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Simple Summary: Mutational hotspots have gained importance as oncological biomarkers in recent
years because of their potential as predictors of clinical outcomes and/or therapeutic targets. In
addition, they are easily detectable in clinical samples via Sanger or next-generation sequencing
(NGS). The role of these genetic defects is less clear in pituitary neuroendocrine tumors (PitNETs),
even though the most common genetic drivers of these neoplasms are located within mutational
hotspots. Indeed, hotspots in six different genes are of particular importance in this context. Two of
them, USP48 and SF3B1, represent very recent and infrequent genetic associations; thus, their clinical
relevance remains unclear. For two other genes, GNAS and USP8, discrepancies exist among studies
regarding their associated phenotypes. Finally, the phenotypes associated with BRAF and DICER1
are well defined in other settings, but not yet in sporadic PitNETs. Additional studies are required to
assess the potential of these molecular alterations as druggable targets in PitNETs.

Abstract: The most common genetic drivers of pituitary neuroendocrine tumors (PitNETs) lie within
mutational hotspots, which are genomic regions where variants tend to cluster. Some of these hotspot
defects are unique to PitNETs, while others are associated with additional neoplasms. Hotspot
variants in GNAS and USP8 are the most common genetic causes of acromegaly and Cushing’s
disease, respectively. Although it has been proposed that these genetic defects could define specific
clinical phenotypes, results are highly variable among studies. In contrast, DICER1 hotspot variants
are associated with a familial syndrome of cancer predisposition, and only exceptionally occur as
somatic changes. A small number of non-USP8-driven corticotropinomas are due to somatic hotspot
variants in USP48 or BRAF; the latter is a well-known mutational hotspot in cancer. Finally, somatic
variants affecting a hotspot in SF3B1 have been associated with multiple cancers and, more recently,
with prolactinomas. Since the associations of BRAF, USP48, and SF3B1 hotspot variants with PitNETs
are very recent, their effects on clinical phenotypes are still unknown. Further research is required to
fully define the role of these genetic defects as disease biomarkers and therapeutic targets.

Keywords: genetic driver; mutational hotspot; pituitary neuroendocrine tumor; somatic variant;
druggable target

1. Introduction

Hotspots are genomic regions where variation occurs with a higher frequency than
what would be expected by chance [1]. Specific DNA sequences and structures are par-
ticularly prone to variation, and cellular processes such as DNA repair and meiosis favor
mutational events. For instance, cytosines of CpG or CpNpG sites are preferential targets
for methylation, and methylated cytosines are more prone to spontaneous deamination to
thymine [2]. Another important mechanism is the GC-biased gene conversion, by which
meiotic recombination favors GC-rich over AT-rich alleles [3]. Microsatellites are prone to
variation through polymerase slippage and double-stranded DNA breaks (DSBs), which
might introduce indels. Other repetitive sequences such as centromeric and subtelomeric
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regions are at risk for copy number variation and rearrangements [4]. Palindromic AT-rich
sequences might also lead to recurrent translocations [5]. Following multiple co-occurring
DSBs, chromoplexy and chromothripsis lead to chromosomal rearrangements and the gain
or loss of chromosomal regions, respectively. Finally, a process of hypermutation of specific
regions known as kataegis results in clusters of single-nucleotide variants (SNVs) biased
toward one DNA strand [6].

Genetic changes accumulate in the genome throughout life. The majority of them
represent passenger variants and only a small fraction are drivers for neoplasms [7]. Cancer
driver variants, particularly those affecting oncogenes and tumor suppressors, undergo
positive clonal selection because they confer advantageous properties to cells, and are thus
observed as recurrent genetic defects [1,6]. In cancer genomes, protein-coding regions are
enriched in hotspot SNVs and indels [1].

Pituitary neuroendocrine tumors (PitNETs) are usually benign lesions with indolent
behavior that display a lower-middle tumor mutation burden, and only occasionally
develop features of aggressiveness [8,9]. Multiple hotspots of sequence variation, most of
them somatic, have been identified in these tumors. Some of these hotspots are associated
exclusively with PitNETs, while others are tumor drivers common to various human
neoplasms. Indeed, somatic variants in GNAS and USP8, which are the most common
genetic defects leading to PitNETs, are located in hotspots [10–12]. PitNET-associated
hotspot variants have attracted interest in recent years as biomarkers because they might
determine specific clinical phenotypes. In addition, some of them are known therapeutic
targets in other neoplasms, while others represent potentially druggable molecules. We
review the most recent information on the association of hotspot variants affecting six
different loci with the occurrence of PitNETs, their implications on disease phenotypes,
and their potential use as biomarkers and therapeutic targets (Table 1). Genes for which
somatic PitNET-associated variants do not cluster in hotspots (such as MEN1 and TP53)
are not included in this review.

Table 1. Summary of the molecular and clinical implications of hotspot genetic defects for pituitary
tumorigenesis.

Gene Hotspot
Defect

Effect on
Protein

PitNET Subtypes
Affected Clinical Phenotype

Pharmacological
Agents Targeting the

Hotspot

BRAF Somatic p.V600E

Destabilization of the
inactive conformation
of BRAF, promoting its
activation

Corticotropinomas Unclear (very infrequent genetic
defect in PitNETs)

Vemurafenib,
dabrafenib, and
encorafenib, as
monotherapy or
combined with MEK
inhibitors (in clinical
use for other tumor
types)

GNAS
Somatic missense
variants affecting
residues 201 or 227

Stabilization of Gsα in
its active conformation
and inhibition of its
GTPase activity

Somatotropinomas.
Less frequently:
NF-PitNETs and
corticotropinomas

Older patients. Controversial: low
GH or IGF1, small tumors with
slow growth rate, densely
granulated somatotropinomas

None reported

DICER1

Germline and (or?) *
somatic variants
affecting residues 1705,
1709, 1809, 1810, or 1813

Loss of RNase IIIb
activity PitBs

CD in infants, neonates, or, less
frequently, in childhood and young
adulthood. Rarely: silent
corticotropinomas. Large,
aggressive, and poorly
differentiated tumors with an
oncofetal signature. Presentation as
isolated tumors or as part of
DICER1 syndrome

Not reported. Indirect
approach:
pharmacological
inhibition of the
endonuclease complex
TSN-TSNAX (not
available for clinical
use)

SF3B1 Somatic p.R625H and
p.R625C

Impaired interaction
with the BP and with
other U2 snRNP
components

Prolactinomas

High serum prolactin, large tumors
with increased Ki67 index,
increased progression-free survival
and mortality, and requirement for
multiple treatments. Occasionally:
metastatic PitNETs

H3B-8800 and
pladienolide B (not
available for clinical
use)
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Table 1. Cont.

