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Simple Summary: Medulloblastoma is the most prevalent intracerebellar pediatric brain tumor,
accounting for approximately 20% of all childhood brain tumors and over 60% of embryonal brain
tumors. MYC-driven medulloblastoma has extreme metastatic potential and is often resistant to
multipronged treatment. PRMT5 plays a key role in cell functions and processes in MYC-driven
medulloblastoma by stabilizing the MYC protein. RMT5 inhibitors can potentially disrupt MYC’s
function, impeding tumor progression and offering a target therapeutic approach to treat MYC-
amplified medulloblastoma. Here, we highlight the challenges that must be addressed in future
drug development.

Abstract: MYC amplification or overexpression is most common in Group 3 medulloblastomas and
is positively associated with poor clinical outcomes. Recently, protein arginine methyltransferase
5 (PRMT5) overexpression has been shown to be associated with tumorigenic MYC functions in
cancers, particularly in brain cancers such as glioblastoma and medulloblastoma. PRMT5 regulates
oncogenes, including MYC, that are often deregulated in medulloblastomas. However, the role of
PRMT5-mediated post-translational modification in the stabilization of these oncoproteins remains
poorly understood. The potential impact of PRMT5 inhibition on MYC makes it an attractive target
in various cancers. PRMT5 inhibitors are a promising class of anti-cancer drugs demonstrating
preclinical and preliminary clinical efficacies. Here, we review the publicly available preclinical and
clinical studies on PRMT5 targeting using small molecule inhibitors and discuss the prospects of
using them in medulloblastoma therapy.

Keywords: brain cancer; medulloblastoma; MYC; PRMT5 inhibitors; SDMA

1. Introduction

Medulloblastoma is the most prevalent intracerebellar pediatric brain tumor, account-
ing for approximately 20% of all childhood brain tumors and over 60% of embryonal brain
tumors [1]. Medulloblastoma is classified into four major molecularly diverse subgroups
including wingless (WNT), Sonic hedgehog (SHH, p53 mutant and p53 wild type), Group 3,
and Group 4 medulloblastomas [2–4]. The WNT subgroup comprises approximately 10% of
the medulloblastoma cases and has the most favorable clinical outcomes, with a 5-year over-
all survival surpassing 95% [5–7]. The SHH subgroup typically displays deregulation of the
SHH signaling pathway and represents approximately one-third of childhood patients with
medulloblastomas [2,8]. Group 3 medulloblastomas often exhibit MYC overexpression and
have the most dismal clinical diagnosis of the four medulloblastoma subgroups, with a
survival rate of less than 60%. MYC-driven medulloblastomas have extreme metastatic
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potential and are often resistant to multipronged treatment [9–11]. Group 4 is the most
prevalent subgroup, accounting for nearly 40% of all medulloblastoma tumors, and is
normally seen in children aged 5–10 years and rarely in infants [2]. Although progress
has been made in understanding medulloblastoma at the molecular and genetic level,
comparatively few targeted therapies have achieved clinical success. Current therapies for
medulloblastoma have progressed in favor of patient survival to about 70% [8]. However,
this comes with consequences, as standard treatment or medications like chemotherapy,
brain and spinal cord radiation, and surgical removal leave patients at risk for permanent
mental disabilities [1,12].

Post-translational modification (PTM) is one targetable regulatory mechanism of MYC
and other proteins, with the potential to be developed therapeutically. While the roles of
PTMs like phosphorylation [13], ubiquitinoylation [14], and acetylation [15] in controlling
these proteins responsible for medulloblastoma have received significant attention, argi-
nine methylation has only recently been investigated. Arginine methylation is one of the
common PTM processes that are catalyzed by a member of the protein arginine methyl-
transferase (PRMT) family; this group of nine enzymes is responsible for the methylation of
arginine, using S-adenosylmethionine (SAM) as a methyl group donor. The physiological
control of many cellular processes, including splicing transcription and mitosis, depends on
the activity of PRMT family enzymes [16]. PRMTs have also been revealed to be involved
in the progression of various types of cancers [17,18]. In humans, PRMT members can be
divided into various classes based on their enzymatic role, i.e., type I (PRMT1-4, PRMT6,
and PRMT8) that catalyze the formation of monomethyl arginine (MMA) and asymmetric
dimethyl arginine (ADMA); type II (PRMT5 and PRMT9) that catalyze the formation of
MMA and symmetric dimethyl arginine (SDMA); and type III (PRMT7) which is responsi-
ble for the formation of MMA [19]. As the most prevalent type II SDMA methyltransferase,
PRMT5 forms a heterotetrametric complex with a protein called methylosome protein
50 (MEP50) that can catalyze symmetric demethylation of various histone and non-histone
proteins [20]. Remarkably, PRMT5 was proven to regulate the function of glioma-associated
oncogene homolog 1(GLI1) protein in an SHH-responsive cell line [21]. PRMT5 also repre-
sents a requisite driver of tumor progression in SHH-medulloblastoma and MYC-amplified
medulloblastoma [22,23]. During conversion to malignancy or metastasis, PRMT5 acts as
an oncogene. PRMT5 enzyme inhibition or its catalytic depletion frequently reduces or
halts cellular proliferation, while its hyperexpression leads to hyper-proliferation [24–26].
Consequently, PRMT5 is emerging as a novel target for the treatment of various cancers,
including medulloblastoma.

Recently, PRMT5 inhibitors have been credited with inhibiting the growth of cancerous
cells in vitro and in vivo. Various PRMT5 inhibitors with different functions have under-
gone clinical trials for the treatment of advanced cancer or recurrent solid tumors [27,28].
The effects of PRMT5 inhibition on cancerous cells’ proliferation, invasion, and migration
can contribute to anti-cancer efficacy [29,30]. This review explores the current knowledge of
the effectiveness of PRMT5 inhibitors in preclinical and preliminary clinical settings, which
may aid in understanding how to treat MYC-amplified medulloblastoma more effectively
and safely.

2. PRMT5 Structure, Function, and Localization
2.1. Structure

PRMT5 is a primary type II arginine methyl transferase that forms a prominent methy-
losome complex with distinctive binding oligopeptides, such as the WD (Trp-Asp) repeat-
containing 50-kilodalton methylosome protein (MEP50). PRMT5 requires the existence of
diverse substrate adapters such as rio-domain-containing protein 1 (RioK1), chloride chan-
nel nucleotide-sensitive 1A protein (pIC1n) and cooperator of PRTM5 (COPR5) to detect
and catalyze the SDMA on histone and non-histone proteins via PTMs [31–33]. PRMT5′s
structure consists of a triphosphate isomerase (TIM) barrel, an intermediate Rossmann-fold,
and a C-terminal β-barrel [34]. Four PRMT5 units generate a hetero octameric complex by
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binding with four MEP50s (Figure 1). Studies have demonstrated that PRMT5 alone has
minimal methyltransferase activity; it must be complexed with MEP50 to achieve normal
catalysis of SDMA on proteins [35]. This could be because MEP50 enhances the stability of
PRMT5 for a long time by binding with proteins and acting as a metastable cofactor.
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Figure 1. PRMT5 protein structure: structural and functional domains.

