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Simple Summary: In this study, after conducting a comprehensive review of 1356 papers that
evaluated the diagnostic performance of deep learning (DL) methods based on medical images for
hepatocellular carcinoma (HCC), the findings showed a pooled sensitivity of 89% (95% CI: 87–91),
a specificity of 90% (95% CI: 87–92), and an AUC of 0.95 (95% CI: 0.93–0.97). In addition, both the
DL methods and human clinicians demonstrated similar levels of performance in HCC detection,
with receiver operating characteristic curve (ROC) values of 0.97 (95% CI: 0.95–0.98) for both groups,
indicating no discernible difference. Although the heterogeneity was obvious, the utilization of DL
methods for diagnosing HCC through medical images has shown promising outcomes.

Abstract: (1) Background: The aim of our research was to systematically review papers specifi-
cally focused on the hepatocellular carcinoma (HCC) diagnostic performance of DL methods based
on medical images. (2) Materials: To identify related studies, a comprehensive search was con-
ducted in prominent databases, including Embase, IEEE, PubMed, Web of Science, and the Cochrane
Library. The search was limited to studies published before 3 July 2023. The inclusion criteria
consisted of studies that either developed or utilized DL methods to diagnose HCC using med-
ical images. To extract data, binary information on diagnostic accuracy was collected to deter-
mine the outcomes of interest, namely, the sensitivity, specificity, and area under the curve (AUC).
(3) Results: Among the forty-eight initially identified eligible studies, thirty studies were included in
the meta-analysis. The pooled sensitivity was 89% (95% CI: 87–91), the specificity was 90% (95% CI:
87–92), and the AUC was 0.95 (95% CI: 0.93–0.97). Analyses of subgroups based on medical image
methods (contrast-enhanced and non-contrast-enhanced images), imaging modalities (ultrasound,
magnetic resonance imaging, and computed tomography), and comparisons between DL methods
and clinicians consistently showed the acceptable diagnostic performance of DL models. The publica-
tion bias and high heterogeneity observed between studies and subgroups can potentially result in
an overestimation of the diagnostic accuracy of DL methods in medical imaging. (4) Conclusions: To
improve future studies, it would be advantageous to establish more rigorous reporting standards
that specifically address the challenges associated with DL research in this particular field.

Keywords: deep learning methods; medical Image; hepatocellular carcinoma; diagnosis

1. Introduction

Liver cancer, also known as HCC, is a prevalent and deadly form of cancer, ranking
as the sixth most common type worldwide and the third leading cause of mortality [1].
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Early-stage HCC often lacks noticeable symptoms, which can lead to delayed diagnosis as
the cancer progresses. Symptoms, such as fatigue, weight loss, or abdominal discomfort,
can be nonspecific and resemble other liver diseases, such as cirrhosis and hepatitis. This
similarity poses challenges in differentiating and promptly diagnosing HCC [2,3]. HCC is
characterized by tumor heterogeneity, which can impact the accuracy of tissue sampling
and biopsy results, further complicating diagnosis confirmation [4]. Therefore, accurate
and reliable technologies are crucial for the effective early detection of HCC.

Medical imaging is essential in clinical practice for diagnosis, staging, and treatment
planning. Modalities such as ultrasound (US), magnetic resonance imaging (MRI), and com-
puted tomography (CT) are noninvasive and offer valuable tumor images, reducing patient
discomfort and risks compared to invasive procedures like biopsies [5–7]. These techniques
provide detailed anatomical and pathological information, aiding in determining tumor
characteristics such as size, location, and malignancy. However, the interpretation of medi-
cal images still relies on the subjective judgment and experience of healthcare professionals.
There can be variability in diagnostic results among different doctors, introducing subjec-
tivity [8,9]. Given the variation in expertise, achieving accurate and timely diagnoses based
on medical images remains challenging.

DL is a machine learning technique that includes multiple model architectures and
can solve various types of machine learning problems. Common DL methods are based on
convolutional neural networks, recurrent neural networks, long short-term memory net-
works, generative adversarial networks, etc. DL methods have shown promising results in
the automatic detection of medical images, enabling automatic diagnosis and classification
of diseases by analyzing and identifying features and lesions [10,11]. Compared to manual
analysis, DL methods offer faster processing and improved efficiency, reducing the burden
on doctors. DL methods typically consist of several steps: building a DL model, collecting
and processing data, setting model parameters, completing model training, and evaluat-
ing and tuning the model. In addition, the dataset used by DL methods can usually be
divided into the training set, the validation set, and the test set. The data can be augmented,
cropped, and processed by other enhancement methods. DL methods use multi-level
feature extraction networks to simulate and learn complex features of data. They learn
complex visual patterns and features from much medical image data, enhancing diagnostic
accuracy. DL methods outperform traditional approaches by capturing more diagnostically
significant subtle features, aiding in the accurate assessment of pathological changes [12,13].
Additionally, DL models analyze large-scale medical image data, revealing hidden patterns
and correlations, thus improving the understanding of disease mechanisms, variations,
progression, and prognosis [14,15]. However, there is currently a lack of comprehensive
evidence on the use of DL-based methods for HCC detection. Accordingly, this study
aimed to provide a systematic review and meta-analysis of published data to evaluate the
diagnostic performance of DL methods based on medical images in detecting HCC.