Gene Hotspot
Defect

Effect on
Protein

PitNET Subtypes
Affected Clinical Phenotype

Pharmacological
Agents Targeting the

Hotspot

USP8
Somatic variants
affecting residues
718–720

Impaired interaction
with 14-3-3, proteolytic
cleavage, and enhanced
deubiquitinase activity

Corticotropinomas

CD in young adults and teenagers,
most frequently women, increased
SST5 and MGMT, rarely Crooke’s
cell adenomas, not associated with
Nelson’s syndrome. Controversial:
effects on tumor size, hormone
secretion, response to dynamic tests,
and remission/recurrence rates

DUBs-IN-2 and RA-9
(not available for
clinical use). Indirect:
gefitinib (in clinical use
for other tumor types,
under research for
corticotropinomas)

USP48 Somatic p.M415I or
p.M415V

Enhanced
deubiquitinase activity Corticotropinomas

Controversial: small tumors in one
study, high rate of cavernous sinus
invasion in a different study.
Requires further evaluation

Potential, not yet tested:
DUBs-IN (not available
for clinical use)

See references in text. * It is not clear if any of the reported PitB cases have been caused by somatic variants.
BP, branch point; DUBs-IN, deubiquitinase inhibitors; GTPase, guanosine triphosphatase; MEK, MAPK, and
ERK kinase; NF-PitNETs, non-functioning pituitary neuroendocrine tumors; PitBs, pituitary blastomas; PitNETs,
pituitary neuroendocrine tumors; RNase, ribonuclease; snRNP, small nuclear ribonucleoprotein.

2. BRAF

Protein kinase is the most frequently shared domain among cancer-associated proteins,
therefore representing a particularly attractive therapeutic target [13]. The isoforms A,
B, and C of the highly conserved serine/threonine protein kinase rapidly accelerated
fibrosarcoma (RAF) proteins, encoded in humans by three different genes, are among
such proteins. C-RAF (also known as RAF-1) was first described in 1985, while A-RAF
was discovered in 1986, and B-RAF in 1988 [14–16]. The latter is encoded by BRAF (7q34,
RefSeq NM_001354609.2), a proto-oncogene with preferential expression in neural tissues,
and is the most potent activator of the RAS-GTPase (RAS)-RAF-MAPK and ERK kinase
(MEK)-extracellular signal-regulated kinase (ERK) signaling pathway (RAS-RAF-MEK-ERK
pathway) [17–19] (Figure 1). This phosphorylation cascade is involved in the physiological
regulation of cellular processes such as proliferation, survival, differentiation, apoptosis,
and motility [18].

Germline activating variants affecting either BRAF or other members of the RAS-RAF-
MEK-ERK pathway are associated with a group of developmental syndromes collectively
known as RASopathies [20]. In contrast, the upregulation of this pathway via various
mechanisms contributes to tumorigenesis in one-third of human cancers [21]. Specifically,
somatic missense activating variants in the glycine-rich loop or the activation segment of
the BRAF catalytic domain occur in about 7% of all cancers. At least 90% of such cases,
however, are explained by a single defect: c.1799T>A, p.V600E [22,23]. This variant is
found in two-thirds of malignant melanomas and papillary thyroid carcinomas (PTCs) and
less frequently in colorectal, ovarian, and other types of cancer [22–24].

The phosphorylation of residues T599 and S602 (UniProt P15056), which flank the
variant, is required for BRAF to be recruited to the cell membrane and folded into its active
conformation. The p.V600E change destabilizes the inactive conformation of BRAF and
promotes its active state, thereby acting as a phosphomimetic [25]. This way, BRAF p.V600E
results in an abnormally active RAS-independent kinase that induces cell proliferation and
transformation in vitro and in vivo [22,26,27]. Indeed, BRAF variants seem to be mutually
exclusive with oncogenic RAS defects [22]. In addition to the phosphorylation of the
well-known downstream effectors MEK1/2, BRAF p.V600E activates NFKB and prevents
apoptosis [26,28]. In colorectal cancer, BRAF p.V600E has been associated with poor clinical
prognosis and chemoresistance, increased microsatellite instability, and a higher mutational
load [29]. In addition, quantitation of BRAF p.V600E by droplet digital polymerase chain
reaction (ddPCR) has been used as a marker for measurable residual disease in hairy cell
leukemia [30].

Recent research has demonstrated that BRAF has an important role in the development
and terminal differentiation of the anterior pituitary [19,31]. Indeed, patients with cardiofa-
ciocutaneous syndrome (an infrequent RASopathy) caused by activating germline BRAF
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variants may also develop pituitary hormone deficiencies. Although BRAF p.V600E has not
been clinically identified in this context, its expression in the embryonic anterior pituitary
leads to severe hypoplasia in vivo, due to initially accelerated cell proliferation, followed
by cell cycle arrest and apoptosis of progenitor cells at later stages [19]. In contrast with this
developmental role, somatic BRAF p.V600E is associated with the development of papillary
craniopharyngiomas (PCPs), which are benign tumors most likely derived from pituitary
precursors [32]. Although this hotspot variant is present in 94% of PCPs, it is absent from
adamantinomatous craniopharyngiomas, which are usually CTNNB1-driven [33–37]. In
PCPs, BRAF p.V600E is associated with a stable genome and its detection helps to confirm
the histopathological diagnosis [34–38]. These tumors usually occur in adults, are not
calcified, and have suprasellar location [38,39].