2.2. Function

PRMT5 plays a key role in cell functions and processes by regulating the methylation
of cellular proteins, which affects oncogenic cellular processes such as cell proliferation and
differentiation [29,30,36]. PRMT5 regulates these processes by modifying gene expression
to stabilize histones H4R3, H3R2, H3R8, and H2AR3 and non-histone proteins via the
SDMA process [37,38]. An extensive range of nonhistone proteins have also been revealed
as PRMT5 substrates, including androgen receptor (AR), EGFR, GATA4, C-MYC, N-MYC,
IL-2, E2F1, GM130, HOXA9, KLF4, KLF5, NOTCH, NFkB(p65), PDCD4, POLR2A, P53,
RAF proteins, SPT5, SREBP1a, Sm proteins, nucleolin, and others [12,36,39–52]. In addition,
some substrates such as certain nonhistone oncogenic transcription factors are symmetri-
cally dimethylated by PRMT5. PRMT5-regulated cellular processes are shown in Figure 2.
The importance of arginine methylation by PRMT5 in cancer progression has only recently
become apparent [17]. PRMT5 knockout mice exhibited embryonic lethality, demonstrating
the role of PRTM5 in embryonic development and crucial biological functions. In mouse
embryonic stem cells (ESCs), PRMT5 maintains pluripotency, whereas in human ESCs,
it influences only proliferation [53,54]. PRMT5 is needed for neural stem cell persistence
and its deletion causes premature death of the mouse by disrupting the development
of the central nervous system [55]. PRMT5 promotes SWI/SNF-mediated chromatin re-
modeling and controls the process of myogenesis. Deletion of PRMT5 causes an obstacle
in developmental processes, uncontrolled proliferation, and impairment of adult tissue
differentiation [53–58]. Notably, PRMT5 is overexpressed in a number of cancers, including
melanoma, multiple myeloma, lymphoma, glioblastoma, breast, lung, pancreas, prostate,
ovarian, and colorectal cancers, and high expression of PRMT5 often correlates with poor
patient clinical outcomes [38,59]. Organ-specific functions of PRMT5 are shown in Table 1.
The higher expression of PRMT5 in cancer is thought to epigenetically suppress tumor
suppressor and cell cycle genes [17,60]. Recently, the association of PRMT5 with MYC was
found in numerous cancers, including brain tumors such as glioblastoma; this association
creates abnormalities in MYC function [61–63]. Consequently, PRMT5 has been recognized
as an oncogenic function and has received extensive interest as a potential target for better
clinical outcomes. To this end, numerous potent therapeutic agents have been developed
to inhibit PRMT5 and their antitumor effects are now being assessed in preclinical models
and clinical trials [27,64].
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Figure 2. Biological functions of PRMT5 that regulate cellular processes. Elevated expression of
PRMT5 can cause post-translational modification of several transcription factors by symmetrically
dimethylating arginine residues of proteins and regulate the expression of their corresponding
targeted genes. When recruited to the promoter regions of precise target genes in the nucleus, they
can promote cell proliferation and tumorigenesis.

2.3. Localization

Cytosolic and nuclear localization of PRMT5 helps to determine its role in the cell.
PRMT5 is predominantly localized in the cytoplasm in lung [65], prostate [66], and
melanoma cancer [67]. Diffused cellular localization of PRMT5 was confirmed in both the
cytoplasm and the nucleus of brain tumor glioblastoma cells [61]. Cytoplasmic and nuclear
localization of PRMT5 has also been confirmed in various preclinical mouse models and
primary human cancer tissues [68]. In adult mice, PRMT5 is expressed predominantly in
the nucleus of the neurons in the cerebrum and spinal cord [55]. Han et al. demonstrated
the high expression of PRMT5 as a marker of malignant progression in glioblastoma and
its crucial role in tumor growth [63]. Our lab recently analyzed the localization of the
PRMT5 in tumor tissues of medulloblastoma patients as well as in MYC-amplified cell lines.
PRMT5 demonstrated predominantly nuclear localization in both HD-MB03 and primary
tumor cells [22].

Table 1. Organ-specific roles of PRMT5.

Organ Cellular Function Mechanism References

Brain Cell cycle progression, apoptosis Altered expression and stability of MYC [22]

Phase separation Methylation of FUS [69]

GSK3β-NF-kβ signaling Altered expression of E2F1 [70]
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Table 1. Cont.

Organ Cellular Function Mechanism References

HTT toxicity Altered expression of HTT [71]

AKT-ERK signaling, cell cycle progression Altered expression of PTEN [72]

Cell cycle progression, stemness Altered RNA Splicing [73,74]

mTOR signaling Methylation (hnRNPA1) [75]

DNA instability response Altered expression of RNF168 [76]

Cell migration, cell cycle progression,
and apoptosis Altered expression of LRP12 [62]

AKT signaling and metastasis Methylation of PKB [77]

Lungs Metastasis Altered expression of EMT genes [78]

Metastasis Altered expression of SHARPIN [79]

Metastasis Altered expression of FGFR3/miR-99 family [80]

Metastasis Methylation of KLF5 [81]

Liver Lipid metabolism Methylation of SREBP [47]

ERK signaling Altered expression of BTG2 [82]

PRMY5 deprivation PRMT5 activity of LINC01138 [83]

WNT-β-Catenin signaling Altered cofactor binding of LYRIC [84]

Spleen NA Altered stability of MYC [85]

Pancreas Glucose metabolism, cell cycle progression Altered stability of MYC [86,87]

Bone Type I interferon signaling Altered expression (interferon gene) [88,89]

Prostate AR, ERG signaling Altered methylation (AR) [90,91]

Ovary NA Altered methylation (E2F1) [92]

Heart Transcriptional activity Methylation (GATA4) [45]

Breast Stemness Altered expression of C-MYC, KLF4,
and OCT4 [93]

Stemness Altered expression of FOXP1 [94]

Metastasis and invasion Altered expression of AKT genes [78]

Metastasis and AKT signaling Methylation of AKT [95]

Cell cycle progression Methylation of KLF4 [96]

Cell migration Methylation of ZNF326 [97]

NA Methylation of PDCD4 [98]

Abbreviations: AKT-ERK, alpha serine/threonine-protein-extracellular-regulated kinase; AR, androgen receptor;
E2F1, E2 promoter binding factor 1; EMT, epithelial–mesenchymal transition; ERG, ETS-related gene; FGFR3,
fibroblast growth factor 3; FOXP1, forkhead box protein P1; FUS, fused in sarcoma; GSK3β-NF-kβ, glycogen
synthase kinase; hnRNPA1, heterogeneous nuclear ribonucleoprotein A1; HTT, huntingtin protein; KLF4, Kruppel-
like factor 4; LRP12, low-density lipoprotein receptor-related protein 12; LINC01138, long non-coding RNA;
miR-99, microRNA99; mTOR, mammalian target of rapamycin; OCT4, octamer binding protein 4; PKB, protein
kinase B; PDCD4, program cell death protein 4; SREBP, sterol regulatory element-binding protein; ZNF326, zinc
finger protein 326.