2. Methods
2.1. Protocol Registration and Study Design

We registered our study protocol in PROSPERO with the number CRD42023442527.
The study followed the guidelines outlined in the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) to ensure comprehensive and transparent
reporting [16] and Assessing the Methodological Quality of Systematic Reviews (AMSTAR)
guidelines [17]. Informed consent from all subjects (patients) was not required because our
data came from the open database.

2.2. Search Strategy and Eligibility Criteria

A systematic search was conducted with several databases, including Embase, IEEE,
PubMed, Web of Science, and the Cochrane Library. The search aimed to identify studies
published from the inception of the database to July 3, 2023 that focused on the devel-
opment of DL methods for diagnosing HCC based on medical images. Supplementary
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Note SI summarized the search terms and search strategy used in each database. No
limitations were imposed regarding publication types, regions, or language. However,
conference abstracts, scientific reports, letters, and narrative reviews were excluded. A
team of clinicians and investigators collaboratively developed a comprehensive search
strategy for each database.

Two investigators assessed eligibility by screening titles, abstracts, and relevant ci-
tations. Discrepancies were resolved through discussion with an additional contributor.
Inclusion criteria consisted of studies reporting DL models’ diagnostic performance in
early HCC detection using medical images. Studies that reported diagnostic results such
as sensitivity and specificity or detailed information on 2 × 2 contingency tables were
considered eligible for inclusion. The use of DL models was not limited by participant
characteristics, imaging modality, or intended setting.

2.3. Data Extraction

The study characteristics and diagnostic yield data were independently extracted by
two investigators using a standardized data extraction sheet. Uncertainties were resolved
through discussions with a third researcher. With a meticulous approach, we diligently
extracted the diagnostic accuracy data and precisely organized it into contingency tables,
including the number of true positives (TPs), false positives (FPs), true negatives (TNs),
and false negatives (FNs).

2.4. Study Quality Assessment

Three researchers utilized the QUADAS-2 tool to assess both the risk of bias and
concerns about the suitability of the included studies [18]. This tool was specifically chosen
to aid in the evaluation process.

2.5. Statistical Analysis

Hierarchical SROC curves assessed the DL methods’ diagnostic performance, pre-
senting averaged estimates of sensitivity, specificity, AUC, and 95% CI with prediction
regions. A meta-analysis using contingency tables identified the most accurate DL methods
across studies with multiple methods. Heterogeneity was evaluated with the I2 statistic,
exploring potential sources through subgroup meta-analyses and regression analyses. The
random-effects model accounted for the substantial heterogeneity. Publication bias was
assessed visually with funnel plots.

In the process of collating the data, we found that DL methods combined with contrast-
enhanced images had higher diagnostic accuracy than non-contrast-enhanced images. The
following subanalyses were further conducted: (a) Based on the medical image method,
the DL methods were divided into two categories: contrast-enhanced and non-contrast-
enhanced images. Image enhancement methods used contrast media, and non-contrast-
enhanced images did not use contrast media. (b) The DL methods were categorized by
their respective imaging modalities, including CT, US, and MRI. (c) The DL methods
were classified as internal or external methods depending on the type of validation. In-
ternal validation was conducted using internal data for validation. External validation
was conducted using external data for validation. (d) The DL methods were assessed
and compared with human clinicians based on aggregated performance measures using
the same datasets. Meta-analyses were conducted if at least three original studies were
available. We harnessed the mighty STATA (version 17.0) to dissect our data with precision.
Our threshold for significance was set at p < 0.05, and we employed a robust two-sided
approach to determine statistical significance for all tests.
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3. Result
3.1. Study Selection and Characteristics

As shown in Figure 1, after removing 316 duplicates, our initial search yielded
1356 records, of which 1040 underwent screening. From the title and abstract screen-
ing, 944 studies were excluded; therefore, there were 96 for further full-text screening.
Ultimately, 48 articles [19–66] were considered appropriate in our review, with 30 [19–48]
offering data for further meta-analysis. Among these studies, 45 utilized retrospective
data, 1 employed prospective data, and 2 sourced data from open-access sources. Out
of the identified studies, 5 utilized out-of-sample datasets for external validation. Five
studies compared the performance of the DL methods to that of clinicians utilizing the
identical dataset. Medical imaging modalities were classified into the following categories:
MRI (n = 10), US (n = 7), and CT (n = 13). Tables 1 and 2 showed the characteristics of the
included study.
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Table 1. Study design and basic demographics.