Also recently, somatic BRAF p.V600E was identified in 9–10% of cases of non-USP8-
driven Cushing’s disease (CD) (see Section 6) by two different groups, accounting for
a total of 16 cases [40,41]. Subsequent studies failed to identify this defect in other CD
cohorts [42–44]. The overexpression of BRAF p.V600E in mouse corticotropinoma AtT-20
cells led to increased phosphorylation of ERK1/2 and of the transcription factors NUR77, C-
JUN, and C-FOS, and consequently, to Pomc upregulation. These findings were confirmed
on BRAF p.V600E-driven corticotropinomas by immunohistochemistry. ACTH secretion
was substantially more suppressed by vemurafenib in AtT-20 cells overexpressing BRAF
p.V600E compared with wild-type BRAF [40]. Given the low frequency of this genetic
defect, its potential impact on the clinical presentation and response to treatment remains
unaddressed. Somatic BRAF p.V600E has also been detected in rare cases of posterior
pituitary tumors [45].

Thanks to the availability of BRAF inhibitors, BRAF p.V600E has been exploited as
a therapeutic target in many neoplasms. Vemurafenib, dabrafenib, and encorafenib are
adenosine triphosphate (ATP)-competitive RAF inhibitors that selectively inhibit BRAF
p.V600E, but paradoxically activate RAS-RAF-MEK-ERK signaling in BRAF wild-type
tumors, particularly in those with RAS activating variants [46,47]. Their many therapeutic
applications as single agents or in combination with MEK inhibitors (cobimetinib, binime-
tinib, and trametinib) and/or other agents including BRAF p.V600E-driven colorectal
cancer, Erdheim-Chester disease, hematological malignancies, melanoma, non-small-cell
lung cancer, and PTC [29,48–52].

Individual case reports of PCP treatment with drugs targeting BRAF and/or other
RAS-RAF-MEK-ERK components have shown encouraging results [53]. Very recently, a
phase 2 clinical trial of combined vemurafenib/cobimetinib treatment in PCP showed a
response in 94% of participants, with a median tumor reduction of 91% at 22 months, for
progression-free survival of 87 and 58% at 12 and 24 months, respectively [54]. In contrast,
BRAF inhibitors have not been evaluated as therapeutic agents for CD in clinical trials.
There are, however, three single-case reports of BRAF p.V600E positive posterior pituitary
tumors (two with confirmed NKX2-1-expression) treated with dabrafenib, either alone [55]
or combined with cobimetinib [56] or trametinib [57]. All tumors had recurred after one
or more surgeries plus radiotherapy. One patient developed stable disease [57] and two
experienced significant tumor regression [55], although the combined therapy resulted in
dermatological toxicity.
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and 2 (also known as mitogen-activated protein kinases (MAPK) 3 and 1). In addition to phosphor-
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Figure 1. The RAS-RAF-MEK-ERK signaling pathway in corticotroph cells. Under physiological
conditions, this pathway is activated in response to the interaction of extracellular ligands such as
growth factors, hormones, or cytokines with a tyrosine kinase receptor. The receptor-like growth
factor receptor-binding protein 2 (GRB2) binds to the activated receptor and interacts with the proline-
rich sequence at the C-terminus of the son of sevenless (SOS) protein to form the receptor-GRB2-SOS
complex, which in turn promotes the GTP-mediated activation of RAS. Activated RAS protein binds
to and recruits BRAF to the inner side of the cell membrane, where it is phosphorylated by tyrosine
kinases. The C-terminal catalytic domain of BRAF interacts with and phosphorylates MEK1 and 2
into their catalytic VIII subregion. In turn, MEK1 and 2 phosphorylate and thus activate ERK1 and 2
(also known as mitogen-activated protein kinases (MAPK) 3 and 1). In addition to phosphorylating
cytoplasmic targets, active ERK1 and 2 enter the nucleus and phosphorylate multiple transcription
factors, such as ELK1, ETS, FOS, JUN, and MYC, thereby inducing the expression of their target genes.
Via the phosphorylation of RPS6KA1, ERK1 and 2 also activate the transcription factor cAMP response
element-binding protein (CREB). The activation of this pathway leads to tissue-specific molecular
consequences, although in the pituitary gland and in many other tissues it results in increased cell
proliferation and survival [18,23,58,59]. In corticotroph cells, this pathway also activates POMC
transcription, although the membrane receptor triggering this response in physiological conditions
and in corticotropinomas remains unclear [40]. The BRAF p.V600E variant leads to the overactivation
of this signaling pathway.

3. GNAS

At least ~100 human genes are subjected to genomic imprinting, an epigenetic mecha-
nism that controls gene expression in a parent-of-origin and tissue-specific manner [60]. Us-
ing differentially imprinted promoters, one of these genes, GNAS (locus of the GNAS com-
plex, 20q13.32), ultimately translates into multiple proteins, namely XLαs, ALEX, NESP55,
and Gsα [61,62]. The latter, encoded by a 13-exon reference transcript (NM_000516.7),
accounts for the 394-amino-acid α subunit of the heterotrimeric stimulating G protein



Cancers 2023, 15, 5685 6 of 23

(P63092-1) [63]. Gsα is translated from the maternal allele in the pituitary, thyroid, and
gonads, but depends on biallelic expression in other tissues [64].