3. PRMT5 Association with MYC-Driven Medulloblastoma

Epigenetic deregulation plays a key role in medulloblastoma tumorigenesis, especially
in aggressive Group 3 and Group 4 medulloblastomas [99–102], where germline mutations
in known cancer predisposition genes are rare. Indeed, epigenetic deregulator or chromatin
modifiers, including histone acetylase or methylation/methyltransferase activities, are
very common in Group 3 and 4 medulloblastomas compared to other subgroups. This
emphasizes the need to discover and understand the pertinent mechanisms of epigenetic
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regulation or PTMs and the corresponding therapeutic targets. We recently reported that
PRTM5 is a critical regulator MYC oncoprotein in an MYC-amplified (Group 3) medul-
loblastoma [22]. We found that high levels of PRMT5 not only mirror MYC expression but
also correlate with poor outcomes in Group 3 medulloblastoma patients. Mechanistically,
we showed that PRMT5 stabilizes the MYC protein by physically interacting with it, raising
the intriguing possibility that PRMT5 can regulate MYC function at both the transcriptional
and translational/post-translational levels. The exact MYC oncogenic programs regulated
by PRMT5 in medulloblastoma are largely unknown. Therefore, exploring the regulation
of MYC-driven oncogenic progresses by PRMT5 is crucial to identify effective therapeutics
for these high-risk patients.

The involvement of PRMT5 has been verified in the epigenetic regulation of chro-
matin complexes following interaction with numerous proteins, including transcription
factors [42], and their activities are dysregulated in various cancers [59]. In recent studies,
high levels of PRMT5 and MYC corelate with glioma malignancy [61–63]. Furthermore,
PRMT5 is physically associated with N-MYC (an MYC homologue) and enhances the
stability of N-MYC in neuroblastoma cells [51]. Nonetheless, the function of PRMT5 and its
interaction with MYC in MYC-driven medulloblastoma have not been fully investigated.
Favia et al. reported that the association of PRMT1 and PRMT5 with MYC in glioblastoma
stem cells resulted in MYC being dimethylated symmetrically and asymmetrically by both
enzymes, respectively [103]. MYC-driven cellular processes resulting from symmetric
dimethylation by PRMT5 are shown in Figure 3. The colocalization of PRMT5 and MYC
suggests that PRMT5 forms a complex with MYC and supports its stabilization in MYC-
amplified medulloblastoma cells. This physical interaction of PRMT5 and MYC implies a
potential role of PRMT5 in medulloblastoma tumorigenesis.
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Figure 3. Overexpression of PRMT5 causes symmetric demethylation and stabilization of MYC,
leading to reduced apoptosis and enhanced cell proliferation. As indicated, various steps in this
process can be modulated by PRMT5 inhibitors.

Highly expressed PRMT5 stabilizes MYC and promotes its expression in medulloblas-
tomas. Studies support the predictive value of PRMT5 overexpression as a biomarker for
aggressive tumorigenesis in cancer patients. Knockdown of PRMT5 in medulloblastoma
cells suppresses cell growth by diminishing MYC stability, supporting the functional role
of the PRMT5–MYC interaction complex in medulloblastoma [22]. Since MYC and PRMT5
co-expression and colocalization were observed in the nucleus, PRMT5 could also regu-
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late MYC function at the transcriptional level. Further studies are needed to investigate
PRMT5’s roles in the regulation of the transcription and translation of MYC.

PRMT5 is a stemness factor crucial in maintaining the balance between quiescence,
proliferation, and generation for cancer stem cells and non-cancer cells. The role of
PRMT5 in stemness has been demonstrated in embryonic (ESCs) and neural stem cells
(NSCs) [53,72,104]. Provided that NCCs or cancer stem cells have a great influence on
medulloblastoma recurrence and tumorigenesis, there might be a role for PRMT5 in regu-
lating the self-renewal of tumor initiation in medulloblastoma. Recently, the methylation of
stemness factor KLF-4 (Kruppel-like factor-4) by PRTM5 was shown in breast cancer [96].
This methylation leads to KLF4 protein stabilization, promoting tumorigenesis. In another
study, researchers synthesized a novel compound that has the potency to inhibit PRMT5,
disrupt the interaction of PRMT5 and KLF4, and suppress breast cancer development [105].
KLFs are evolutionarily conserved zinc-finger-associated transcription factors with distinct
regulatory functions in cell growth, proliferation, and differentiation. Moreover, PRMT5
interacts with KLF5 (another member of KLF family proteins) and accelerates its dimethy-
lation, a mechanism that depends on methyltransferase activity [81]. Further investigation
to understand the mechanism of PRTM5–KLF4/KL5 interactions could uncover another
new strategy to elucidate therapeutic targets for MYC-amplified medulloblastoma.

4. Potential Inhibitors of PRMT5

PRMT5 inhibitors have been proven to prevent the growth of cancerous cells in vitro
and in vivo. Many PRMT5 inhibitors have entered clinical trials for the treatment of
multiple types of cancer [34,106,107]. The pharmacological effects of these inhibitors with
their targets in various cancers are summarized in Table 2, and details about corresponding
clinical trials are given in Table 3.

Table 2. Pharmacologically active PRMT5 inhibitors.

Compound
Name Structure Function IC50

In Vitro In Vivo Activity References

JNJ64619178
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and in vivo. Many PRMT5 inhibitors have entered clinical trials for the treatment of mul-

tiple types of cancer [34,106,107]. The pharmacological effects of these inhibitors with their 

targets in various cancers are summarized in Table 2, and details about corresponding 

clinical trials are given in Table 3. 

Table 2. Pharmacologically active PRMT5 inhibitors. 

Compound 

Name  
Structure Function  

IC50 

In Vitro  
In Vivo Activity References 

JNJ64619178 

 

Dual SAM/substrate 

competitive 
0.2 nM 

Antitumor effect in lung 

cancer, AML, non-Hodgkin 

lymphoma cell line mouse 

xenograft 

[108] 

PF06939999 

 

SAM  

competitive 
3.3 nM 

Antitumor effect in lung 

cancer 
[109] 

GSK3235025 

EPZ015666 
 

Substrate competi-

tive 
22 nM 

Antitumor effect in MCL, 

MM, AML, GBM, and blad-

der cell line mouse xeno-

grafts and in a TNBC PDX 

mouse model 

[110–114] 

GSK591 

(EPZ015866) 
 

Substrate competi-

tive 
4 nM 

Antitumor effect in glioblas-

toma 
[110] 

GSK3326595 

 

Substrate competi-

tive 
6.2 nM 

Antitumor effect in non-

Hodgkin lymphoma cell 

line mouse xenograft and 

antitumor effect in a DLBCL 

PDX mouse model 

[115–118] 

AMG 193 Structure undisclosed 
MTA  

cooperative inhibitor 
NA 

Antitumor effect on ad-

vanced/metastatic solid tu-

mors 

[119] 

