 4.0 International (CC BY 4.0) License from [91].

Study

Drug

Population

Key Findings

Adverse Events (>10%

Patients)
Advanced IDH1-mt 500mg once daily selected for No DLT .
. . Headache, fatigue, nausea,
solid tumors expansion cohort vomiting. seizure. diarrhea
Mellinghoff Ivosidenib 35 non-enhancing DCR 88% vs. 45%; median PFS a hasiaglli erol lcemia ’
et al., 2020 [99] (AG-120) recurrent gliomas, 31 13.6 vs. P s nypergiycemia,
. . . neutropenia, depression,
enhancing recurrent 1.4 months in non-enhancing h .
. . ypophosphatemia,
gliomas vs. enhancing cohort .
paresthesia
Ele;l)l?rrr?:sn deddose <100mg 117 (grade 2 ALT/AST
. . ) increase)
Advanced IDH1/2mt i\éc;/n—(einhancmg glioma: ORR 4 ' pts at 100 mg dose levels
solid tumors o Headache, AST/ALT
. . . . PR; 3 minor responses; 17 SD) .
Mellinghoff Vorasidenib 22 non-enhancing Enhancing elioma: ORR 0% increase,
etal,, 2021 [100] (AG-188) recurrent gliomas, 30 (17 D) g8 : o fatigue, nausea, seizure,
enhancing recurrent Median PFS: 36.8 vs. 3.6 hyperglycemia, vomiting,
gliomas months in e T constipation, dizziness,
. . neutropenia, cough, diarrhea,
non-enhancing vs. enhancing i h .
eroups aphasia, hypoglycemia
Fj;?gj;?gwe Recurrent 2-HG concentration 92% E lag?aeligggsi};izg;’
Mellinghoff (n=13) or non-enhancing (ivosidenib), 92.5% ar}igmia ’ ’
etal., 2019 [101] o IDH1-mt LGGs (vorasidenib) lower in resected ’ . .
Vorasidenib undergoing craniotomy  tumor tissue of treated patients hyperglycemia, pruritus,
(n=14) gomg y P headache, fatigue
1500 mg twice daily selected
Advanced IDH1-mt for .
solid tumors expansion cohorts
. o, . .
Wick et al., 2021 26 LGG astrocytoma, LGG: ORR 11% (1 CR; 3 PR; 15 No DLT
BAY-1436032 SD) . .
[102] 13. LGG . GBM: ORR 0%, SD 29%. Fatigue, dysguesia
oligodendroglioma, 16 PFS-rate at three months: 0.31
GBM
vs. 0.22
in LGG vs. GBM
125-1400 mg twice daily DLT (grade 3 WBC decrease)
Natsume et al., Recurrent/progressive Nor}—enhancmg gh.oma (n=9): at .1000mg tvs.nce daﬂy
2019 [103] DS-100b IDH1-mt glioma 2 minor responses; 7 SD Skin hyperpigmentation,
Enhancing glioma (n = 29): 1 diarrhea, pruritus, nausea,
CR; 3 PR; 10 SD rash, headache
93.3% IDH1-vac induced
Newly diagnosed immune
g(l);tlte[?oeﬁlt]al.l IDHI-vac IDFmt grade 3/4 osponse II\\I/I(i)lcfl{ Isﬁz reactions
astrocytomas 3 years PFS: 63%, 3 years OS:

84%

2-HG—2-Hydroxyglutarate; ALT—alanine transaminase; AST—aspartate transaminase; CR—complete response;
DCR—disease control rate; DLT—dose-limiting toxicity; GBM—glioblastoma; IDH—isocitrate dehydrogenase;
LGG—low-grade glioma; ORR—objective response rate; OS—overall survival; PES—progression-free survival;
PR—partial response; RLT—regime-limiting toxicity; SD—stable disease; WBC—white blood cells.

IDH mutations, as well as the downstream accumulation of 2-HG [91], have been the

focus of some of the earliest attempts for translating epigenetics from bench-to-bedside
in LGGs, although preclinical results have been mixed. While Rohle et al. found reduced
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2-HG levels and slowed growth in glioma xenografts by AG-5198 in 2013 [105], in later
years, subsequent groups failed to show encouraging outcomes, be it regarding tumor
size, DNA, or histone methylation [91]. In mouse IDHmt models, AG-120, a successor of
AGI-5198, was found to be highly effective, leading to demonstrably lower levels of 2-HG,
and reduced cell proliferation [106]. Later investigated drugs of the same class include
BT142 and GB10, with only BT142 showing tumor growth inhibition in xenografts [107].

With discoveries that 2-HG greatly contributes to glioma immune escape and im-
munosuppressive mechanisms, immunotherapy targeting IDH mutations has been another
promising avenue [91,108]. IDHmt vaccines targeting specific epitopes demonstrated ef-
ficacy in a glioma model [109]. More recently, Kadiyala et al. demonstrated significantly
improved outcomes in IDH1-mt gliomas in mice, with the administration of a targeted
inhibitor, either alone, or with radiation and TMZ [91,110].