At the molecular level, guanine nucleotide-binding proteins (G proteins) function as
information transducers between the cell-membrane-bound G-protein-coupled receptors
(GPCRs) and their effectors, thereby regulating the production of second messengers [65].
G proteins are composed of α, β, and γ subunits (encoded by different genes) and form a
complex that binds GPCRs [66]. Gsα is made of a C-terminal RAS-like guanosine triphos-
phatase (GTPase) that also functions as an interaction site for the β and γ subunits and
an N-terminal helicoidal domain [67]. A nucleotide binding cleft exists in between those
two domains, which binds guanosine diphosphate (GDP) while the GPCR is inactive.
Following GPCR activation through ligand binding, Gsα exchanges GDP for guanosine
triphosphate (GTP) and dissociates from the βγ dimer and the receptor, thereby allowing
for the GNAS-dependent activation of adenylyl cyclases (ACs) [68,69]. ACs in turn cat-
alyze the synthesis of cyclic 3′,5′-adenosine monophosphate (cAMP), which then activates
downstream signaling pathways [66]. This activation cycle is negatively regulated by the
intrinsic GTPase activity of Gsα, which prevents the continued activation of downstream
effectors [68] (Figure 2). The effects of multiple hormones greatly depend on cAMP, and
the specificity of the cellular responses elicited by this second messenger is determined in a
tissue-specific manner [70].

Missense GNAS variants affecting residues R201 (namely p.R201C, p.R201S, and
p.R201H), and G227 (p.G227R, p.G227L, and p.G227K) of GNAS have been described in
endocrine tumors and other human neoplasms. They have been found as somatic changes
in somatotropinomas (4.4–59.5%), non-functioning PitNETs (7–10%), corticotropinomas
(6%), autonomous thyroid adenomas (5%) and thyroid cancer (13% of PTC and up to 4%
of follicular tumors), and occasionally, in ovarian and testicular Leydig cell tumors, pro-
lactinomas, adrenocortical adenomas, pheochromocytomas, paragangliomas, parathyroid
adenomas, and in patients with multiple endocrine tumors [10,71–98]. These variants have
also been found in non-endocrine malignant neoplasms, such as pancreatic, colorectal, and
lung adenocarcinomas, as well as in hepatocellular carcinomas [99–102].

GNAS variants also underlie the McCune–Albright syndrome (MAS, MIM #174800),
a rare condition with sporadic presentation characterized by genetic mosaicism due to
early postzygotic GNAS hotspot defects [103,104]. The diagnosis is established in the
presence of two or more of the classic MAS features: polyostotic fibrous dysplasia, café-
au-lait skin spots, and endocrine hyperfunction (gonadotropin-independent precocious
puberty, hyperthyroidism, early-onset Cushing’s syndrome, and PitNETs, usually GH or
GH and prolactin-secreting, among others) [105]. Ninety-five percent of MAS cases are due
to variants in R201, while only 5% are caused by variants in Q227 [106–108]. The phenotype
is determined by genomic imprinting and the disease severity correlates with the degree of
mosaicism, meaning that the clinical presentation depends on the time of appearance of
the GNAS variant during embryogenesis [109].

GNAS hotspot variants cause the loss of protein function that results in increased
activity of the cAMP signaling pathway, by (1) stabilizing Gsα in its active conforma-
tion, thereby mimicking the effect of extracellular growth factors by stimulating ACs, and
(2) inhibiting GTPase activity and causing a constitutive activation of ACs [10,110]. For
these reasons, these GNAS defects are often referred to as activating variants or gsp onco-
gene [10]. Restoring the GTPase activity of GNAS is an attractive therapeutic target,
although drugs with this specific effect have not been reported yet. In contrast, non-hotspot
loss-of-function (LOF) GNAS variants cause Albright’s hereditary osteodystrophy [111].

The clinical consequences of GNAS variants have been thoroughly studied in soma-
totropinomas. Some studies have defined a particular GNAS-associated phenotype, with
patients usually being older and presenting significantly smaller tumors associated with
low serum GH or IGF1 levels [71,89,96,97]. Other studies have described GNAS-driven
tumors as having a slow growth rate and a better response to pharmacological or surgical
treatment compared with wild-type tumors [96,98,112]. These tumors are usually of the
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densely granulated subtype at the histopathological examination [113]. Differences in age,
sex, and other clinical characteristics have been suggested by some studies [89,114,115]. At
the molecular level, GNAS hotspot variants define a distinctive subgroup of somatotropino-
mas that display hypomethylation, limited chromosomal alterations, and activation of
the GPCR pathway, although results vary among studies [98,116,117]. In both sporadic
and MAS-related somatotropinomas, GNAS variants almost always affect the maternal
allele [118]. While wild-type somatotropinomas often display relaxation of the paternal
imprinting, this phenomenon is infrequent in tumors carrying GNAS variants [97,119,120].
The relaxation of GNAS imprinting correlates with lower GNAS, SSTR2, and AIP expression,
suggesting a possibly reduced response to somatostatin receptor ligands [97].
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Figure 2. The cAMP pathway in somatotroph cells. G proteins are composed of three subunits, and
the α subunit contains high-affinity binding sites for guanine nucleotides. The GDP-bound form
binds tightly to βγ and is inactive, whereas the GTP-bound form dissociates from βγ and is the active
form. GPCRs cause the activation of G proteins by facilitating the exchange of GTP for GDP on the α

subunit, which in turn activates ACs. These enzymes use ATP as a substrate to produce cAMP. The
latter binds to the regulatory subunits (R) of PKA, allowing for the release of the catalytic subunits
(C). Active PKA catalyzes the serine/threonine phosphorylation of target molecules, including the
transcription factors CREB, CRE modulator (CREM), and activating transcription factor 1 (ATF1). In
complex with co-activators such as CREB-binding protein (CBP) and members of the cAMP-regulated
transcriptional co-activators (CRTC), these transcription factors bind the 8 bp palindromic sequence
known as cAMP response element (CRE) in the promoter region of target genes to increase their
transcription. In somatotrophs, the GH-releasing hormone receptor (GHRHR) is the main GPCR
activating this pathway, promoting both cell proliferation and GH transcription [66–69,121]. GNAS
hotspot variants result in the constitutive activation of this pathway.
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4. DICER1

The DICER1 syndrome (MIM #601200) is an autosomal dominant condition of tumor
predisposition that encompasses otherwise infrequent dysembryonic tumors, such as
pleuropulmonary blastoma (PPB), cystic nephroma (CN), ovarian sex cord stromal tumor,
nasal chondromesenchymal hamartoma, ciliary body and cerebral medulloepitheliomas,
anaplastic kidney sarcoma, pineoblastoma, embryonal rhabdomyosarcoma (ERMS), and
pituitary blastoma (PitB) [122]. Other associated neoplasms are Wilms tumor (WT), juvenile
hamartomatous intestinal polyps, and differentiated thyroid carcinoma, as well as benign
lesions such as multinodular goiter and pulmonary cysts.