First Author
and Year

Participants
Inclusion Criteria

Participants
Exclusion Criteria Reference Standard Patients

(Number)

Liu et al.
2023 [41]

Patients who (1) underwent a preoperative MRI examination;
(2) had no history of treatment for hepatic tumor prior to the
study; (3) pathologically confirmed HCC or MF-ICC

Patients with (1) image quality were insufficient for
further analysis; (2) T2WI-MRI was incomplete Histopathology 112

Murtada et al.
2023 [42] NA NA NA 59

Abhishek et al. 2023 [43]
Patients who had abdominal CT scans within three months of
operation with a routine clinical imaging protocol of
contrast-enhanced portal venous phase CT

Patients who had (1) no contrast-enhanced CT scans;
(2) metal artifacts infiltrating the tumor on CT imaging;
(3) prior ablation, embolization, resection, or
transplantation, as these prior treatments would alter
the appearance of the tumors on imaging and
compromise the quantitative image analysis;
(4) tumors that were ruptured; (5) tumors with a
diffuse infiltrative pattern (as tumor borders were
challenging to determine for analysis)

Histopathology 814

Anisha et al.
2023 [44] NA NA NA 320

Huang et al.
2023 [45]

Patients with pathologically confirmed HCC or ICC who
underwent hepatectomy

Patients with pathologically confirmed HCC or ICC
who underwent hepatectomy Histopathology 1042

Zhang et al.
2023 [47] NA NA NA 317

Mitrea et al.
2023 [46] NA NA Histopathology 296

Wang et al.
2023 [48]

Patients who (1) were at least 18 years old; (2) had clear CT
image with lesion location being analyzed easily; (3) had no
other genetic history in the family

Patients who (1) take related prohibited drugs before
CT image acquisition; (2) during hospital examination,
the patient had a severe malignant tumor and other
systemic diseases

NA 102

Ling et al.
2022 [38] NA NA Histopathology 479

Cao et al.
2022 [39]

Patients who (1) were diagnosed with HCC or HCH based on
liver biopsy or clinical findings; (2) had no contraindications
to contrast medium and had undergone upper abdominal
contrast-enhanced CT scans

NA Histopathology 50
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Table 1. Cont.

First Author
and Year

Participants
Inclusion Criteria

Participants
Exclusion Criteria Reference Standard Patients

(Number)

Zhang et al.
2022 [40]

Patients who were pathologically confirmed as HCC or FNH
after surgical resection

Patients who (1) have complicated clinical conditions
such as pregnancy and taking medication for collagen
diseases; (2) received additional treatment before
examination such as chemotherapy, radiofrequency
ablation (RFA), or transcatheter arterial
chemoembolization (TACE)

Histopathology 407

Gao et al.
2021 [30]

Patients who were (1) pathologically confirmed with one of
the following malignant hepatic tumors: HCC, ICC, and
metastasis; (2) with preoperative multi-phase
contrast-enhanced CT available

Patients (1) who were ≤18 years old; (2) who had a
prior liver resection or transplantation; (3) whose
interval between the pathologic examination and the
preoperative CT > 100 days; (4) whose image quality
was poor

Histopathology 723

Oestmann et al. 2021 [34] Patients had histopathological diagnosis and were older than
18 years NA Histopathology 118

Wang et al.
2021 [31]

The HCC group consisted of patients not only treated by
surgical resection but also treated by intervention,
radiofrequency ablation, cryoablation, microwave therapy, or
any other invasive treatment therapy. Both solitary and
multiple HCC tumor nodules were enrolled. Patients
diagnosed with malignant lesions other than HCC such as
hemangioendothelioma, sarcoma, intrahepatic
cholangiocarcinoma, and metastatic tumor were included in
the control group. Patients diagnosed with benign lesions
such as leiomyolipoma, hemangioma, cyst, abscess, adenoma,
and focal nodular hyperplasia were also included in the
control group

NA Histopathology 9741

Wang et al.
2021 [33]

Patients who (1) had liver surgical resection or biopsy in the
period between 2006 and 2019; (2) were diagnosed with HCC,
ICC, or secondary metastasis lesion

Patients who (1) lost images or stored images in other
hospitals; (2) only had other types of scans Histopathology 400

Wang et al.
2021 [37]

Patients who (1) didn’t have MRI inspection; (2) had one of
the following common FLLs, including liver cyst, HEM, HEP,
FNH, HCC, ICC, and MET; (3) had up to one imaging study
per patient and up to six lesions being used in each study

Patients (1) with MRI studies of insufficient image
quality; (2) had received treatment related to the lesion
before MRI inspection; and (3) had diffuse lesions for
which the boundary could not be delineated or
malignancies involving the portal vein, hepatic vein, or
adjacent organs

NA 445
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Table 1. Cont.