Dual
SAM/substrate

competitive
0.2 nM

Antitumor effect in
lung cancer, AML,

non-Hodgkin
lymphoma cell line

mouse xenograft

[108]

PF06939999
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AMG 193 Structure undisclosed 
MTA  

cooperative inhibitor 
NA 

Antitumor effect on ad-

vanced/metastatic solid tu-

mors 

[119] 

SAM
competitive 3.3 nM Antitumor effect in

lung cancer [109]

GSK3235025
EPZ015666
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competitive 
0.2 nM 

Antitumor effect in lung 

cancer, AML, non-Hodgkin 

lymphoma cell line mouse 

xenograft 

[108] 

PF06939999 

 

SAM  

competitive 
3.3 nM 

Antitumor effect in lung 

cancer 
[109] 

GSK3235025 

EPZ015666 
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6.2 nM 

Antitumor effect in non-

Hodgkin lymphoma cell 

line mouse xenograft and 

antitumor effect in a DLBCL 

PDX mouse model 

[115–118] 

AMG 193 Structure undisclosed 
MTA  

cooperative inhibitor 
NA 

Antitumor effect on ad-

vanced/metastatic solid tu-

mors 

[119] 

Substrate
competitive 22 nM

Antitumor effect in
MCL, MM, AML,

GBM, and bladder cell
line mouse xenografts
and in a TNBC PDX

mouse model

[110–114]

GSK591
(EPZ015866)
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disrupt the interaction of PRMT5 and KLF4, and suppress breast cancer development 

[105]. KLFs are evolutionarily conserved zinc-finger-associated transcription factors with 
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PRMT5 inhibitors have been proven to prevent the growth of cancerous cells in vitro 

and in vivo. Many PRMT5 inhibitors have entered clinical trials for the treatment of mul-

tiple types of cancer [34,106,107]. The pharmacological effects of these inhibitors with their 

targets in various cancers are summarized in Table 2, and details about corresponding 

clinical trials are given in Table 3. 
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Dual SAM/substrate 

competitive 
0.2 nM 

Antitumor effect in lung 

cancer, AML, non-Hodgkin 

lymphoma cell line mouse 

xenograft 

[108] 

PF06939999 

 

SAM  

competitive 
3.3 nM 

Antitumor effect in lung 

cancer 
[109] 

GSK3235025 

EPZ015666 
 

Substrate competi-

tive 
22 nM 

Antitumor effect in MCL, 

MM, AML, GBM, and blad-

der cell line mouse xeno-

grafts and in a TNBC PDX 

mouse model 

[110–114] 

GSK591 

(EPZ015866) 
 

Substrate competi-

tive 
4 nM 

Antitumor effect in glioblas-

toma 
[110] 

GSK3326595 

 

Substrate competi-

tive 
6.2 nM 

Antitumor effect in non-

Hodgkin lymphoma cell 

line mouse xenograft and 

antitumor effect in a DLBCL 

PDX mouse model 

[115–118] 

AMG 193 Structure undisclosed 
MTA  

cooperative inhibitor 
NA 

Antitumor effect on ad-

vanced/metastatic solid tu-

mors 

[119] 

Substrate
competitive 4 nM Antitumor effect in

glioblastoma [110]
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Table 2. Cont.

Compound
Name Structure Function IC50

In Vitro In Vivo Activity References
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and in vivo. Many PRMT5 inhibitors have entered clinical trials for the treatment of mul-

tiple types of cancer [34,106,107]. The pharmacological effects of these inhibitors with their 
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clinical trials are given in Table 3. 
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Compound 

Name  
Structure Function  

IC50 

In Vitro  
In Vivo Activity References 

JNJ64619178 

 

Dual SAM/substrate 

competitive 
0.2 nM 

Antitumor effect in lung 

cancer, AML, non-Hodgkin 

lymphoma cell line mouse 

xenograft 

[108] 

PF06939999 

 

SAM  

competitive 
3.3 nM 

Antitumor effect in lung 

cancer 
[109] 

GSK3235025 

EPZ015666 
 

Substrate competi-

tive 
22 nM 

Antitumor effect in MCL, 

MM, AML, GBM, and blad-

der cell line mouse xeno-

grafts and in a TNBC PDX 

mouse model 

[110–114] 

GSK591 

(EPZ015866) 
 

Substrate competi-

tive 
4 nM 

Antitumor effect in glioblas-

toma 
[110] 

GSK3326595 

 

Substrate competi-

tive 
6.2 nM 

Antitumor effect in non-

Hodgkin lymphoma cell 

line mouse xenograft and 

antitumor effect in a DLBCL 

PDX mouse model 

[115–118] 

AMG 193 Structure undisclosed 
MTA  

cooperative inhibitor 
NA 

Antitumor effect on ad-

vanced/metastatic solid tu-

mors 

[119] 

Substrate
competitive 6.2 nM

Antitumor effect in
non-Hodgkin

lymphoma cell line
mouse xenograft and
antitumor effect in a
DLBCL PDX mouse

model

[115–118]

AMG 193 Structure undisclosed
MTA

cooperative
inhibitor

NA
Antitumor effect on

advanced/metastatic
solid tumors

[119]

PRT543
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PRT543 

 

SAM  

competitive 
10.8 nM 

Antitumor effect on ad-

vanced solid tumors and he-

matologic malignancies 

[120] 

PRT382 Structure undisclosed SAM competitive 2.8 nM 
Antitumor effect on hema-

tological tumors 
[85] 

PRT811 Structure undisclosed 
SAM  

competitive 
3.9 nM 

Antitumor effect on ad-

vanced solid tumor, Glio-

blastoma, CNS Lymphoma 

[121] 

TNG908 Structure undisclosed 
MTA  

cooperative inhibitor 
110 nM 

Antitumor effect on Glio-

blastoma, 
[122] 

MRTX1719 

 

PRMT5–MTA com-

plex inhibitor, MTA 

competitive 

12 nM 
Antitumor effect on solid 

tumor 
[123,124] 

LLY-283 (C220) 

 

SAM  

competitive 
22 nM 

Reduced acute graft versus 

host disease incidence in 

mice, antitumor effect in 

MPN xenografts 

[74,125,126] 

Compound1a 

 

Allosteric modulator 16 nM 
Antitumor effect in breast 

cancer 
[127] 

CMP5 Structure undisclosed 
SAM  

competitive 
25 µM 

Antitumor effect in breast 

cancer and glioblastoma  
[72] 

JBI-778 Structure undisclosed 
Substrate competi-

tive 
27 to 700 nM 

Antitumor effect in glioblas-

toma 
[128] 

SH3765 Structure undisclosed 
Substrate competi-

tive 
NA 

Antitumor effect on ad-

vanced malignant tumors, 

including solid tumors and 

non-Hodgkin lymphoma 

[129] 

SCR6920 Structure undisclosed 
Substrate competi-

tive 
NA 

Antitumor effect on ad-

vanced malignant tumor in-

cluding solid tumor and 

non-Hodgkin lymphoma 

[129] 

Abbreviations: AML, acute myeloid leukemia; MCL, mantle cell lymphoma; MM, myelomonocytic 

leukemia; GBM, glioblastoma; TNBC, triple-negative breast cancer, PDX, patient-derived xenograft; 

DLBCL, diffuse large B cell lymphoma; CNS, central nervous system; MPN, myeloproliferative neo-

plasm; nM, nano molar; NA, not available; SAM, S-adenosylmethionine; MTA, methylthioadenosine. 