This syndrome presents usually at an early age and occasionally in young adults and
is caused in most cases by germline heterozygous LOF DICER1 (14q32.13) variants that
appear de novo in 10–20% of cases [123–126]. Ten percent of cases are due to somatic
mosaicism for DICER1 variants, which has been associated with earlier disease onset, more
DICER1-associated tumors, and a distinctive presentation known as GLOW syndrome
(global developmental delay, lung cysts, overgrowth, and Wilms tumor) [125,127,128].

The 29-exon DICER1 canonical transcript (NM_030621.4) encodes a widely expressed
1922 amino acid cytoplasmic enzyme (Q9UPY3-1) composed, from N- to C-terminal, of a
helicase domain, a domain of unknown function (DUF283), a platform domain, a P-element-
induced whimpy tested (PIWI)-Argonaute (AGO)-Zwille (PAZ) domain, a connector do-
main, the class 3 ribonuclease (RNase III) a and b domains, and a double-stranded RNA
(dsRNA)-binding domain [129]. DICER1 plays a crucial role in the processing of small
RNAs, which are the RNA species involved in gene silencing. It first cleaves pre-miRNAs
and long dsRNA substrates into mature microRNAs (miRNAs) and small interfering RNAs
(siRNAs), respectively [130,131]. Then, DICER1 participates in the loading of siRNAs and
miRNAs onto the RNA-induced silencing complex (RISC), composed of DICER1, an AGO
protein, and the RISC-loading complex subunit transactivating response RNA-binding
protein (TARBP2) [132]. The AGO protein selects a strand of the small RNA as a guide,
which in turn directs the small RNA-bound RISC complex toward complementary messen-
ger RNA (mRNA) sequences. The mRNA targets are then either cleaved by AGO (RNA
interference) or translationally repressed and directed to degradation (miRNA-mediated
gene silencing); the latter mechanism predominates in mammalian cells [133] (Figure 3).

Most individuals carrying germline DICER1 variants also harbor somatic second hits,
which in most cases are missense changes and rarely loss of heterozygosity (LOH) [128].
Moreover, somatic deleterious DICER1 variants have been reported in the presence or
absence of germline defects in patients with PPB, CN, WT, non-epithelial ovarian tu-
mors, cervical ERMS, PitB, prostate carcinoma, pineoblastoma, differentiated thyroid
carcinoma, and testicular germ cell tumors [134–144]. Different to germline variants, which
are usually truncating and are not clustered in hotspots, most mosaic and somatic vari-
ants occurring isolated or as second hits are missense and located within the RNase IIIb
domain [128,141,145].

Nineteen out of the twenty PitBs genotyped so far were due to LOF DICER1 vari-
ants, although it is not clear if any cases were caused by somatic defects [126,146–148].
These tumors usually affect neonates or infants, but one case diagnosed in childhood
and one presenting in young adulthood have been reported [146–148]. These extremely
rare and poorly differentiated anterior pituitary neoplasms with a so-called oncofetal
molecular signature usually express ACTH and may present clinically silently or as
CD [141,149,150]. Nine of these patients died during infancy or childhood due to tumor-
related complications [147,148]. Because PitB is considered a pathognomonic lesion of the
DICER1 syndrome, its diagnosis should prompt germline DICER1 screening and genetic
counseling [126].

RNAse IIIb variants affect metal ion binding and adjacent amino acids, specifically
1705, 1709, 1809, 1810, or 1813, which are therefore considered missense hotspots [122,131].
Second somatic variants outside the hotspot as well as LOH have also been described
in patients with somatic mosaicism for RNAse IIIb variants [125,144]. The abnormal
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RNase IIIb cleaves 5′-derived miRNAs from the pre-miRNA hairpin loops inefficiently,
causing retention of pre-miRNA loop sequences and leading to reduced expression of
5′-derived mature miRNAs and predominance of 3′-derived pre-miRNAs [144]. The
oncogenic capacity of the biased pre-miRNA repertoire seems to depend on the cellular
and developmental setting [145].

In PitB and other DICER1-associated tumors, this abnormal miRNA repertoire leads to
the overexpression of the preferentially expressed antigen in the melanoma gene
(PRAME) [150,151]. PRAME is a member of the retinoic acid receptor (RAR) signaling
pathway that may act as an oncogene or as a tumor suppressor depending on the cellu-
lar context. This protein is highly expressed in melanoma and other malignancies, but
not in most normal tissues, except for testes, and, at lower levels, ovaries, adrenals, and
endometrium [152]. Aside from RAR, the WNT, NOTCH, and PI3K signaling pathways
are also activated in PitB, although the specific pro-tumorigenic downstream effects of
PRAME overexpression remain unclear [150,151]. PRAME overexpression has recently
been explored as a potential therapeutic target for immunotherapy in various neoplasms,
although not yet in patients with DICER1 LOF [152].