First Author
and Year

Participants
Inclusion Criteria

Participants
Exclusion Criteria Reference Standard Patients

(Number)

Zhou et al.
2021 [32]

Patients with definite pathological results of non-cystic FLL
were registered

Patients with (1) benign lesions; (2) without cirrhosis;
(3) with previous treatment; (4) without US images;
(5) lesion size < 1.0 cm; (6) unsatisfied US
image quality

Histopathology 172

Shi et al.
2020 [27]

Patients (age ≥ 18 years) with FLLs other than cysts
underwent four-phase CT exams

Patients with (1) lesions that could not be reliably
classified by the best available reference standard as
HCC or non-HCC; (2) lesion sizes below 1 cm; (3) CT
exams with fewer than four phases or with severe
image artifacts; (4) previous transcatheter arterial
chemoembolization or other previous locoregional
therapy; (5) loss to follow-up (n = 13)

Histopathology, clinical
diagnosis, and follow-up 915

Zhen et al.
2020 [25]

Patients with (1) liver tumors and
(2) enhanced MRI inspection

Patients with (1) treatment related to the lesion before
MRI inspection, including surgery, transcatheter
arterial chemoembolization (TACE), radiofrequency
ablation, chemotherapy, radiotherapy, targeted drug
therapy, etc.; (2) inflammatory lesions; (3) a clinically
diagnosed malignancy (without pathology confirmed);
(4) any missing important medical records or
laboratory results of the malignancy individuals; and
(5) unqualified image quality

Histopathology, clinical
diagnosis, and follow-up 1411

Kim et al.
2020 [28] Patients who were diagnosed as HCC after surgical resection

Patients with (1) severe motion artifacts; (2) missing
images; (3) low image quality; (4) absence of
preoperative MR images

Histopathology 549

Cao et al.
2020 [29]

Patients with (1) the images of a four-phase DCE-CT
examination; (2) FLLs confirmed by histopathological
evaluation; (3) a diagnosis based on a combination of clinical
and radiological findings with follow-up were collected for
further screening

Patients with (1) lesions larger than 10 cm; (2) images
with prominent artifacts; (3) prior local-regional
therapy prior to the CT examination.

Histopathology, clinical
diagnosis, and follow-up 15,680

Pan et al.
2019 [20] NA NA Histopathology 242

Yamakawa et al. 2019 [21] NA NA NA 980

Hamm et al.
2019 [23]

Patients who (1) were untreated; (2) underwent locoregional
therapy more than one year ago and now presented with a
residual tumor

Patients younger than 18 years Histopathology 296
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Table 1. Cont.

First Author
and Year

Participants
Inclusion Criteria

Participants
Exclusion Criteria Reference Standard Patients

(Number)

Brehar et al.
2020 [26] NA NA NA 268

Stollmaye et al. 2021 [35] Patients who were either histologically confirmed or exhibited
typical characteristics of the given lesion type with MRI Patients younger than 18 years NA 69

Kutlu et al.
2019 [19] NA NA NA 345

Amita et al.
2019 [22] NA NA NA 225

Zheng et al.
2021 [36]

Patients with (1) the presence of cirrhosis; (2) lesion
size ≤ 2 cm; (3) <1-month interval between MRI and
pathological examination

Patients whose (1) examinations had not been
performed using Philips Ingenia equipment; (2) had a
history of extrahepatic malignant tumors; (3) a history
of local treatment for HCC; (4) severe motion artifacts
detected between DCE-MRI and DWI (>5 slices of
misalignment).

Histopathology, imaging
features 120

Jia et al.
2019 [24]

Patients who were diagnosed as HCC by pathology
examination NA Histopathology 99

Hassan et al.
2017 [49] NA NA NA 110

Yasaka et al.
2017 [50]

Patients with five categories of liver masses or mass-like
lesions (hereafter, we will refer to these as liver masses unless
otherwise specified) of any size that were diagnosed based on
the criteria described in the next subsection: HCCs; malignant
liver tumors other than classic and early HCCs; indeterminate
masses or mass-like lesions; liver hem-angiomas; cysts

Patients who (1) had CT image sets with prominent
artifacts; (2) had those liver masses treated with
transarterial chemoembolization therapy or systemic
chemotherapy, and those liver masses; (3) were
younger than 20 years

Histopathology 560

Bharti et al.
2018 [51] NA NA NA 94

Schmauch
et al.2019 [52] NA NA NA 117

Mitrea et al.
2019 [53] NA NA NA 300
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Table 1. Cont.