Similarly, the effect of 2-HG on the HR pathway of DNA repair has been investi-
gated [91,94]. IDHmt LGG cells have defective DNA repair, especially in the HR pathway,
which is the most preferred mechanism of repair in most cells [93]. This, along with
its backup mechanism, the alternative end-joining pathway of DNA repair, is highly de-
pendent on poly(ADP-ribose) polymerase (PARP) [94]. Thus, PARP inhibitors are under
investigation, particularly in combination with radiotherapy (RT) or temozolomide (TMZ).
Wang et al. and Higuchi et al., in their preclinical models, demonstrated that PARP in-
hibition’s efficacy may be enhanced by combination with TMZ or RT [111,112]. Recent
clinical trials include a phase II trial investigating PARP inhibitors (Olaparib) alone for
IDHmt advanced gliomas (NCT03212274), and a phase II trial investigating Olaparib in
recurrent IDHmt gliomas (NCT03561870). Combinations of PARP inhibitors are also being
investigated—NCT03749187 is a trial of BGB-290, a novel PARP inhibitor in combination
with TMZ for IDHmt gliomas of all grades, while NCT03914742 is investigating the same
combination for recurrent IDHmt gliomas, and NCT03991832 is investigating Olaparib in
combination with a checkpoint inhibitor, Durvalumab [91] (Table 2).

Further, some hypothesized therapeutic pathways involve exploiting metabolic and
apoptotic vulnerabilities in IDHmt cells [91,94]. However, the caveat remains that some
of these results are from IDHmt GBM isolates, or isolates of other tumors, not from LGG-
specific cell cultures. Tateishi et al. demonstrated that IDHmt glioma cells had lowered
NAD+ levels, a crucial cofactor for cellular metabolism. Further, their team found that these
cells were sensitive to inhibitors of nicotinamide phosphoribosyl transferase (NAMPT),
an enzyme necessary for NAD+ synthesis [113]. NCT02702492 is an ongoing Phase I
trial that is investigating KPT-9274, one such agent, in IDHmt solid tumors. In IDHmt
tumor models, the presence of raised 2-HG levels was shown to trigger apoptosis by
suppressing BCL-2, causing altered mitochondrial metabolism and apoptosis [65,91,94].
Another group of authors found that ABT263, a BCL-2 and BCL-xL inhibitor, was lethal
to IDHmt glioma cells [94,114]. One avenue includes altering the production of 2-HG,
by halting its production from a-KG. «-KG is produced from glutamate, and reducing
glutaminase activity has been shown to reduce the growth and increase the sensitivity
of IDHmt glioma cells to radiation [91]. Finally, IDHmt glioma cells have been shown
to specifically exhibit greater levels of Notch ligand delta-like 3 (DLL3) RNA and were
sensitive to anti-DLL3 antibodies [115]. The caveat to these advances, besides the fact that
they are at the preclinical level, remains that most results are from studies on GBM-derived
cells, or even IDHmt cells from other cancers. Regardless, they may provide some cause for
cautious optimism.

7.2. Therapeutics in DNA Methylation, Histone Modification, and Other Domains of Epigenetics
in LGGs

DNA demethylating agents, or DNA methyltransferase inhibitors (DNMTIs), were
investigated early on [91], given the hypermethylated phenotype of IDHmt gliomas. Preclin-
ical glioma models investigating long-term 5-azacitidine and decitabine demonstrated sig-
nificant tumor growth inhibition [116,117], which another group of authors demonstrated
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to be enhanced by combination with temozolomide [118]. However, these results have
not yet been translated to the clinical setting. In a clinical trial of 12 patients with IDHmt
recurrent gliomas (astrocytic or oligodendroglial histology), 5-azacitidine demonstrated
minimal activity [119]. Current ongoing trials include those testing 5-azacytidine, either as a
single agent or in combination with IDHmt inhibitors (NCT03666559, NCT03684811), while
another phase I trial is ongoing to evaluate ASTX727, a combination of decitabine and a cy-
tidine deaminase inhibitor in recurrent or progressive IDHmt gliomas (NCT03922555) [91]
(Table 2).

Despite prior knowledge of their presence, the role of histone modifications in LGG
therapeutics has come to the fore only in recent years [45]. The clinical utility of histone
modification in LGGs is best exemplified through the Histone Deacetylase (HDAC) in-
hibitors. Panobinostat achieved feasibility in Phase I trials using glioma cells, and FDA
approval for off-label use for diffuse gliomas [89]. Its combinations with the proteasome
inhibitor marizomib have also been explored in preclinical studies [89,120] (Cooney et al.,
2020; Kilburn et al., 2018). Finally, it has also been demonstrated that valproate, the
well-known antiepileptic, and Panabinostat both inhibit IDHmt glioma cell lines [91].

Finally, Bromodomain and Extra-Terminal Motif (BET) inhibitors are a target of
promise. BET proteins are key in epigenetic regulation, and promote the expression of
multiple oncogenes [91]. IDHmt glioma cells have been found to be sensitive to two BET
inhibitors (JQ1 and GS-626510) [121].

8. Conclusions

Several prognostic biomarkers and potential therapeutic targets may be identified in
cellular structures and processes associated with DNA methylation and histone modifica-
tion in low-grade gliomas. Diagnostic and/or therapeutic targeting of MGMT promoter
methylation, TET-hTDG-BER pathway, G-CIMP association, PARP inhibition, IDH and
2-HG-associated processes, TERT mutation and ARL9-associated pathways, DNA Methyl-
transferase (DNMT) inhibition, Histone Deacetylase (HDAC) inhibition, BET inhibition,
and CpG site DNA methylation signature, along with others, present exciting avenues for
translational research. However, much of the evidence remains restricted to preclinical
studies, warranting further investigation to demonstrate true clinical utility.
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