Aside from its role as a tumor driver, reduced DICER1 expression due to haploinsuffi-
ciency or other mechanisms correlates with bad outcomes in multiple types of cancer [131].
In these tumors, unprocessed pre-miRNAs are degraded by the endonuclease complex
TSN-TSNAX. Pharmacological or shRNA-mediated inhibition of this complex facilitates
the restoration of miRNA levels by DICER1 in vitro, making it a potential therapeutic
target [153,154]. This strategy, however, has not yet been explored in tumors carrying
DICER1 hotspot variants.
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are in turn exported to the cytoplasm via exportin 5 (XPO5)/Ran-GTP. In the cytoplasm, DICER1
cleaves pre-miRNAs and long dsRNAs into mature miRNAs and siRNAs, respectively, both of which
are 20–22 nucleotide-long double-stranded RNAs. The DICER1-dsRNA complex is then bound by a
member of the AGO protein family (AGO2 is the best characterized of them) and TARBP2 to form
the RISC-loading complex. This complex in turn loads dsRNAs into the RISC, which is required
to produce single-stranded small RNAs that serve as a guide to recognize complementary RNA
sequences (located in the 3′ untranslated region of mRNAs). The small RNA-loaded RISC can either
block translation and promote degradation or directly cleave (via AGO proteins) target mRNAs.
Additional roles for DICER1 in the responses to DNA damage (nuclear) and viral infections (cytoplas-
mic) have recently been described. In PitBs, this abnormal repertoire of small RNAs results in PRAME
dysregulation, among other transcriptional alterations [131,133,155–157]. DICER1 variants result
in abnormal processing of small RNAs, thereby impairing their ability to regulate gene expression.
(b) Processing of mRNAs by the spliceosome. The spliceosome is a large complex of snRNPs and other
proteins that carries out the removal of introns and the ligation of exons from mRNA precursors (pre-
mRNAs), rendering mature mRNAs. Two types of spliceosomes, U2-dependent and U12-dependent,
are recognized in eukaryotes, the former being the predominant one. The U2-dependent spliceosome
is composed of U1, U2, U5, and U4/U6 snRNP, as well as other proteins. This process beings when
the U1 snRNP binds to the 5′ SS to form the E complex. Then, the non-ribonucleoprotein complex
components SF1, U2AF2, and U2AF1 bind the BS (18–40 nucleotides upstream from the 3′ SS), the
polypyrimidine tract (a sequence immediately downstream from the BS), and an AG dinucleotide at
the intron-exon junction, respectively. The U2 snRNP in turn replaces SF1, forming the A complex,
and the U5, and U4/U6 snRNPs are then recruited to form the precatalytic B complex. Rearrange-
ments in RNA–RNA and RNA–protein interactions ultimately lead to dissociation of the U1 and U4
snRNPs, thereby producing the active B complex. The latter is activated by the pre-mRNA-splicing
factor ATP-dependent RNA helicase DHX16, thereby generating the B∗ complex, which catalyzes the
first step of splicing. The C complex is then formed, triggering the second step of splicing. Finally, the
spliceosome is removed and recycled. SF3B1 hotspot variants lead to the use of cryptic pre-mRNA 3′

SSs, and aberrantly spliced mRNAs are degraded via NMD [158–164]. The repertoire of aberrantly
spliced mRNAs involved in lactotroph tumorigenesis remains unknown.

5. SF3B1

Using genome sequencing in 21 patients and targeted genotyping by ddPCR in the rest,
a recurrent missense somatic variant (c.1874G>A, p.R625H) in the splicing factor 3B subunit
1 gene (SF3B1, 2q33.1, NM_012433.4) was identified in 20% of prolactinomas of a single
cohort of 227 cases [165]. When 154 PitNETs of other types were tested, this variant was
only found in 6% of cases, all of them staining positive for prolactin. Individuals carrying
SF3B1 p.R625H displayed significantly higher prolactin levels and a shorter progression-
free survival, compared with SF3B1 wild-type cases. A recent Sanger sequencing-based
study identified the same variant and an additional missense variant in the same residue
(c.1873C>T, p.R625C) in 7 out of 282 prolactinomas analyzed (2.5%) [166]. Interestingly,
50% of metastatic prolactinomas carried SF3B1 hotspot defects. In line with the earlier
findings, SF3B1 variants were associated with a larger tumor size and increased mortality,
but also with a higher Ki67 index and a need for more therapeutic interventions.

SF3B1 encodes a component of the U2 small nuclear ribonucleoprotein (snRNP) com-
plex and is therefore a component of the pre-mRNA splicing machinery. SF3B1 is involved
in 3′ acceptor splice site (SS) recognition, as well as in recruiting other U2 snRNP sub-
units to the branch point (BP) of pre-mRNAs via interaction with the BP and U2AF2 [167]
(Figure 3). The canonical form of SF3B1 (O75533-1) is a 1304-amino-acid protein containing
an unstructured N-terminal region, while the C-terminal two-thirds of the protein consti-
tute a huntingtin, elongation factor 3, regulatory A subunit of protein phosphatase 2A, and
TOR1 (HEAT) domain, composed of 20 tandem repeats [158].

Recurrent somatic variants in hotspots within the fifth and ninth HEAT repeats
have been found in myelodysplastic syndrome, chronic myelomonocytic leukemia, acute
myeloid leukemia, myeloproliferative neoplasms, primary myelofibrosis, chronic lym-
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phocytic leukemia, breast cancer, pancreatic ductal adenocarcinoma, uveal, mucosal, and
cutaneous melanoma, and prostate cancer [159,168–175]. Aberrant splicing is a well-known
tumorigenic mechanism, and indeed, abnormal splicing patterns have been demonstrated
in neoplasms carrying SF3B1 hotspot variants in some [168,169], although not all stud-
ies [173]. In prolactinomas, p.R625H (in the fifth HEAT repeat) leads to aberrant splicing
of estrogen-related receptor gamma (ESRRG) mRNA, resulting in stronger interaction
with the pituitary-specific positive transcription factor 1 (POU1F1) and excessive prolactin
secretion [165]. This variant also causes aberrant splicing and downregulation of DLG1 in
human prolactinomas and rat somatotropinoma GH3 cells. In the latter, the variant causes
an epithelial–mesenchymal transition phenotype [176].