First Author
and Year

Participants
Inclusion Criteria

Participants
Exclusion Criteria Reference Standard Patients

(Number)

Wang et al.
2020 [54] NA NA Histopathology 235

Kim et al.
2021 [55]

Patients who (1) had chronic hepatitis B or liver cirrhosis;
(2) underwent multiphase CT, consisting of late arterial, portal
venous, and delayed phases; (3) underwent liver MRI within
four months of CT scans; and (4) had available standard
references, including pathologic evaluation or follow-up
images

NA Histopathology and
follow-up 1086

Căleanu et al. 2021 [56] NA NA NA 596
Chen et al.
2021 [57] NA NA NA NA

Chen et al.
2022 [58] NA

patients with (1) a history of previous treatment such
as surgery or interventional therapy; (2) diffuse liver
disease such as diffuse cirrhosis, diffuse-type HCC, or
diffuse metastatic tumor; (3) images with severe
artifacts or incomplete scanning

Histopathology and
follow-up 2189

Xiao et al.
2022 [59] NA NA NA 135

Phan et al.
2023 [60] NA NA NA 2000

Khan et al.
2023 [61] NA NA Histopathology 68

Feng et al.
2023 [62] NA NA NA 1241

Xu et al.
2023 [63] NA NA NA 2333

Kim et al.
2023 [64] NA NA NA 1062

Roy et al.
2023 [65] NA NA NA 1080

Balasubramanian et al.
2023 [66] NA NA NA NA

Note. MF-ICC = mass-forming intrahepatic cholangiocarcinoma; ICC = Intrahepatic cholangiocellular carcinoma; HCC = hepatocellular carcinoma; HCH = hepatic cavernous
hemangioma; FLLs = Focal liver lesions; FNH = focal nodular hyperplasia; DWI = diffusion-weighted imaging; HEM = cavernous hemangioma; HEP = hepatic abscess (HEP);
MET = hepatic metastasis MET; NA = not available.
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Table 2. Methods of model training and validation.

First Author
and Year Device

Exclusion of Poor Quality
Imaging

Heatmap
Provided Methods Architecture

Type of Internal
External Validation DL Versus Clinicians

Validation

Liu et al.
2023 [41] MRI NA No

CNN-Oestmann, Inception v3, Densenet169,
EfficientNet,
VGG19, AlexNet, SFFNet

NA No No

Murtada et al. 2023 [42] US NO No
ResNet152V2-559-Dense(128),
densnet169-590-Dense(4096),
densnet201-692-Dense(128)

cross-validation No No

Abhishek et al. 2023 [43] CT Yes Yes VGG, ResNet, DensNet, Inception v3, modified
Inception v3 NA No Yes

Anisha et al.2023 [44] CT Yes No densenet201, InceptionResnetV2 NA yes No

Huang et al. 2023 [45] CT Yes No CSAM-Net, SE-Net ten-fold
cross-validation No No

Zhang et al. 2023 [47] CT Yes No MIDC-net NA No No
Mitrea et al.
2023 [46] US No No ResNet101, InceptionV3, EfficientNet_b0,

EfficientNet_ASPP, ConvNext_base NA No No

Wang et al. 2023 [48] CT Yes No VGG16, VGG19, EI-CNNet, Inception V3, Xception,
CNN NA No No

Ling et al.
2022 [38] CT Yes Yes 3D ResNet five-fold

cross-validation No Yes

Cao et al.
2022 [39] CT No No CNN NA No No

Zhang et al. 2022 [40] US No No Xception, MobileNet, Resnet50, DenseNet121,
InceptionV3

five-fold
cross-validation Yes No

Gao et al.
2021 [30] CT Yes No CNN, RNN five-fold

cross-validation Yes Yes

Oestmann
et al. 2021 [34] MRI Yes No CNN Monte Carlo

cross-validation No No

Wang et al. 2021 [31] CT Yes Yes HCCNet NA Yes Yes

Wang et al. 2021 [33] MRI Yes No 2D Densent121 five-fold
cross-validation No No

Wang et al. 2021 [37] MRI Yes Yes 3D ResNet-18 five-fold
cross-validation No Yes

Zhou et al.
2021 [32] US Yes Yes Resnet 18 NA No No

Shi et al.
2020 [27] CT NA No MP-CDNs NA No No

Zhen et al.
2020 [25] MRI Yes Yes Google Inception-ResNet V2 five-fold

cross-validation Yes Yes

Kim et al.
2020 [28] MRI Yes No CNN NA Yes Yes

Cao et al.
2020 [29] CT NA Yes MP-CDN NA No No
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Table 2. Cont.