SAM
competitive 10.8 nM

Antitumor effect on
advanced solid tumors

and hematologic
malignancies

[120]

PRT382 Structure undisclosed SAM competitive 2.8 nM Antitumor effect on
hematological tumors [85]

PRT811 Structure undisclosed SAM
competitive 3.9 nM

Antitumor effect on
advanced solid tumor,

Glioblastoma, CNS
Lymphoma

[121]

TNG908 Structure undisclosed
MTA

cooperative
inhibitor

110 nM Antitumor effect on
Glioblastoma, [122]

MRTX1719
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Reduced acute graft versus 

host disease incidence in 

mice, antitumor effect in 

MPN xenografts 

[74,125,126] 

Compound1a 

 

Allosteric modulator 16 nM 
Antitumor effect in breast 

cancer 
[127] 
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Abbreviations: AML, acute myeloid leukemia; MCL, mantle cell lymphoma; MM, myelomonocytic 
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DLBCL, diffuse large B cell lymphoma; CNS, central nervous system; MPN, myeloproliferative neo-

plasm; nM, nano molar; NA, not available; SAM, S-adenosylmethionine; MTA, methylthioadenosine. 

PRMT5–MTA
complex inhibitor,
MTA competitive

12 nM Antitumor effect on
solid tumor [123,124]

LLY-283 (C220)
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Antitumor effect on hema-
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[85] 
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Antitumor effect on solid 

tumor 
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competitive 
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Reduced acute graft versus 

host disease incidence in 

mice, antitumor effect in 

MPN xenografts 

[74,125,126] 

Compound1a 

 

Allosteric modulator 16 nM 
Antitumor effect in breast 

cancer 
[127] 
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SAM  

competitive 
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tive 
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Antitumor effect in glioblas-
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SH3765 Structure undisclosed 
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Antitumor effect on ad-
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[129] 

SCR6920 Structure undisclosed 
Substrate competi-

tive 
NA 

Antitumor effect on ad-

vanced malignant tumor in-

cluding solid tumor and 
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Abbreviations: AML, acute myeloid leukemia; MCL, mantle cell lymphoma; MM, myelomonocytic 

leukemia; GBM, glioblastoma; TNBC, triple-negative breast cancer, PDX, patient-derived xenograft; 

DLBCL, diffuse large B cell lymphoma; CNS, central nervous system; MPN, myeloproliferative neo-

plasm; nM, nano molar; NA, not available; SAM, S-adenosylmethionine; MTA, methylthioadenosine. 

SAM
competitive 22 nM

Reduced acute graft
versus host disease
incidence in mice,
antitumor effect in
MPN xenografts

[74,125,126]

Compound1a
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[120] 

PRT382 Structure undisclosed SAM competitive 2.8 nM 
Antitumor effect on hema-

tological tumors 
[85] 

PRT811 Structure undisclosed 
SAM  

competitive 
3.9 nM 

Antitumor effect on ad-

vanced solid tumor, Glio-

blastoma, CNS Lymphoma 

[121] 
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Antitumor effect on Glio-

blastoma, 
[122] 

MRTX1719 

 

PRMT5–MTA com-

plex inhibitor, MTA 

competitive 

12 nM 
Antitumor effect on solid 

tumor 
[123,124] 

LLY-283 (C220) 

 

SAM  

competitive 
22 nM 

Reduced acute graft versus 

host disease incidence in 

mice, antitumor effect in 

MPN xenografts 

[74,125,126] 

Compound1a 

 

Allosteric modulator 16 nM 
Antitumor effect in breast 

cancer 
[127] 

CMP5 Structure undisclosed 
SAM  

competitive 
25 µM 

Antitumor effect in breast 

cancer and glioblastoma  
[72] 

JBI-778 Structure undisclosed 
Substrate competi-

tive 
27 to 700 nM 

Antitumor effect in glioblas-

toma 
[128] 

SH3765 Structure undisclosed 
Substrate competi-

tive 
NA 

Antitumor effect on ad-

vanced malignant tumors, 

including solid tumors and 
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[129] 

SCR6920 Structure undisclosed 
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tive 
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Antitumor effect on ad-
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cluding solid tumor and 
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Abbreviations: AML, acute myeloid leukemia; MCL, mantle cell lymphoma; MM, myelomonocytic 

leukemia; GBM, glioblastoma; TNBC, triple-negative breast cancer, PDX, patient-derived xenograft; 

DLBCL, diffuse large B cell lymphoma; CNS, central nervous system; MPN, myeloproliferative neo-

plasm; nM, nano molar; NA, not available; SAM, S-adenosylmethionine; MTA, methylthioadenosine. 

Allosteric
modulator 16 nM Antitumor effect in

breast cancer [127]
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Table 2. Cont.

Compound
Name Structure Function IC50

In Vitro In Vivo Activity References

CMP5 Structure undisclosed SAM
competitive 25 µM

Antitumor effect in
breast cancer and

glioblastoma
[72]

JBI-778 Structure undisclosed Substrate
competitive

27 to 700
nM

Antitumor effect in
glioblastoma [128]

SH3765 Structure undisclosed Substrate
competitive NA

Antitumor effect on
advanced malignant

tumors, including
solid tumors and

non-Hodgkin
lymphoma

[129]

SCR6920 Structure undisclosed Substrate
competitive NA

Antitumor effect on
advanced malignant

tumor including solid
tumor and

non-Hodgkin
lymphoma

[129]

Abbreviations: AML, acute myeloid leukemia; MCL, mantle cell lymphoma; MM, myelomonocytic leukemia;
GBM, glioblastoma; TNBC, triple-negative breast cancer, PDX, patient-derived xenograft; DLBCL, diffuse large
B cell lymphoma; CNS, central nervous system; MPN, myeloproliferative neoplasm; nM, nano molar; NA, not
available; SAM, S-adenosylmethionine; MTA, methylthioadenosine.

Table 3. PRMT5 inhibitors in clinical trials.