The SF3B1 residues involved in neoplasia are crucial for maintaining the tertiary
structure of the protein. Their substitution induces conformational changes in the HEAT
domain that hamper the interaction of SF3B1 with the BP and with other U2 snRNP compo-
nents [158]. This results in SF3B1 recognizing alternative BPs upstream of the canonical
ones, leading to the use of cryptic pre-mRNA 3′ SSs that are less dependent on U2AF2 and
thus promoting the production of aberrantly spliced mRNAs [159–161]. The final conse-
quence is downregulation of the affected transcripts because approximately 50% of the
aberrant mRNAs undergo nonsense-mediated decay (NMD) [160]. Interestingly, a previous
study showed that multiple components of the splicing machinery were dysregulated in
PitNETs, although this finding was not specific for corticotropinomas [177].

The significance of SF3B1 variants for clinical prognosis in neoplasms remains un-
clear, but they could represent a druggable target [170]. SF3B1 silencing in breast cancer
cell lines inhibited aberrant splicing, reducing cell proliferation, migration, and invasion,
suggesting a potential antineoplastic role for SF3B1 inhibitors [178]. Examples of such
compounds are the natural products pladienolide B, spliceostatin A, herboxidiene, and
sudemycin, not available for clinical use, and the synthetic derivatives of pladienolide B,
E7107 and H3B-8800, which have been tested in phase I clinical trials [179]. Intravenous
E7107 showed low activity and severe ophthalmologic toxicity when used against solid
tumors [180]. Oral H3B-8800, however, has shown moderate efficacy and an acceptable pro-
file of adverse effects in patients with myeloid neoplasms [181]. Interestingly, pladienolide
B reduced cell proliferation, viability, and hormone secretion in GH3 and AtT-20 (mouse
corticotropinoma-derived) cell lines, as well as in primary PitNET cell cultures [177]. Fur-
ther studies are required to fully assess the effectiveness of this drug in tumors carrying
SF3B1 hotspot variants.

6. USP8

Research published over the last eight years has established that somatic defects in
codons 718–720 of USP8 (exon 14 in NM_005154.5) are the most frequent genetic cause of
CD, being found in 21–62% of corticotropinomas [11,12,43,182–195]. Seventeen different
pathogenic or likely pathogenic variants at the protein level have been reported so far (re-
viewed in [196]). USP8 (15q21.2) encodes the 1118-amino-acid ubiquitin carboxyl-terminal
hydrolase 8 (P40818-1), which belongs to the family of deubiquitinases (DUBs) [63]. Ubiq-
uitination is one of the most frequent forms of protein posttranslational modifications
and plays a major role in the protein quality control system by promoting proteasomal
or lysosomal degradation, thereby controlling protein turnover. DUBs remove ubiquitin
molecules from other proteins and are involved in the generation and maintenance of free
ubiquitin monomers [197].

The mutational hotspot implicated in CD lies within the USP8 14-3-3 interacting
motif (residues 715–720), which is crucial for maintaining USP8 protein integrity. The
CD-associated variants lead to the loss of the 14-3-3 interaction and cleavage of USP8 just
upstream of the interacting site, resulting in a C-terminal 40 kDa protein fragment with an
enhanced DUB activity [12]. The epidermal growth factor receptor (EGFR) is a particularly
affected DUB target in this setting, because USP8 indirectly regulates its deubiquitination
both at the cell membrane and at the early endosomes, the latter via interaction with the
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endosomal sorting complex-III required for transport (ESCRT-III) [197–200]. Specifically,
while EGF signaling promotes the ubiquitination of the ESCRT-III member CHMP1B, which
is essential for EGFR degradation, USP8 counteracts this effect [201]. By deubiquitinating
CHMP1B, USP8 also indirectly regulates the deubiquitination of EGFR in the early endo-
somes [201] Indeed, USP8 activating variants result in increased EGFR recycling, which in
turn leads to a rise in POMC transcription [11,12,183] (Figure 4).

The role of this tyrosine kinase receptor as a potent inducer of POMC expression
and ACTH secretion with apparent autocrine/paracrine regulation in corticotropinomas
has been thoroughly characterized [202]. Nevertheless, USP8 hotspot variants seem to
also impact other signaling pathways, including the downregulation of genes involved in
protein degradation and cell-to-cell junction [193]. USP8 also deubiquitinates other proteins,
such as ERBB2, ERBB3, MET, LRIG1, EPS15, HGS, STAM, STAM2, CHMP proteins, CFLAR,
NOTCH1, GJA1, and AKT [198,203].

A recent RNA sequencing study found higher expression of POMC, CDC25A and
MAPK4 in tumors carrying USP8 variants; these findings point toward an enhanced
secretory and proliferative potential. In contrast, USP8 wild-type tumors expressed higher
levels of CCND2, CDK6, and CDKN1B, while the expression of EGFR and USP8 did not
differ among groups [188]. A different study found reduced immunoreactivity for CDKN1B
(in concordance with the transcriptomic study) as well as increased immunoreactivity for
HSP90 and pCREB in corticotropinomas with USP8 variants [190]. The potential clinical
significance of these findings requires further exploration.

From the published data, it is clear that USP8 variants are more frequent in women and
in younger adults [11,12,41,43,182–184,186–195]. In pediatric CD, this defect is less common
(0–14%) and is found in teenagers more often than in younger children [44,194]. A possible
explanation might be that hereditary causes of CD are more common in children than in
adults, and patients carrying germline drivers of CD are usually USP8 wild-type [44].