First Author
and Year Device

Exclusion of Poor Quality
Imaging

Heatmap
Provided Methods Architecture

Type of Internal
External Validation DL Versus Clinicians

Validation

Pan et al.
2019 [20] US NA No 3D-CNN, DCCA-MKL ten-fold

cross-validation No No

Yamakawa et al. 2019 [21] US NA No VGGNet cross-validation No No
Hamm et al.
2019 [23] MRI Yes No CNN Monte Carlo

cross-validation No Yes

Brehar et al. 2020 [26] US NA No VGGNet, ResNet, InceptionNet, DenseNet,
SqueezeNet, Multi-Resolution CNN NA No No

Stollmaye et al. 2021 [35] MRI NA Yes DenseNet264 five-fold
cross-validation No No

Kutlu et al.
2019 [19] CT NA No CNN-DWT-LSTM three-fold

cross-validation No No

Amita et al. 2019 [22] CT NA Yes DNN Monte Carlo
cross-validation No Yes

Zheng et al. 2021 [36] MRI NA No PM-DL NA No No
Jia et al. 2019 [24] MRI NA Yes ResNet NA No No

Hassan et al. 2017 [49] US Yes No SSAE ten-fold
cross-validation No No

Yasaka et al.
2017 [50] CT No No CNN NA No No

Bharti et al.
2018 [51] US No No CNN cross-validation No No

Schmauch
et al.2019 [52] US No Yes ResNet50 three-fold

cross-validation No No

Mitrea et al.
2019 [53] US No No CNN five-fold

cross-validation No No

Wang et al.
2020 [54] CT No Yes SCCNN NA No No

Kim et al.
2021 [55] CT Yes Yes R-CNN NA No No

Căleanu et al. 2021 [56] US Yes No CNN five-fold LOPO
cross-validation No No

Chen et al.
2021 [57] CT NA No SED NA No No

Chen et al.
2022 [58] CT NA No CNN NA No No

Xiao et al.
2022 [59] MRI NA No CNN five-fold

cross-validation No No

Phan et al.
2023 [60] CT NA No R-CNN cross-validation No No

Khan et al.
2023 [61] CT No Yes CNN NA No No
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Table 2. Cont.

First Author
and Year Device

Exclusion of Poor Quality
Imaging

Heatmap
Provided Methods Architecture

Type of Internal
External Validation DL Versus Clinicians

Validation

Feng et al.
2023 [62] US No No Resnet50 five-fold

cross-validation No No

Xu et al.
2023 [63] CT No Yes MCCNet NA No No

Kim et al.
2023 [64] US No No 3D-CNN, CNN-LSTM ten/five-fold

cross-validation No No

Roy et al.
2023 [65] CT Yes No CNN ten-fold

cross-validation No No

Balasubram-anian et al.
2023 [66] CT No No R-CNN NA No No

Note-NA = Not available.
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3.2. Overall Performance of the DL Methods

Out of the 48 studies included, 30 offered enough data for creating contingency tables
and calculating diagnostic yields, making them eligible for the meta-analysis. The meta-
analysis included 102 contingency tables, as shown in Figure 2A, with a pooled sensitivity
of 89% (95% CI: 87–91) and specificity of 90% (95% CI: 87–92) across all the DL methods.
The AUC was determined to be 0.95 (95% CI: 0.93–0.97).
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Since most studies investigated multiple DL methods and reported their diagnostic
performance, we chose to report the highest accuracy achieved by various DL methods
across the included studies, which resulted in 30 contingency tables. As we combined their
findings, we discovered a pooled sensitivity of 93% (95% CI: 91–95) and a specificity of
95% (95% CI: 92–97). The AUC was calculated to be 0.98 (95% CI: 0.96–0.99). More detailed
information was shown in Figure 2B.

3.3. Subgroup Meta-Analyses

Among the studies included in the analyses, 23 studies focused on contrast-enhanced
images, resulting in a total of 65 contingency tables. The pooled sensitivity for these studies
was 92% (95% CI: 89–93), while the pooled specificity was 94% (95% CI: 92–96). Additionally,
the AUC was 0.97 (95% CI: 0.96–0.99). More detailed information is shown in Figure 3A.
Furthermore, 6 studies did not investigate image contrast enhancement, contributing a
total of 30 contingency tables. The pooled sensitivity of these studies was 84% (95% CI:
81–86), the pooled specificity was 80% (95% CI: 77–82), and the AUC value was 0.89 (95%
CI: 0.85–0.91). More details regarding these studies could be found in Figure 3B.

Among the studies included in the analyses, 10 studies investigated MRI data, which
resulted in a total of 29 contingency tables. The pooled sensitivity of these studies was
92% (95% CI: 88–94), and the pooled specificity was 94% (95% CI: 87–97). Furthermore,
the AUC was 0.97 (95% CI: 0.95–0.98). More detailed information about these studies is
shown in Figure 4A. In addition, 7 ultrasound studies were analyzed, contributing a total
of 32 contingency tables. The pooled sensitivity of these studies was 84% (95% CI: 81–87),
the pooled specificity was 80% (95% CI: 77–83), and the AUC value was 0.89 (95% CI:
0.86–0.92). More detailed information regarding these studies is provided in Figure 4B.
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Furthermore, 13 studies applied CT data, resulting in a total of 41 contingency tables. The
pooled sensitivity of these studies was 91% (95% CI: 88–94), the pooled specificity was 92%
(95% CI: 89–94), and the AUC value was 0.97 (95% CI: 0.95–0.98). More detailed information
about these studies is presented in Figure 4C.
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Figure 4. Pooled performance of DL methods using different imaging modalities. (A) ROC curves of
studies using MRI (29 tables of 10 studies), (B) ROC curves of studies using US (32 tables of 7 studies),
and (C) presented ROC curves of studies using CT (41 tables of 13 studies).