ClinicalTrials.gov
Identifier

Name of
Inhibitor Status Disease

NCT03573310 JNJ64619178 Phase I Neoplasm solid tumors, non-Hodgkin
lymphoma, and myelodysplastic syndrome

NCT03854227 PF06939999 Phase I Advance and metastatic solid tumors

NCT03614728 GSK3326595 Phase I and II Metastatic solid tumors and acute myeloid
leukemia

NCT02783300 GSK3326595 Phase I Solid tumors and non-Hodgkin lymphoma

NCT04676516 GSK3326595 Phase II Early-stage breast cancer

NCT03886831 PRT543 Phase I Advanced solid tumors and hematological
malignancies

NCT05275478 TNG908 Phase I and II (recruiting) Locally advanced solid tumors

NCT04089449 PRT811 Phase I (recruiting) Advanced solid tumors, recurrent glioma,
and CNS lymphoma

NCT05245500 MRTX1719 Phase I and II (recruiting)
Mesothelioma, NSCLC, malignant

peripheral nerve sheath tumors, solid
tumors, and pancreatic adenocarcinoma

NCT05094336 AMG 193 Phase I and II (recruiting) Advanced MTAP-null solid tumors

NCT05528055 SCR6920 Phase I (recruiting) Advanced malignant tumors

NCT05015309 SH3765 Phase I (not yet Recruiting) Advanced malignant tumors

4.1. JNJ-64619178

JNJ-64619178 (International Patent Number: WO/2017/032840 A1) is a potent PRMT5
inhibitor that irreversibly binds to the SAM pocket of the PRMT5/MEP50 and estab-
lishes a short kinetic constant of target unbinding, resulting in prolonged trapping of
PRMT5/MEP50 in an inactive transition that impedes arginine methylation of histone
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proteins to reduce cellular proliferation [130,131]. The pharmacokinetic (PK) profile of
JNJ-64619178 on a single post-oral dose (PO; 10 mg/kg) and intravenous (IV; 2.5 mg/kg)
administration led to a low clearance (CL = 6.6 mL/min/kg) in mice and reasonable oral
bioavailability (F = 36%). It is presently in clinical trials (NCT03573310) for patients with
advanced solid tumors, non-Hodgkin lymphoma, and lower-risk myelodysplastic syn-
drome [28,132]. Initial clinical results revealed evidence that JNJ-64619178 has manageable
toxicity and antitumor activity at a dose of 1.5 mg QD [132]. A phase 1 dose escalation
study involving 90 patients was conducted to identify recommended phase 2 dose (RP2D)
levels for JNJ-64619178. Based on safety, clinical activity, and PK and pharmacodynamic
(PD) outcomes, two RP2Ds (1.5 mg intermittently and 1 mg once daily) were selected to
inhibit PRMT5 activity in patients with cancerous tumors [133].

4.2. PF06939999

PF06939999 is another potent, selective SAM-competitive inhibitor whose complete
mechanism is still unknown. PF06939999 displayed superior in vitro and in vivo antitumor
activity with concomitant loss of SDMA [109]. The drug sensitivity to PF06939999 in non-
small cell lung cancer (NSCLC) is associated with signaling pathways involving MYC,
cell cycles, and spliceosomes and with mutations in splicing factors. The PK profile of
PF06939999 in a single dose (PO, 10 mg/kg; IV, 2 mg/kg) revealed a reasonable plasma
clearance (CL = 40 mL/min/kg) and steady-state volume of distribution (Vss 3.8 L/kg)
in rodents with moderate oral bioavailability (F = 40%). A phase I dose escalation clinical
trial (NCT03854227) showed promising results in patients with various cancers, including
NSCLC, head and neck squamous cell carcinoma (HNSCC), and others [132,134]. The
results of the NCT03854227 were described in the ASCO annual meeting in 2021 [135].

4.3. EPZ015666

EPZ015666 is a selective substrate-competitive inhibitor of PRMT5 with potential
antiproliferative and antineoplastic activity [110,136]. Previously, it was known as GSK
53235025 [106]. This inhibitor was first employed in mantle cell lymphoma. It was also
used in multiple myeloma and medulloblastoma [137]. The efficacy of EPZ015666 was
determined on the three MYC-amplified medulloblastoma cell lines (HD-MB03, D-283,
and D-341). Medulloblastoma cells were treated with EPZ015666 in a dose-dependent
manner for 72 hr and the results of cell growth assays confirmed that EPZ015666 induced
growth inhibition directly proportionate to the dose in all MYC-driven medulloblastoma
cell lines at a low micromolar potency, with an IC50 of 1.5–2.5 µM [22]. The PK profile
of EPZ015666 in a single dose (oral, 100 mg/kg) revealed a low plasma clearance and a
satisfactory brain distribution in mice. EPZ015666 significantly downregulates the higher
expression of PRMT5 and MYC in medulloblastoma cells [22], suggesting it has therapeutic
potential for MYC-driven medulloblastoma.

4.4. GSK3326595

GSK3326595 is a selective substrate-competitive PRMT5 inhibitor with potential antitu-
mor and antiproliferative activity, which has shown efficacy in various tumor models [77].
Two clinical trials [138–140] are assessing this compound in patients with solid tumor
cancers, primarily adenoid cystic carcinoma and colorectal and breast cancer. A phase I
(NCT02783300) clinical trial is underway to assess the safety, PK, and PD in adults with
solid tumors. General adverse events in this study were common but mild. Another clinical
trial (NCT03614728) on reverted or refractory myelodysplastic syndrome (MDS), chronic
myelomonocytic leukemia (CMML), and acute myeloid leukemia (AML) from MDS is
active [141]. A third trial, designed to evaluate the drug in patients with early breast cancer,
has been completed but no results have been posted yet [142].



Cancers 2023, 15, 5855 11 of 22

4.5. AMG 193

AMG 193 is a methylthioadenosine (MTA)-cooperative PRMT5 inhibitor that specif-
ically targets the MTS-bound state of PRMT5 [119]. This state is enhanced in methylth-
ioadenosine phosphorylase (MTAP)-null tumors. AMG 193 has shown potential inhibition
in a patient-derived xenograft model as well as MTAP-null cancer cell lines. NCT05094336,
a first-in-human (FIH), open-label, multicenter phase I/II trial, is enrolling patients with
MTAP-null NSCLC to evaluate the safety, tolerability, PK, PD, and efficacy of AMG 193.
Docetaxel is used as a combination drug for this clinical trial [143]. However, MTAP-null
mutations are still not identified in medulloblastoma, so AMG 193 might be less relevant
for treatment.

4.6. PRT543

PRT543 is a potent PRMT5 inhibitor that inhibits the methyltransferase activity of
PRMT5 by selectively binding to it, causing potent inhibition of cellular proliferation and
SDMA formation in various cancerous cell lines [107,144]. PRT543 is currently under
assessment in a phase I (NCT03886831) clinical trial that has been completed in patients
with advanced solid tumors and hematologic malignancies. The purpose of the study
was to define a safe dose and timetable for consumption in successive developments of
PRT543. This dose-escalation, open-label study initially provided favorable results. Target
engagement was confirmed by measuring serum SDMA. Phase I dose escalation and
expansion studies are continuing to enroll patients.

4.7. PRT811

PRT811 is a selective and orally bioavailable PRMT5 inhibitor that passes the blood–
brain barrier and shows effectiveness in high-grade glioma. PRT811 is currently under
evaluation in a multicenter, open-level, phase I clinical trial (NCT04089449) in patients with
central nervous system (CNS) lymphomas, recurrent high-grade gliomas, and advanced
solid tumors. PRT811 has excellent PK properties in multiple preclinical species with a
>two-fold higher brain vs. plasma exposure in rodents. PRT811 quickly penetrates the
blood–brain barrier in rodents with higher exposure. PRT811 inhibits SDMA and cell
proliferation of brain tumor cells [145]. PRT811 is broadly active against brain cancer cells
and cancers with high rates of brain metastases [145]. Initial data were presented at the
AACR-NCI-EORTC conference held in 2021 [121].