A favorable phenotype was originally proposed for corticotropinomas carrying USP8
variants because the first studies reported that they were smaller than their wild-type
counterparts and because they almost always present with overt CD and not as silent
corticotropinomas [11,12,183]. In addition, two groups reported higher clinical remission
rates in cases with USP8 variants [183,189]. Along these lines, USP8 variants are less
frequently found in Crooke’s cell adenomas than in other corticotropinomas and do not
seem to drive Nelson’s syndrome [183,204]. Also, tumors with USP8 variants display
increased immunoreactivity for SST5 and MGMT, which could favor the response to
medical treatment [183,191]. Indeed, corticotropinomas carrying the p.P720R displayed
an increased response to pasireotide in vitro [205]. USP8 itself might be a druggable
target, since USP8 inhibitors reduced cell proliferation and ACTH secretion in mouse
corticotropinoma-derived AtT-20 cells [206].

In contrast, other studies found that USP8 variants were found in larger
tumors [189,192,195,204] and were associated with higher recurrence rates [185,186,195]
and/or earlier recurrences [11,186]. Other effects on the clinical phenotype, perhaps not
related to tumor aggressiveness, have also been explored. Among them, an association was
found with higher urinary free cortisol, with or without higher serum cortisol suppression
with low-dose dexamethasone [186,204]. This genetic defect has also been associated with
enhanced cortisol and ACTH responses with the high-dose dexamethasone suppression test
and the desmopressin stimulation test, as well as with lower plasma ACTH [11,42,183,207].

While the effects of USP8 hotspot variants have been thoroughly explored at the
somatic level, their systemic consequences are less well known. Only one case of a germline
USP8 hotspot has been described, in a female individual with a history of recurrent pediatric
CD, developmental delay, dysmorphic features, and other medical issues [208]. The variant
(p.S719P), had been detected previously as a somatic change in corticotropinomas and was
found to cause gain-of-function in vitro [183].

USP8 has been investigated as a pharmacological target, either indirectly through
its associated activation of the EGFR pathway, or via direct inhibition. Regarding the
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former, the EGFR inhibitor gefitinib has shown potential as a treatment for CD in vitro and
in vivo [209]. In terms of direct inhibition, compounds specifically targeting USP8 such as
DUBs-IN-2 and RA-9 have shown some therapeutic potential in vitro [206,210,211]. These
drugs, however, are not yet available for clinical use.
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Figure 4. Roles of USP8 and USP48 in deubiquitination in corticotroph cells. DUBs counteract
ubiquitination of specific targets, thereby preventing their proteasomal or lysosomal degradation [212].
Upon ligand binding, EGFR is internalized, and then ubiquitinated, and directed for degradation
by the lysosomal pathway. USP8 deubiquitinates EGFR both at the cell membrane and in the
lysosomes, reducing its degradation and favoring its recycling. In corticotroph cells, EGFR signaling
promotes cell proliferation, POMC expression, and ACTH secretion. Another important regulator of
corticotroph tumorigenesis is the SHH pathway. Its effector, GLI1, is a substrate for USP48 that under
physiological conditions leads to increased POMC expression. Another USP48 target, NFKB, has the
opposite effect [40,41,197,201]. USP8 and USP48 hotspot variants associated with corticotropinomas
lead to enhanced EGFR and GLI signaling, respectively. USP48 variants also inhibit the function of
NFKB. Additional effects of hotspot variants affecting these DUBs are still incompletely described.

7. USP48

The ubiquitin-specific protease 48, encoded by the USP48 gene (1p36.12), is another
DUB that has recently been implicated in the pathogenesis of CD. Recurrent somatic
missense variants affecting a hotspot in residue 415 (Q86UV5-1, exon 10 in NM_032236.8) of
USP48 (p.M415I or p.M415V) have been identified in 4–23% of corticotropinomas negative
for USP8 variants in the general population and in only 1% of USP8 wild-type pediatric
corticotropinomas [40,41,43,44,195,213].

These variants lie within the peptidase domain of the protein, specifically in its cat-
alytic “palm”, but do not affect its expression [40]. The abnormal protein displays increased
DUB activity in vitro, thus leading to reduced degradation of USP48 substrates, such as
histone H2A and GLI1 [41]. USP48 variants result in increased POMC transcription by at
least two possible mechanisms. The sonic hedgehog (SHH) pathway effector GLI1, which
is overexpressed in this setting, potentiates the stimulatory effect of CRH on the POMC
promoter [41]. Interestingly, SMO, another SHH member, is a substrate of USP8 [214]. In
addition, USP48 variants also lead to the inhibition of NFKB, probably via enhanced stabi-
lization of its RELA subunit, thereby blunting its effect as a POMC negative transcriptional
regulator [40] (Figure 4).

Corticotropinomas carrying USP48 hotspot defects were significantly smaller in one
study and displayed a higher rate of cavernous sinus invasion in a different cohort, com-
pared with USP48 wild-type tumors [41,43]. A third study found no significant differences
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in the clinical phenotype [40]. Compared with the wild type, these tumors express lower
levels of CCND2 at the mRNA level and of CDKN1B at the mRNA and protein levels [213].
Unfortunately, the clinical significance of USP48 hotspot variants has been explored in only
a small number of patients, given its rarity, and thus requires further assessment. Just like
USP8, USP48 could also be directly targeted by DUB inhibitors (DUBs-IN), although there
are no data in the literature on USP48-specific compounds [215].

8. Conclusions and Future Directions

Hotspot variants associated with PitNETs have been proposed as potential disease
biomarkers by multiple groups. Although GNAS and USP8 might define specific clinical
phenotypes, results are highly variable among studies. In contrast, DICER1 variants are
clearly associated with an aggressive phenotype, but they only exceptionally occur as
somatic changes. Since BRAF, USP48, and SF3B1 hotspot variants have only recently been
identified in PitNETs, their associated clinical pictures are still unknown. All these variants
are easily detectable by Sanger sequencing or NGS techniques, which might become part
of routine diagnostic tumor assessments in the near future. Further preclinical and clinical
research protocols are required to test the efficacy and safety of compounds directed toward
these molecular alterations in PitNETs.
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