The meta-analysis included 29 studies that used within-sample datasets, comprising a
total of 92 contingency tables. For these studies, the pooled sensitivity and specificity were
89% (95% CI: 87–91) and 90% (95% CI: 88–92), respectively. The AUC was determined to be
0.95 (95% CI: 0.93–0.97), as illustrated in Figure 5A. External validation was performed in
only 5 studies, contributing 10 contingency tables. The pooled sensitivity and specificity
for these studies were 93% (95% CI: 89–96) and 83% (95% CI: 69–91), respectively. The AUC
was calculated as 0.95 (95% CI: 0.93–0.97), as shown in Figure 5B.
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Among the 30 included studies, 6 directly compared the diagnostic performance of
the DL methods with human clinicians using the same dataset. These studies consisted
of 20 contingency tables for the DL methods and 10 contingency tables for the human
clinicians. The pooled sensitivity for the DL methods was 91% (95% CI: 88–93), while the
human clinicians had a pooled sensitivity of 88% (95% CI: 80–93). The pooled specificity
for the DL methods was 92% (95% CI: 89–95), compared to 95% (95% CI: 89–97) for the
human clinicians. Both the DL methods and the human clinicians exhibited an AUC value
of 0.97 (95% CI: 0.95–0.98), as depicted in Figure 6A,B.
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Figure 6. Pooled performance of DL methods versus human clinicians using the same sample.
(A) ROC curves of studies using DL methods (20 tables of 6 studies), and (B) ROC curves of studies
using human clinicians (10 tables of 6 studies).
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3.4. Heterogeneity Analysis

The meta-analysis of 30 studies indicated that the DL methods were beneficial in
diagnosing HCC from medical imaging based on the random-effects model. However,
the sensitivity showed an I2 value of 99.83% (p < 0.01) and the specificity had an I2 value
of 99.84% (p < 0.05), indicating high heterogeneity. Supplementary Figure S4 presents
more details on these results. The detailed results of the subgroup (Supplementary Figures
S5–S7) and meta-regression analyses (Supplementary Table S1) explored the potential
sources of between-study heterogeneity. Apart from the imaging modality, both medical
image methods and validation types demonstrated statistically significant differences,
corroborating the findings from the subgroup. To evaluate publication bias, a funnel plot
was generated. The result showed that this study had obvious publication bias (p < 0.05).
More detailed information was presented in Supplementary Figure S3.

3.5. Quality Assessment

QUADAS-2 was used to assess the quality of the included studies, and the results
were summarized in Supplementary Figure S1. Supplementary Figure S2 present a detailed
evaluation of each item related to the risk of bias and applicability concerns. For patient
selections (n = 30) and reference standards (n = 22), over half of the studies demonstrated
a high or unclear risk of bias. This was mainly due to a lack of clarity in describing the
included patients, such as previous testing, presentation, setting, intended use of the index
test, and insufficient external evaluation.

4. Discussion

Through this study, we assessed the diagnostic effectiveness of DL methods for HCC
detection based on medical images. When averaging the results across the studies, the
pooled sensitivity, specificity, and AUC were found to be 89%, 90%, and 0.95, respectively.
When determining the highest accuracy of each DL method among the included studies,
we found that the DL methods demonstrated superior performance in terms of sensitivity
(93%), specificity (95%), and AUC (0.98). In subgroup analysis, to begin with, we found
that DL methods combined with contrast-enhanced images had higher diagnostic accuracy
than non-contrast-enhanced images. The reason may be that the image enhancements
have a higher resolution ratio so that tiny lesions are displayed more clearly, which is
more conducive to the diagnosis of cancer. Furthermore, MRI, US, and CT are the main
imaging techniques for the diagnosis of HCC. The selection of imaging techniques for
HCC diagnosis depends on several factors, including the patient’s condition, availability of
medical resources, and specific circumstances. Typically, doctors choose the most suitable
imaging examination based on each patient’s needs and the characteristics of their condition.
Moreover, using an internal dataset may overstate diagnostic value since homogeneity
is produced, but external validation through out-of-sample data can offer insights into
subgroups and variations among different ethnic groups. However, the presence of high
heterogeneity and variance between studies results in considerable uncertainty surrounding
the estimates of diagnostic accuracy in this meta-analysis.