4.8. TNG908

TNG908 is also an MTA-cooperative PRMT5 inhibitor. The MTA-cooperative binding
process has demonstrated the synthetic lethal relationship between MTAP losses and
PRMT5 inhibition. TNG908 demonstrated a 15-fold higher potency in MTAP-null cancer
cell lines. Pharmacokinetically, it is not a substrate of efflux transporters like Pgp and
BCRP, which is a favorable predictor of the ability to cross the blood–brain barrier [122].
However, we still need to measure its exposure in the brain and determine the Kp. The
PD properties of NTG908 allow for PRMT5 inhibition, which was confirmed by decreased
levels of SDMA-modified proteins in a dose-dependent manner in a glioblastoma xenograft
model. TNG908 demonstrated antineoplastic activity against MTAP-null selective tumors
in various xenograft models, including tumor regression in a model representing NSCLC
and cholangial and urothelial carcinomas [14,146]. One clinical trial (NCT05275478) is
going to recruit patients with locally advanced solid tumors.

4.9. MRTX1719

MRTX1719 is another MTA-cooperative inhibitor of PRMT5. MRTX1719 catalytically
binds the PRMT5–MTA complex and stabilizes it in an inactive form. In vitro, MRTX1719
demonstrates a long-lasting therapeutic effect in MTAP cells. Additionally, in vivo studies
verified that MRTX1719 demonstrates potent and enduring inhibition of PRMT5 in a
MTAP-deleted tumor xenograft model, reducing its SDMA activity [123]. An ongoing
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phase I/II clinical trial (NCT05245500) is evaluating the safety, tolerability, PK/PD, and
antineoplastic activity against advanced and metastatic solid tumors. Preliminary data
have been presented, including objective responses in patients with mesothelioma, MTAP-
deleted melanoma, gallbladder adenocarcinoma, NSCLC, malignant peripheral nerve
sheath tumors, solid tumors, and pancreatic adenocarcinoma [124].

4.10. LLY 283

LLY 283 has the potential to inhibit PRMT5 by binding competitively to the SAM
binding site of PRMT5 as a cofactor competitive inhibitor [125]. LLY 283 can efficiently
permeate the blood–brain barrier, as the compound is eliminated more quickly from the
plasma than from the brain [74]. LLY 283 significantly decreases SDMA levels in cancerous
cells. Pharmacologically, LLY 283 suppressed the growth of glioblastoma cell cultures
derived from a cohort of 46 patients. Importantly, LLY 283 has shown significant survival
benefits in mice implanted with a patient-derived xenograft (PDX), a preclinical orthotopic
model of glioblastoma, even though more preclinical and clinical studies are warranted.
LLY 283 showed a satisfactory PK profile, including a high metabolic stability and moderate
permeability with oral bioavailability (F = 50%), which makes it an effective probe molecule
for in vivo assessment.

4.11. Compound1a

Compound1a has also been recognized as a potential PRMT5 inhibitor. It binds
allosterically to PRMT5 and competes with SAM at the binding site. Compound1a has
previously been described as a human β-secretase (BACE1) and BACE2 inhibitor [147].
It demonstrated targeted effectiveness and cell-based inhibition of MCF7 cells, based on
quantitation of symmetrically dimethylated nuclear protein levels. Compound1a makes an
enzyme–substrate complex to bind with the co-crystal system of PRMT5–MEPP50. This
complex reveals that a distinctive binding mode and considerable structural changes in the
backbone of PRMT5 result from SAM-competitive inhibition [106,127,137].

4.12. CMP5

CMP5 is another molecule identified as a PRMT5 inhibitor [72]. By reducing the
recruitment of PRMT5 in the glioblastoma cell line, it reduces the methylation of histone.
However, it does not demethylate histones that have already been methylated by PRMT5.
CMP5 has shown the capability to control differentiated and undifferentiated cancerous
cell populations [148] and induce senescence and apoptosis of cancerous cells [136]. CMP5
has been shown to have anti-cancer efficacy against a glioblastoma xenograft model. In
preclinical PK studies, CMP5 was revealed to accumulate in brain tissue without caus-
ing toxicity [149]. Chromatin histone methylation in the promoter region of DKK1 and
DKK3 was hindered by CMP5-based inhibition of PRMT5, which decreased the expression
of cyclin D1 and SUBRVIVIN [137]. Overexpression of cyclin D1 is directly linked to
cancer progression.

4.13. GSK591

Previously known as EPZ015866, GSK591 was characterized as a potent inhibitor of
PRMT5, including in vivo [27,110]. Proliferation of CRC cells is directly related to PRMT5
activity, and the inhibition of PRMT5 activity by GSK591 can stop proliferation and cell
cycle progression. GSK591 significantly decreases SDMA in a dose-dependent manner
and decreases the viability of neuroblastoma cell lines in a nanomolar range [77]. In one
study, GSK591, in combination with LLY283, showed substantial survival benefits in an
orthotopic PDX mouse model, although more preclinical and clinical studies are warranted
in the future [74].
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4.14. PRT382

PRT382 is a selective PRTM5 inhibitor with an adenosine backbone structurally similar
to other PRMT5 inhibitors (JNJ-64619178, PF-06855800, LLY-283) [85]. PRT382 appears to
have a similar SAM-competitive mechanism and optimal enzymatic kinetics in vitro that
produces an IC50 of 2.8 nM with PRMT5/MEP50. It reduces SDMA with an IC50 of 27
nM and has antiproliferative activity in leukemia and lymphoma cancerous cell lines [85].
PRT382 displays low clearance and a high oral bioavailability in preclinical models. It is
important to delineate the distribution of PRT382 in the brain and its efficiency in crossing
the blood–brain barrier.

4.15. JBI-778

JBI-778 is a potent and strong inhibitor of PRMT5 [128] that reduces SDMA at an
effective concentration of <10 nM. It exerts a strong antiproliferative activity in selected
cell lines like NSCLC, neuroblastoma, glioblastoma, and medulloblastoma, with an IC50
ranging from 27 to 700 nM. JBI-778 can penetrate the blood–brain barrier with very high
brain exposure in rodents, and it showed a favorable oral bioavailability in mice (F = 66%),
rats (F = 52%), and dogs (F = 47%). JBI-778 showed strong tumor growth inhibition in a
glioblastoma orthotopic model that mimics human GBM, with a significant extension in
survival. Its differentiated mechanism makes it a potential option to treat brain metastasis
cancers. Jubilant Therapeutics has received FDA clearance for an investigational new drug
application (IND) to recruit patients for a phase I/II clinical trial for the assessment of
safety, optimal doses, and PK properties of JBI-778 in patients.