A systematic search for relevant articles resulted in the identification of four systematic
reviews or meta-analyses that explored the significant role of artificial intelligence (AI) and
medical images in HCC diagnosis. However, these reviews considered diverse domains,
making direct comparisons with this research challenging. Chou et al. discovered that
image-based diagnosis of HCC had a sensitivity of 84% and specificity of 99%, highlighting
its importance. However, they did not explore AI methods [67]. In our research, with
the assistance of the DL method, the effectiveness of medical image diagnosis of HCC
was further improved. Lai showed that AI methods outperformed traditional systems in
predicting HCC treatment outcomes, but their review lacked sufficient data for a meta-
analysis [68]. The meta-analysis we conducted can reduce the differences caused by random
errors and increase the efficiency of the tests. Martinino et al. observed that as the number
of studies and images increased, AI methods became more effective in diagnosing HCC,
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but the review did not differentiate between machine learning and DL methods [69]. By
applying DL methods to assist in the diagnosis of HCC, we can automatically learn patterns
and features from the data to achieve more accurate predictions and decision-making.
Zhang et al.’s meta-analysis revealed that DL methods excel in predicting microvascular
invasion, demonstrating superior accuracy, methodology, and cost-effectiveness. However,
HCC classification was not investigated in their study [70]. Therefore, our research perfectly
filled this gap.

Our research showed that DL methods are a powerful tool in diagnosing HCC, and
we summarize our results as follows. First, the DL methods can extract intricate patterns
and features based on medical images, enabling accurate identification of early-stage liver
tumors that may be challenging for human experts to detect [71]. This early detection
had great significance in improving treatment outcomes and increasing patient survival
rates [72]. Second, DL models can process and analyze much imaging data in a relatively
short time, facilitating faster and more efficient diagnoses [73,74]. With this improved
speed and efficiency, patients can promptly receive their diagnosis, allowing for expedited
treatment planning and intervention. Moreover, the DL methods can learn based on large
datasets of medical images to continuously improve their accuracy and performance [75,76].
This adaptive learning capability enables the methods to remain up-to-date with the latest
medical knowledge and advancements in HCC detection, ensuring the most accurate
and reliable diagnoses. Another advantage of DL in HCC diagnosis is its potential for
reducing human subjectivity and variability. By relying on objective image analysis, the
DL methods can provide consistent and standardized evaluations, leading to more reliable
and reproducible diagnoses [77,78]. This consistency is especially valuable in cases in
which doctors’ opinions may differ, as the methods can provide an additional objective
perspective. Furthermore, DL models can integrate multiple imaging modalities, such as
CT scans, MRI, and ultrasound, to provide a more comprehensive and holistic assessment
than other methods [79,80]. By fusing information from various sources, these models can
enhance the accuracy and reliability of HCC diagnosis and help guide treatment decisions.
Lastly, with the development of the social economy, the quality of datasets obtained in
HCC research is constantly improving, the data is increasing, and the diversity of data is
constantly enriched. Meanwhile, the rapid development of DL methods has continuously
made breakthroughs in algorithm innovation. The advanced performance of deep learning
methods is based on mass of data for training because the accurate features will be obvious
for the training effect on the mode to improve the generalization ability of the model.
If the data is insufficient, the training of deep learning models is fatal, resulting in the
model training appearing to be overfitting. Of course, this problem can be solved by
data augmentation, but the generalization ability of the model may not be improved. We
included the latest articles that published up until 2023, and the number of training sets
can be up to hundreds of thousands; thus, our article with higher indicators (AUC and
ROC) compared to similar articles is acceptable. Overall, DL has considerable advantages
in HCC diagnosis, including improved early detection, faster processing times, continuous
learning and improvement, reduced subjectivity, and more comprehensive evaluations.
The integration of DL methods into clinical practice can significantly enhance patient care
and outcomes in HCC.

Our study had some limitations. First, there was evident heterogeneity in our study.
Despite subgroup and meta-regression analyses being carried out, the heterogeneity could
not be completely eliminated. Second, due to limited data, we could not perform subgroup
analysis based on tumor size and location. Third, the included studies were almost entirely
retrospective, and potential confounding variables and confounding bias may limit the
internal validity of retrospective studies. Research on DL methods based on medical images
for HCC diagnosis should be improved in terms of study design.



Cancers 2023, 15, 5701 18 of 21

5. Conclusions

In conclusion, the DL methods based on medical images for detecting HCC were
found to be highly accurate, although the heterogeneity is obvious. Furthermore, the
sensitivity of the DL methods significantly improved when utilizing contrast-enhanced
imaging techniques.
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Forest plot of studies included in the meta-analysis. Supplementary Note SI: The search terms and
search strategy used in each database.
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