4.16. SH3765

SH3765 is an orally bioavailable selective inhibitor of PRMT5 with antineoplastic activ-
ity that binds to PRMT5 and inhibits its methyltransferase activity at both monomethylated
and dimethylated arginine residues in histone proteins. SH3765 modulates the gene expres-
sion implied in several cellular processes and decreases the growth of rapidly proliferating
cells, including cancer cells. A phase I clinical trial (NCT05015309) will begin shortly to
assess the safety, tolerability, and PK profile in patients with solid tumors with advanced
malignancy to finalize the maximum tolerated dose (MTD) and RP2D [129].

4.17. SCR6920

SCR6920 is another orally bioavailable selective PRMT5 inhibitor with antiproliferative
activity. A phase I open-label multicenter clinical trial (NCT05528055) will assess the
dose escalation, safety, tolerability, and preliminary efficacy of SCR6920 in patients with
advanced malignant tumors following oral administration. The dose-limiting toxicity must
be the priority of this trial. The purpose of this clinical trial is to find the MTD, identify the
RP2D, and accrue preliminary efficacy data in the participants [129].

5. Future Perspective and Conclusions

PRMT5-regulated oncogenes, such as C-MYC and N-MYC, are often deregulated in
medulloblastomas. PRMT5 symmetrically dimethylates many proteins to regulate their
stability and control activity in subcellular locations. The inactivation of PRMT5 has been
shown to prevent MYC-driven lymphomagenesis [26]. PRMT5 is highly overexpressed in
multiple aggressive metastatic cancers [150]. The promising role of PRMT5 in solid tumors
has provoked the discovery and development of candidate drugs targeted to PRMT5 that
display competitive and uncompetitive inhibition of SAM-mediated enzymatic activity.
Critically, it is known that the genomic instability and catalytic activity of PRMT5 in MYC-
amplified medulloblastoma cells decrease cell proliferation and induce apoptosis, which
supports PRMT5 inhibition as a therapeutic option for MYC-driven medulloblastoma.
More studies are needed to understand the mechanisms of PRMT5 overexpression that may
cooperate with recurrent genomic lesions to contribute to medulloblastoma progression.
Exploring the mechanisms of interaction between PRMT5 and MYC should give us further
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insights into how the two are engaged in promoting medulloblastoma aggressiveness. In
addition, our in vitro and in vivo analyses of the inhibition of PRMT5, either with gene
therapy or pharmacologically active small molecules as PRMT5 inhibitors, have indicated
the potential of the PRMT5–MYC axis as a novel therapeutic approach in MYC-amplified
medulloblastoma. As mentioned, the function of PRMT5 contributes to various physiologi-
cal cellular processes to preserve cancer phenotypes and promote cancer progression in
various cancer types. There is a strong rationale that the perturbation of PRMT5 can be a
broadly effective means to treat cancer.

The development of PRMT5 inhibitors to achieve supportive efficacy is still in progress,
and many PRMT5 inhibitors developed as SAM-competitive drugs are under clinical
evaluation. However, most PRMT5 inhibitors have unwanted cytotoxicity in non-cancerous
cells and in healthy tissues in clinical settings. This issue should be addressed in the
context of MYC-amplified medulloblastoma. PRMT5 inhibitors could affect the signal
transduction and reinstate the function of tumor suppressors via inhibition of the SDMA
process. Inhibitors targeting PRMT5-mediated dimethylation may be attractive as single
agents or in combination with other agents targeting MYC-amplified medulloblastoma to
induce a durable response and prevent or delay acquired resistance. As PRMT5 is essential
for normal cellular processes, clinical evaluation of the PRMT5 inhibitors in cancer therapy
must carefully examine safety outcomes [151].

Limitations: Most investigational drugs, including some PRMT5 inhibitors, are pre-
vented from efficiently entering into the brain. PRMT5 inhibitors are apparently trans-
ported back to the systemic circulation by the multidrug efflux pump action of proteins like
P-glycoprotein (P-gp) [152,153]. Insufficient transport of drugs into the brain leads to a di-
minished therapeutic effect and aggravated organ toxicity side effects due to the deposition
of the drug in other organs and tissues. Hence, novel PRMT5 inhibitors with satisfactory
PK and PD profiles deserve additional refinement to confer more potent PRMT5 inhibition
so they can be administered in minimum doses with the maximum effective concentration
(MEC). It is urgent to address the issue of brain-targeted therapeutics by developing effec-
tive and safe drug delivery strategies for PRMT5 inhibitors. Several PRMT5 inhibitors are
under clinical evaluation and are currently being examined in cancer patients with solid
tumors, including neuroblastoma and glioblastoma. First-generation PRMT5 inhibitors
cause side effects, including anemia, neutropenia, and thrombocytopenia [107,133], which
can limit the capacity to reach the dose and exposure necessary to drive tumor regres-
sion in patients. The outstanding question is which PRMT5 targets should be traced in
MYC-driven medulloblastoma to monitor and predict the response. GSK3326595 showed a
significant inhibitory effect on the growth of MYC-driven medulloblastoma cell lines at a
low micromolar potency and showed PRMT5 downregulation. Thus, GSK3326595 could
potentially be further investigated at the clinical level for MYC-driven medulloblastoma.
Interestingly, TNG908 has been advanced in a clinical trial as a PRMT5 inhibitor that is
able to penetrate the blood–brain barrier. Two other compounds, LLY283 and CMP5, have
shown favorable PK properties, along with brain distributions that suggest efficient pene-
tration of the blood–brain barrier. JBI-778 demonstrated strong tumor growth inhibition
in a glioblastoma orthotopic model and a favorable oral bioavailability. Some PRMT5
inhibitors have a very low IC50 in vitro but cannot cross the blood–brain barrier. MTA-
cooperative PRMT5 inhibitors have favorable PK properties and efficiently penetrate the
blood–brain barrier. However, MTAP-null mutations have still not been detected in medul-
loblastomas, so MTA-cooperative PRMT5 inhibitors might have less relevance compared to
other PRMT5 inhibitors. JNJ-64619178 and PF06939999 have 30–40% oral bioavailability,
although they are very effective in vitro. Enhancing blood–brain barrier penetration is
crucial to improving the therapeutic efficacy and lowering toxicity.

Combining PRMT5 inhibitors with other drugs (e.g., chemotherapy, immune check-
point inhibitors, or anti-EGFR drugs) in medulloblastoma treatment may hold promise
by synergistically targeting cancer cells through different mechanisms. This approach
may enhance the treatment efficacy, overcome drug resistance, and reduce the potential



Cancers 2023, 15, 5855 15 of 22

side effects associated with higher doses of individual agents. Research suggests that
combining PRMT5 inhibitors with standard chemotherapy regimens could provide a more
comprehensive and effective strategy for specific cancer types, including those with MYC
amplification [154–157]. Clinical trials are underway to further explore the safety and
efficacy of such combination treatments.

This review provides a comprehensive survey of possible PRMT5 inhibitor therapeu-
tics to treat MYC-amplified medulloblastoma and highlights the challenges that must be
addressed in future drug development.
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